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Learnings from quantitative structure activity relationship (QSAR) 

studies with respect to food protein-derived bioactive peptides: A 

review 

Alice B. Nongoniermaa and Richard J. FitzGeralda* 

The generation of bioactive peptides (BAPs) from dietary proteins has been widely studied. One of the main limitations of 

a broader application of BAPs in functional foods may arise from their low potency. Therefore, the search for more potent 

structures is crucial. Quantitative structure activity relationship (QSAR) has been widely applied in drug discovery and 

some examples may also be found in the study of BAPs. The aim of this review was to assess the efficiency of QSAR for the 

discovery of novel and potent BAPs, derived from food protein sources. A wide range of bioactive properties including 

antioxidant, antimicrobial, angiotensin converting enzyme (ACE), renin and dipeptidyl peptidase IV (DPP-IV) inhibition as 

well as bitter peptides have been investigated with QSAR. Some studies have identified structural requirements for specific 

bioactivities, which generally confirmed findings from earlier studies carried out on those BAPs. However, discrepancies 

are found across analyses, possibly due to the quality of the peptide datasets as well as the descriptors used to build QSAR 

models. It appears to date that only a limited number of QSAR studies conducted with BAPs have subsequently carried out 

confirmatory studies and evaluated promising peptide sequences in vivo. This suggests that more research is needed in 

order to advance knowledge in the area of BAP discovery using QSAR. 

1 Introduction 

Food proteins contain peptide sequences which have been 

shown, using different in vitro bioassays, to positively affect 

specific health markers. Such peptides, which are called 

bioactive peptides (BAPs), may be released from a wide range 

of dietary proteins.
1
 The efficacy and activity of BAPs has been 

studied in vivo, suggesting in certain instances that food 

protein-derived BAPs may be relevant to human health. 

However, contradictory results are still reported in the 

scientific literature in relation to their health benefits.
2-4

 

An increasing number of peptide sequences identified in 

various food protein hydrolysates have been reported in the 

literature over the past few years. The technology used to 

identify these sequences within food protein hydrolysates or 

their fractions has greatly evolved. Earlier studies have mainly 

relied on immunoreactive techniques (e.g., enzyme-linked 

immunoassay - ELISA) or Edman degradation of the N-terminal 

amino acids linked to peptide sequencers to identify positive 

peptide candidates.
5-7

 However, advances in mass 

spectrometric (MS) analysis have allowed greater capability in 

the identification of peptides within complex mixtures and also 

identification of a large number of peptide sequences in an 

automated manner, for reviews, see:
8-11

. Nevertheless, 

challenges such as the reliable identification of short peptide 

sequences (< 5 amino acid residues) are still an issue for a 

more comprehensive understanding of dietary BAP 

structures.
12-14

 

Overall, an understanding of the structural requirements for 

peptides having specific bioactivities has increased. This has 

been made possible by (1) novel strategies to release and/or 

isolate BAPs from food protein hydrolysates, (2) the increasing 

number of BAP sequences which have been identified, (3) 

access to a higher number of bioinformatic, peptidomic and 

proteomic tools as well as (4) structure-activity relationship 

studies.15,16 Conventionally, structure-activity relationships for 

BAPs have been developed using empirical knowledge based 

on previously known BAP sequences. Recently, the structure-

function of peptides has been reported for a wide range of 

bioactive properties including mineral binding, angiotensin 

converting enzyme (ACE) and renin inhibition, antithrombic, 

antidiabetic, antimicrobial, immunomodulatory, antioxidant 

and opioid activities.
17

 

Quantitative structure activity relationship (QSAR) modelling is 

a well-accepted approach for the study of active molecules, 

which is extensively used in drug discovery.
18

 QSAR has been 

developed to elucidate novel drug molecules displaying higher 

activity, produced at lower cost or which mediate less side-
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effects. Furthermore, several examples of QSAR are found for 

the study of food protein-derived BAPs, for reviews, see: 
15,19

. 

QSAR studies have been applied to bioactive properties such 

as ACE inhibition, antimicrobial, anticancer and antioxidant 

activities, for reviews, see:
20-22

. Additional studies are also 

found where QSAR approaches have been employed to try to 

understand the link between peptide structure and 

bitterness.
23-25

 

A summary of the structural features of ACE inhibitory 

peptides, based on the QSAR outcomes, has been compiled in 

a recent review by Iwaniak, et al.
15

 However, to our 

knowledge, studies summarizing the structural requirements 

for other BAPs, as determined by QSAR analysis, are rare. A 

better understanding of peptide structural requirements for 

bioactivity may lead to the discovery of novel peptide 

sequences with enhanced bioactivities.26 Therefore, the aim of 

this review was to assess existing QSAR approaches in order to 

identify common peptide motifs in BAPs which may be used to 

design novel dietary protein-derived BAP sequences. The 

search period covered by the review was from 1990 to date. 

QSAR studies were classified by bioactive properties, i.e., 

antioxidant, antimicrobial, ACE, renin and dipeptidyl peptidase 

IV (DPP-IV) inhibitory as well as bitter peptides. 

2 QSAR methodology applied to BAPs 

QSAR is defined as a relationship linking structural characteristics of 

molecules to their biological or chemical properties, for reviews, 

see: 
20,27,28

. The general work flow to design a QSAR strategy, which 

is summarised in Fig. 1, will be described in the following 

subsections. 

2.1 Building the BAP library 

The first step in all QSAR analyses is to collate the sequences of 

target peptides to be used to build the QSAR model(s). These 

sequences generally arise from in-house or publicly available BAP 

databases. Various publicly available BAP databases have been 

listed in recent reviews.
15,19

 BIOPEP, for example, is a database 

which is commonly employed for the study of dietary peptides.29 

The peptide library used to construct the QSAR model contains 

quantitative biological outputs, e.g., half maximal inhibitory 

concentration (IC50) values for enzyme inhibition, minimal inhibitory 

concentration (MIC) for microbial strains, half maximal effective 

concentrations (EC50) or scavenging activities for antioxidant 

peptides, etc.
24,26,30,31

 For comparative purposes, it is recommended 

that the bioactivity output should be obtained under similar 

experimental conditions.
18,27,32

 The peptide database may be 

restricted to sequences which originate from a single protein 
26

 or a 

group of proteins found within certain species (e.g., Homo sapiens, 

Bos taurus, etc.).
33

 In addition to the peptide origin, the dataset can 

also be made of peptides having a defined amino acid length or 

incorporate peptides having various amino acid lengths.24 In other 

instances, QSAR strategies have focused on peptide analogs of a so-

called “lead peptide”. The lead peptide may be used to design 

specific analogs which are then employed to construct minimum 

analogue peptide sets (MAPS).
31,34

 The sequence of the peptide 

candidates to be included in the peptide library and subsequently 

tested to generate biological activity data may be defined using a 

full or fractional factorial design. The MAPS is designed in such a 

way as to incorporate the minimum number of peptides in the 

dataset while covering a wide range of amino acid physicochemical 

properties and while simultaneously varying their positions within 

the peptide sequences. The number of peptide analogs generated 

depends on the number of amino acid positions varied within the 

peptide sequence.
34

 The inclusion of peptide analogs in datasets 

has been described, for example, for derivatives of lactoferricin 

(LFcin), a peptide with antimicrobial properties.35,36 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic of the general approach used in quantitative structure activity relationship (QSAR) methodologies for the study of bioactive peptide (BAP) sequences (adapted 

from Hellberg et al.
31

 and Iwaniak et al.
15

). 
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It has been stated that selection/design of the peptide set is the 

most crucial step to conduct successful QSAR studies.
31

 Once the 

peptide library has been compiled, the peptides are generally 

classified into a “training set” and a “test set”. This classification 

generally consists in randomly excluding a certain number of 

peptides from the peptide library. These excluded peptides will 

then be part of the test set, which is subsequently used for cross 

validation of the QSAR model. The peptides within the test set may 

also be chosen in order to cover a wide range of structural 

characteristics. For example, this may be achieved using a statistical 

molecular design approach which is based on a fractional design 

methodology.
27

 

2.2 Description of the peptides using scalar descriptors of the 

constituent amino acids 

The next step of the QSAR study consists in describing the peptides 

incorporated in the training set. This may be achieved either using 

selected physicochemical descriptors or amino acid scalar 

descriptors. Different scalar descriptors for amino acids have been 

developed.
26,34

 These may be classified as 1- (molecular formula), 2- 

(topological), 3- (conformational) or 4D (orientation and time-

dependent) descriptors.18 Examples of 2- and 3D amino acid 

descriptor scales are outlined in Tables 1 and 2, respectively. One of 

the popular amino acid descriptor scales used in the early QSAR 

studies is the 3-z score scales which was developed by Hellberg, et 

al.
34

 The 3-z values, which were determined using a principal 

component analysis (PCA) combining 29 physicochemical 

characteristics of the 20 conventional amino acids, correspond to 

the hydrophilicity (z1), size (z2) and charge (z3) of the amino acids.
34

 

Later on, a 5-z scale was developed by Sandberg et al.
37

, 

incorporating the 12 previously used physicochemical properties for 

the development of an extended 3-z scale
38

 and 14 other 

physicochemical properties to describe 87 amino acids. The 5-z 

scale descriptors incorporated lipophilic, steric and electronic 

properties of amino acid side chains. The v-scale of Lin et al.
39

 

incorporates three structural characteristics (van der Waals volume, 

net charge index and hydrophobicity) of the 20 conventional amino 

acids. The v-scale was developed with the view of providing more 

meaningful physicochemical properties to describe structural 

parameters of amino acid side chains. 

Other amino acid descriptors have been described to develop 3D 

scales. The T-scale has been developed by Tian et al.
40

 from a PCA 

of 67 structural and topological variables of 135 amino acids. A PCA 

was carried out on the hydrogen bonding (5), electronic (23), steric 

(37) and hydrophobic (54) properties of the 20 conventional amino 

acids, yielding 10 descriptors termed as divided physicochemical 

property scores (DPPS).
41

 The 3D scale developed by Collantes and 

Dunn
42

 combines amino acid side-chains descriptors, i.e., the 

isotropic surface area (ISA, hydrophobic character of the side chain 

substituent) and the electronic charge index (ECI, charge 

concentration of the amino acid). 

The main limitation of those scalar descriptors may be the difficulty 

in relating biological activity to specific physicochemical 

characteristics of the peptides.
27

 To overcome this issue, QSAR 

modelling analyses combining a z-score approach and individual 

physicochemical characteristics of the peptides have been carried 

out.
32

 

2.3 QSAR mathematical modelling 

The third step of the QSAR analysis consists in building the QSAR 

model(s). Each peptide in the training set is described by the 

descriptors of its constitutive amino acids or its overall 

physicochemical characteristics. QSAR modelling consists in 

mathematical equations, which are based on computational 

methods (e.g., multiple linear regression (MLR), partial least square 

regression (PLSR), PCA, artificial neural network (ANN), etc.).
21

 The 

QSAR model is a multivariate data approach linking the structural 

characteristics (peptide descriptors - independent variables) to the 

biological activity (dependent variable) of the peptides.  

When the peptide descriptors are defined by the characteristics of 

its constitutive amino acids, a QSAR model may be described by eqn 

(1): 

�� � �0 � ∑ ∑ α�,



1 ���,


�

1 � �      (1) 

With Ai: the biological activity of the peptide i; j: the position of the 

amino acid within the peptide i; k: the number of the amino acid 

descriptor; αj,k: the coefficients of the model; α0: the constant of 

the model and ε the residual. 

Some peptide QSAR approaches have studied peptide sets made of 

one defined amino acid length (e.g., di- or tripeptides). It is however 

possible to develop QSAR models using peptide libraries composed 

of sequences having variable amino acid lengths. This has been 

addressed by Pripp, et al.
32

 and Li and Li
43

 in the development of a 

QSAR approach for ACE-inhibitory peptides (2-6 amino acid in 

length) and antioxidant peptides (3-20 amino acid in length). In such 

QSAR studies, the length (l) of the smallest peptide of the dataset is 

generally taken into consideration in order to build the model. The 

QSAR model includes peptide descriptors of the l amino acids 

located at the N- and C-terminus of each peptide (eqn 2): 
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With Ai: the biological activity of the peptide i; j: the N- or C-

terminal position of the amino acid of the peptide i (varying 

between 1 and l); k: the number of the amino acid descriptor; αj,k 

βj,k and α0: the coefficients constant of the model and ε the residual. 

The QSAR model is subsequently statistically cross-validated using 

the peptides within the test set (originally excluded from the 

training set) to verify the ability of the QSAR model to be applied to 

unknown compounds. 

2.4 Confirmatory studies with synthetic peptides 

In certain instances, the QSAR analysis may allow determination of 

structural features of peptides which are linked with enhanced 

bioactive properties. These features may subsequently be used to 

design peptides which are (1) predicted to be highly bioactive and 

(2) novel in their sequence. The novelty of the peptide can be 

assessed after searching the sequence in BAP databases as well as 

in the relevant patent literature. Confirmatory studies allow 

external validation of the QSAR model and testing its robustness in 

terms of its ability to predict the bioactivity of peptides. 

To date, the highest number of QSAR studies which are relevant to 

food protein-derived peptides appear to have been conducted with 

ACE inhibitory or antimicrobial peptides (AMPs). The following 

sections review QSAR studies which have been classified according 

to the target in vitro bioactivity (i.e., antioxidant, antimicrobial, ACE, 

renin and DPP-IV inhibition) as well as bitterness of the peptides. 

3 QSAR studies with specific BAPs 

3.1 ACE inhibitory peptides 

Several studies employing QSAR approaches have focused on ACE 

inhibitory peptides, for reviews, see:
21,44

. In most of these studies, 

QSAR has been used to better understand the structural features of 

peptides which correlate with in vitro ACE inhibitory activity and in 

certain cases to predict novel and potent ACE inhibitory peptides. 

The main outcomes of these QSAR studies are summarised in Table 

3. The peptide descriptors used to construct the QSAR models were 

either based on physicochemical characteristics
32,45

 or scalar amino 

acid descriptor scales.
30-32,46

 Most of the QSAR studies have 

successfully proposed the structural requirements linked with the 

ACE inhibitory properties of peptides. These consisted of specific 

amino acids located at different positions in the peptide sequence 

(Table 3). However, depending on the QSAR study, different 

structural features for ACE inhibitory peptides have been proposed. 

This may arise from the training set used, the experimental 

conditions employed to obtain the biological activity of the 

peptides, the size and diversity of the peptides and the amino acid 

descriptors used to construct the QSAR model. 

Table 1. Examples of amino acid descriptors which have been employed for 2D quantitative structure activity relationship (QSAR) modelling of bioactive peptides (BAPs). 

3 z-score34 v-scale39 5 z-score37 

Amino acid z1 z2 z3 v1 v2 v3 z1 z2 z3 z4 z5 

A 0.07 -1.73 0.09 0.05702 0.007187 0.42 0.24 -2.32 0.60 -0.14 1.30 

R 2.88 2.52 -3.44 0.58946 0.043587 -1.37 3.52 2.50 -3.50 1.99 -0.17 

N 0.71 -0.97 4.13 0.22972 0.005392 -0.82 3.05 1.62 1.04 -1.15 1.61 

D -1.39 2.32 0.01 0.21051 -0.02382 -1.05 3.98 0.93 1.93 -2.46 0.75 

C 0.92 -2.09 -1.4 0.14907 -0.03661 1.34 0.84 -1.67 3.71 0.18 -2.65 

Q 3.64 1.13 2.36 0.34861 0.049211 -0.30 1.75 0.50 -1.44 -1.34 0.66 

E 3.08 0.39 -0.07 0.32837 0.006802 -0.87 3.11 0.26 -0.11 -3.04 -0.25 

G 2.23 -5.36 0.30 0.00279 0.179052 0.00 2.05 -4.06 0.36 -0.82 -0.38 

H 2.41 1.74 1.11 0.37694 -0.01069 0.18 2.47 1.95 0.26 3.90 0.09 

I -4.44 -1.68 -1.03 0.37671 0.021631 2.46 -3.89 -1.73 -1.71 -0.84 0.26 

L -4.19 -1.03 -0.98 0.37876 0.051672 2.32 -4.28 -1.30 -1.49 -0.72 0.84 

K 2.84 1.41 -3.14 0.45363 0.017708 -1.35 2.29 0.89 -2.49 1.49 0.31 

M -2.49 -0.27 -0.41 0.38872 0.002683 1.68 -2.85 -0.22 0.47 1.94 -0.98 

F -4.92 1.30 0.45 0.55298 0.037552 2.44 -4.22 1.94 1.06 0.54 -0.62 

P -1.22 0.88 2.23 0.2279 0.239531 0.98 -1.66 0.27 1.84 0.70 2.00 

S 1.96 -1.63 0.57 0.09204 0.004627 -0.05 2.39 -1.07 1.15 -1.39 0.67 

T 3.22 1.45 0.84 0.19341 0.003352 0.35 0.75 -2.18 -1.12 -1.46 -0.40 

W -4.75 3.65 0.85 0.79351 0.037977 3.07 -4.36 3.94 0.59 3.44 -1.59 

Y 2.18 0.53 -1.14 0.6115 0.023599 1.31 -2.54 2.44 0.43 0.04 -1.47 

V -2.69 -2.53 -1.29 0.25674 0.057004 1.66 -2.59 -2.64 -1.54 -0.85 -0.02 
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Table 2. Examples of amino acid descriptors which have been employed for 3D quantitative structure activity relationship (QSAR) modelling of bioactive peptides (BAPs).  

Collantes scale42 DPPS scale41 T scale40 

Amino 

acid 
ISA ECI V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 T1 T2 T3 T4 T5 

A 62.90 0.05 -1.02 -2.88 -0.56 0.36 -6.15 -1.68 0.04 -2.51 -1.94 -0.01 -9.11 -1.63 0.63 1.04 2.26 

R 52.98 1.69 1.99 4.13 -4.41 -1.02 4.78 3.04 -9.06 6.71 4.41 0.07 0.23 3.89 -1.16 -0.39 -0.06 

N 17.87 1.31 -2.19 1.86 0.38 -0.13 -2.30 1.41 -5.71 -1.11 1.73 -0.19 -4.62 0.66 1.16 -0.22 0.93 

D 18.46 1.25 -6.60 3.32 1.61 0.36 -3.25 1.95 -7.36 0.14 1.24 -0.15 -4.65 0.75 1.39 -0.40 1.05 

C 78.51 0.15 0.21 1.12 3.42 -0.68 -2.27 -1.22 3.11 -2.98 -1.70 1.57 -7.35 -0.86 -0.33 0.80 0.98 

Q 19.53 1.36 -0.47 1.16 -0.57 0.69 0.39 1.93 -5.46 -0.84 1.93 0.85 -3.00 1.72 0.28 -0.39 0.33 

E 30.19 1.31 -5.39 0.65 -0.98 1.39 -0.23 2.51 -6.84 -0.68 1.41 1.28 -3.03 1.82 0.51 -0.58 0.43 

G 19.93 0.02 -2.86 -5.00 -2.97 0.53 -11.45 1.89 -2.11 -3.99 -2.16 -0.76 -10.61 -1.21 -0.12 0.75 3.25 

H 87.38 0.56 0.73 2.68 -0.66 -1.89 1.60 1.13 -1.94 -0.11 0.44 0.15 -1.01 -1.31 0.01 -1.81 -0.21 

I 149.77 0.09 1.91 -3.13 0.01 1.14 2.70 -4.55 8.93 0.18 -1.10 -0.76 -4.25 -0.28 -0.15 1.40 -0.21 

L 154.35 0.10 1.64 -2.57 0.00 1.35 2.62 -2.65 7.72 0.05 -1.03 -1.81 -4.38 0.28 -0.49 1.45 0.02 

K 102.78 0.53 2.47 1.54 -4.28 -0.86 2.77 2.06 -6.18 2.05 2.19 -1.65 -2.59 2.34 -1.69 0.41 -0.21 

M 132.22 0.34 1.93 -0.01 1.21 0.99 2.79 -0.56 5.33 -0.87 -0.99 -1.09 -4.08 0.98 -2.34 1.64 -0.79 

F 189.42 0.14 2.68 0.84 2.22 0.71 5.02 -0.30 8.60 1.13 -1.40 -0.28 0.49 -0.94 -0.63 -1.27 -0.44 

P 122.35 0.16 0.45 -2.89 1.77 -5.81 -3.79 -0.61 0.70 1.21 -1.67 1.79 -5.11 -3.54 -0.53 -0.36 -0.29 

S 19.75 0.56 -1.76 -0.19 1.06 -0.69 -5.72 0.14 -4.14 -2.42 -0.13 0.69 -7.44 -0.65 0.68 -0.17 1.58 

T 59.44 0.65 -0.55 -0.66 0.13 -0.31 -2.76 -1.56 -2.46 -2.12 0.17 0.08 -5.97 -0.62 1.11 0.31 0.95 

W 179.16 1.08 3.88 1.78 1.68 2.00 9.31 0.89 7.53 4.27 -0.23 -1.42 5.73 -2.67 -0.07 -1.96 -0.54 

Y 132.16 0.72 2.10 1.26 1.15 0.91 5.90 0.74 3.71 3.32 0.25 1.33 2.08 -0.47 0.07 -1.67 -0.35 

V 120.91 0.07 0.83 -3.02 -0.22 0.97 0.05 -4.55 5.61 -1.41 -1.44 0.30 -5.87 -0.94 0.28 1.10 0.48 

a DPPS: divided physicochemical property scores 

While different structural features for potent ACE inhibitory 

peptides have been reported, the C-terminal sequence of the 

peptide appear to have a major contribution to ACE inhibition while 

a minor contribution of the N-terminal sequence has been 

proposed in several of the QSAR studies conducted to 

date.
30,32,33,45,46

 In particular, the C1 (C-terminal) amino acid of 

peptides is thought to have a major effect on the in vitro ACE 

inhibitory properties of peptides. Overall, most QSAR studies have 

indicated that the presence of aliphatic hydrophobic and small 

amino acids (Ala, Trp, Pro, Phe, Gly, Cys, Leu and Ile) at the C1 

position of peptides was a good predictor for potent in vitro ACE 

inhibitory activity. Amino acids located at other positions also 

appear to play a role in modulating the overall ACE inhibitory 

properties of peptides. It was reported, for instance, that the nature 

of C2 to C4 amino acid in peptides had an effect on the ACE 

inhibitory potential.45,46 The importance of the C-terminal sequence 

in ACE inhibition may come from the specific mode of action of the 

enzyme. ACE is a dipeptidyl carboxypeptidase, meaning that 

peptide binding to its active site occurs through the C-terminal 

dipeptide sequence.
47

 More particularly, hydrophobic amino acids 

have been described to bind to the hydrophobic S’2 subsite of the 

ACE active site.
45

 Zhou, et al.
48

 have shown that there was a 

relationship between the binding energy of peptides to ACE and 

their inhibitory potency, with a positive contribution of 

hydrophobicity to peptide binding. In addition, they demonstrated 

using truncated versions of Gln-Pro-Leu-Ile-Tyr-Pro that the C-

terminal dipeptide (Tyr-Pro) played a preponderant role in peptide 

binding to ACE and that the C5 and C6 amino acids hardly affected 

binding.48 
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To date, most QSAR studies on ACE inhibition appear to have been 

applied to relatively short peptides (≤ 8 amino acid residues, Table 

3). A recent QSAR study on ACE inhibitory activity of peptides has 

been applied to the largest peptide (> 1,400 peptides) dataset 

employed to date.
49

 The originality of this study also lied in the fact 

that it took into account peptides with a broad size range (from 2 to 

> 12 amino acid residues). The peptides were classified according to 

their amino acid length as “tiny” (≤ 3 amino acids), “small” (4-6 

amino acids), “medium” (7-12 amino acids) and “large” (> 12 amino 

acids). When analyzing the amino acid composition of ACE 

inhibitory peptides, Gly (≥ 13%) was found to be the most abundant 

amino acid in dipeptides while Pro (≥ 14 %) was the most abundant 

in peptides having ≥ 3 amino acids. This result is in agreement with 

QSAR outcomes from the study of Wang, et al.
50

 also predicting that 

Gly was the preferred amino acid residue both at the N- and C-

terminal position of ACE inhibitory dipeptides. 

Despite the very large number of QSAR studies focusing on ACE 

inhibitory peptides, only a few have subsequently been utilised as 

predictive tools to design peptides with potent ACE inhibitory 

properties (Table 3). In a few instances, QSAR studies have led to 

the identification of novel ACE inhibitory peptides following 

confirmatory in vitro studies with synthetic peptides.
30,33,51

 Novel 

ACE inhibitory peptides, Tyr-Phe and Leu-Arg-Phe, being 2-10 times 

more potent than the well-known ACE inhibitory lactotripeptide Ile-

Pro-Pro, were reported.30 Similarly, Ile-Val-Pro (IC50 = 49.7 ± 4.2 

µM) and Val-Ile-Pro (IC50 = 26.1 ± 0.8 µM) were found to be 

relatively potent ACE inhibitors.33 Huang, et al.51 specifically applied 

QSAR to C-terminal Pro containing tripeptides and successfully 

identified two novel ACE inhibitory peptides, Ile-Ile-Pro and Ile-Val-

Pro having IC50 values of 1.39 and 1.58 µM, respectively. 

To our understanding, new ACE inhibitory peptides identified using 

QSAR approaches have been evaluated in one study for their in vivo 

hypertensive properties.
33

 Ile-Val-Pro and Val-Ile-Pro were 

administered to spontaneously hypertensive rats (SHRs) at a dose 

of 0.75 mg kg
-1

. Interestingly, these treatments resulted in a 

significantly higher reduction (~ 3 times, p < 0.05) in systolic blood 

pressure (SBP) than Ile-Pro-Pro, when evaluated at the same dose.33 

3.2 Renin inhibitory peptides 

Besides ACE, the inhibition of renin may also be targeted for a 

better regulation of blood pressure. To our knowledge, only one 

QSAR study has been conducted to date on renin inhibitory 

peptides.
52

 This may be because this area of research is relatively 

new and only a limited number of renin inhibitory peptide 

sequences have been identified to date. The QSAR study was 

developed using the percentage of renin inhibition of 11 dipeptides 

(evaluated at 3.2 mM) originally identified in a pea protein 

hydrolysate having renin inhibitory properties. The outcomes of the 

QSAR analysis showed that peptides with potent renin inhibitory 

properties were predicted to possess a bulky amino acid (Trp, Tyr or 

Phe) at the C-terminus while hydrophobic and small amino acids 

(Val, Leu, Ile and Ala) may be found at the N-terminus of the 

dipeptide (Table 3). Peptides with a Trp at the C-terminus were 

predicted to be the most potent renin inhibitors. Confirmatory 

studies were conducted with four dipeptides (Leu-Trp, Ile-Trp, Ala-

Trp and Val-Trp). Two of the peptides (Ala-Trp and Val-Trp) were 

inactive towards renin, while the renin inhibitory activity 

determined experimentally was lower or of the same order as the 

predicted inhibition for53 Leu-Trp and Ile-Trp, respectively. In 

addition, Ile-Trp (IC50 = 2.3 ± 0.07 mM) was a newly identified renin 

inhibitory peptide also displaying high ACE inhibitory activity (IC50 = 

4.74 ± 0.04 µM). Interestingly, Ile-Trp had previously been shown to 

induce a significant reduction in SBP in SHR studies.
54,55

 

3.3 DPP-IV inhibition 

Several studies have demonstrated that certain peptide sequences 

can inhibit DPP-IV in vitro and also in small animals, for reviews, 

see:
53,56-60

. To date, it is still not clear which structural features of 

peptides are required to induce high DPP-IV inhibition. A number of 

structural studies based on peptide alignment approaches have 

shown that the presence of Pro or Ala at position 2 of the peptide 

as well as certain amino acids located at the N-terminal position of 

the peptide such as Trp, along with branched chain amino acids 

(Leu, Ile) correlated with relatively potent in vitro DPP-IV 

inhibition.
61,62

 To date, only one study appears to have applied a 

QSAR approach to better understand the structural characteristics 

of milk protein-derived peptides in relation to their DPP-IV 

inhibitory properties.
63

 During this study, the issue of incorporating 

IC50 data obtained under different experimental conditions as well 

as peptides which were not competitive DPP-IV inhibitors into the 

QSAR model was highlighted. However, the QSAR model failed to 

allow an accurate prediction of the IC50 data for competitive DPP-IV 

inhibitory peptides. However, the ranking for their DPP-IV inhibitory 

potency was conserved. Additional QSAR studies incorporating a 

larger number and more diverse (length and amino acid 

composition) peptides may help to improve the predictive ability of 

QSAR models as applied to DPP-IV inhibitory peptides. 

The outcomes of the two QSAR models (developed with a 3-z and 3-

v scales, Table 3) applied to DPP-IV inhibitory peptides revealed the 

importance of hydrophobic amino acids (Trp, Ile, Leu and Phe) at 

the N-terminal position of the peptide.63 In addition, the 3-v scale 

model also showed the importance of hydrophobic amino acids 

located at position 2 of the peptide. These findings were in 

agreement with earlier structural studies showing the importance 

of hydrophobic amino acids at the N-terminal side of peptides with 

DPP-IV inhibitory properties.
61,62

 The aim of this QSAR study was 

not to design peptides with more potent DPP-IV inhibitory 

properties. However, the QSAR models were used as a tool to 

predict the DPP-IV inhibitory properties of a large number of 

peptides which have previously been identified in the 

gastrointestinal tract of humans following milk ingestion. 

Confirmatory studies allowed the identification of milk protein 

derived peptides relevant to humans with relatively high in vitro 

DPP-IV inhibitory potency such as Leu-Pro-Val-Pro-Gln displaying an 

IC50 value of 43.8 ± 8.8 µM. 
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Table 3. Features of bioactive peptides (BAPs) as determined by quantitative structure activity relationship (QSAR) studies 

Bioactivitya Peptide 

lengthb 

Scale usedc Favorable amino acidd at the peptide position (C1 is the C-terminal amino acid) Confirmatory 

studiesd 

Reference 

C6 C5 C4 C3 C2 C1 

ACE 

inhibition 

2 (n = 58) 3-z scale     hydrophobic 

& positively 

charged Xaa 

hydrophobic 

& bulky Xaa 

none 31 

           

 2-8 (n = 

36) 

8 

physicochemical 

characteristics 

    small Xaa hydrophobic 

& non-

positively 

charged Xaa 

none 32 

 2-6 (n = 

29) 

3-z scale 

 

    small & non-

positively 

charged Xaa 

non-

positively 

charged Xaa 

none  

 2 (n = 

168) 

3-z scale     F/Y/W F/Y/W/P FW, WW, YW 30 

 3 (n = 

140) 

3-z scale    V/L/I K/R P/ F/W VRF, IKP, LRW, 

LRF 

 

 2 (n = 

168) 

3- and 5-z scales     F/Y/W F/Y/W none 46 

 3 (n = 

140) 

    V/L/I R/K P/F/W none 

 4 (n = 79)    V/I/V/

M 

R/H/W/F F Y/P/F none 

 ≥ 5 (n = 

226) 

   W I/L/V/M H/W/M Y/C none 

 2 (n = 58) 3-z, 5-z, 8-v, 38 

physicochemical 

characteristics, 

ISA and ECI 

scales 

    hydrophobic 

Xaa 

hydrophobic

, small Xaa 

none 23 

 3 (n = 55) 17 different 

scales 

   bulky, 

charged 

Xaa 

 G none 39 

 2 (n = 58) 10 different 

scales 

    G G none 50 

 3 (n = 55) 3-z, 5-z and 8-G 

scales 

   G G G none  

 9 (n = 19) 3-z, 5-z and 8-G 

scales 

 P     none  

 ≥ 5 (n = 

245/18) 

38 

physicochemical 

characteristics 

 V/I W/Y/C D/N/K R/V/T G/L/A/V/I none 45 

 3 (n = 17) 3-z scale    V/L/I P/C P/F/W IVP, INP, IQP, 

VIP 

33 

 3 (n = 38) 3-z scale       IIP, IVP 51 

Renin 

inhibition 

2 (n = 11) 3-z and 5-z 

scales 

    V/L/I/A W/Y/F LW, IW, AW, 

VW 

52 

Antioxidant 3 (n = 

143/71) 

DPPS, HESH, 

ISA-ECI, MS-

WHIM, VHSE 

and 3-z scales 

   A/G/V/L/

E 

R/K/H -  64 
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 3 (n = 

143/71)  

4 (n = 12) 

8-v scale    A/V/L R/K/H/D/E/T

/S/N/Q 

W/E/L/I/M/

V/Y 

none 65 

 2 (n = 32) DPPS, ISA-ECI, 3-

z and 5-z scales 

    Y hydrophobic

, small, low 

hydrogen 

bon and 

electronic 

Xaa 

 66 

       W bulky, 

hydrophobic 

Xaa 

  

Bitterness 2 (n = 48)      hydrophobic 

& bulky Xaa 

hydrophobic 

& bulky Xaa 

none 31 

 2 (n = 77) 3-z scale     hydrophobic, 

polar/charge

d Xaa 

hydrophobic 

or bulky Xaa 

 25 

 3 (n = 52)      bulky Xaa hydrophobic

, bulky Xaa 

  

 4 (n = 23)    basic, 

bulky 

Xaa 

  basic, bulky, 

hydrophobic 

Xaa 

  

 5 (n = 12)   basic, 

bulky 

Xaa 

   bulky, 

hydrophobic 

Xaa 

  

 6 (n = 20)  basic, bulky, 

hydrophilic 

Xaa 

    bulky, 

hydrophobic 

Xaa 

  

 7 (n = 16)      bulky, 

hydrophobic 

Xaa 

bulky, basic 

Xaa 

  

 2 (n = 48) 3-z, 5-z, 8-v, 38 

physicochemical 

characteristics, 

ISA and ECI 

scales 

    hydrophobic, 

small Xaa 

hydrophobic

, small Xaa 

none 23 

 2 (n = 53) 3-z scale     bulky Xaa hydrophobic 

Xaa 

none 24 

 3 (n = 55) 3-z scale     bulky Xaa 

(W/R/Y) 

hydrophobic 

Xaa 

  

 2 (n = 48) 17 different 

scales 

    W/Y/F W/Y/F  39 

           

   Favorable amino acidd at the peptide position (N1 is the N-terminal amino acid)   

   N1 N2  N8 N9 N13   

DPP-IV 

inhibition 

2-5 (n = 

21/5) 

3-z scale W/I/F/L W/I/F/L     VPGEIVE, 

LPQNIPPLT, 

LPLPLL, 

QPLPPT, 

LPVPQ 

63 

  3-v scale W/I/F/L       

Anti-

microbial 

15 (n = 

19) 

murine 

LFcin 

analogs 

12 

physicochemical 

parameters, 3-z 

scale 

W   C C V/L/I/M none 67 

a ACE: angiotensin converting enzyme; DPP-IV: dipeptidyl peptidase IV. b the number of peptides used to build the QSAR model is given into bracket (when two 

numbers are provided, the first and second ones correspond to the number of peptides in the training and the test set, respectively). c DPPS: divided physicochemical 

property scores; ECI: electronic charge index; HESH: hydrophobic, electronic, steric and hydrogen; ISA: isotropic surface area; MS-WHIM: molecular surfaces-weighted 

holistic invariant molecular; VHSE: vectors of hydrophobic, steric and electronic properties. d The amino acids are coded with their one letter code. Xaa: amino acid. 
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3.4 Antimicrobial peptides 

AMP sequences are found within several food proteins. They have 

been proposed as a means, for example, to (1) reduce infection in 

living organisms, (2) address the issue of antibiotic resistant strains, 

(3) combat the formation of biofilms or (4) extend the shelf-life of 

food products.
68,69

 The application of QSAR to AMPs has been 

reviewed by Jenssen.
20

 A large number of QSAR studies carried out 

on AMPs have been published. 

Several studies have utilised QSAR approaches to better understand 

the structural requirements of the antimicrobial lactoferrin (LF)-

derived pentadecapeptide, LFcin, for reviews, see:18,70. In these 

studies, LFcin from different species was used as a lead peptide to 

construct peptide analogs which were then employed to build a 

QSAR model in order to define structural characteristics of potent 

AMPs. A QSAR study on bovine LFcin (LF f(14-41)) analogs (8 

peptides with 12-19 amino acid residues) was conducted to study 

antimicrobial activity against Escherichia coli and Staphylococcus 

aureus.
71

 Large and negatively charged peptides or peptides with a 

high hydrophobic moment (µ) displayed high antimicrobial activity 

against E. coli and S. aureus, respectively. In another study, 19 

murine LFcin (LF f(16-30)) analog peptides were used to build a 

QSAR model in relation to their antimicrobial activity against E. coli 

and S. aureus.35 The importance of the N-terminal amino acid was 

highlighted. It is thought that the N-terminal amino acid may 

establish electrostatic interactions with the negatively charged 

phospholipids of bacterial membranes. Thereafter, it was 

hypothesised that hydrophobic amino acids (Trp, Tyr) may bind to 

the interface through hydrogen bonding, causing the phospholipid 

membranes to leak. While this study concluded that good 

antibacterial activity was obtained by replacement of several amino 

acids within the peptide sequence of murine LFcin, it was shown 

that the parameters of importance were the net charge and micelle 

affinity of the peptide. The most effective murine LFcin analog was 

found to be LFcin Arg1, 9 Trp8 Tyr13 (with an Arg at position 1 and 

9, a Trp at position 8 and a Tyr at position 13). 

Most QSAR studies conducted with antimicrobial LFcin peptides 

appear to have been designed with descriptors consisting of 

physicochemical parameters. Therefore, they took into account the 

whole characteristics of the peptide as opposed to the properties of 

its individual amino acids, making them more complicated to 

interpret and to employ for subsequent design of novel peptide 

sequences. Very few QSAR studies have attempted to elucidate the 

amino acid descriptors which correlated with the antimicrobial 

activity of LFcin peptide analogs.
67

 The 3-z scale was used for the 

amino acids located at the 4 varied positions (1, 9, 8 and 13) of 19 

murine LFcin analogs. The preferred amino acids at each position 

were determined following QSAR analysis (Table 3). A larger 

peptide dataset of human, bovine, caprine and murine LFcin 

analogs (52 peptides) was employed in another QSAR study using 

the 3-z scale for peptide descriptors.
72

 The most important 

properties that governed the antimicrobial activity (E. coli and S. 

aureus) was z1 (hydrophilicity) for amino acids located at positions 

1, 3, 4 and 14, z2 (size) for position 10 and 14 and z3 (charge) for 

position 4. 

The ability of human LFcin analog peptides to act as cell membrane 

permealising agents of Pseudomonas aeruginosa, as a means to 

subsequently enhance the action of a synthetic antibiotic 

(novobiocin) and to avoid antibiotic resistance mechanisms, was 

studied using a QSAR approach.
73,74

 There was no direct 

relationship between peptide antimicrobial activity and cell 

permeabilising activity. The QSAR analysis revealed a positive 

correlation between antimicrobial activity and peptide 

hydrophobicity, the number of Trp and aromatic residues as well as 

the percentage of hydrophobic plus basic residues. On the other 

hand, peptides with cell permealising activity generally possessed 

aromatic and positively charged residues and had an amphiphilic 

structure. 

Antimicrobial peptides other than LFcin have also been studied by 

QSAR.
75-77

 For example, the search for non-hemolytic (to reduce the 

risk of endotoxic shock) cyclic cationic peptides having high 

antibacterial properties has been aided by QSAR studies.
77

 It was 

shown that charge and amphipaticity was responsible for increased 

antibacterial activity. On the other hand, the anti-hemolytic effect 

was linked to lower peptide lipophilicity, in particular that of the 

residues involved in the nonpolar face of the peptides, which are 

likely to form a β-hairpin-like structure. 

While some QSAR studies have concluded in structural 

characteristics relevant to AMPs, clear structural requirements for 

AMPs still do not appear to be available, as stated earlier.18 This has 

been explained by the fact that the structural requirements of 

AMPs appear to involve a quite complex combination of specific 

physicochemical properties (hydrophobicity, cationic residues, 

amphipaticity). In addition, the mechanism of action and specific 

target of AMPs are still not fully understood.
74

 

3.5 Antioxidant peptides 

Antioxidant peptides have also been studied using QSAR 

approaches. The structural characteristics of peptides with 

antioxidant activity, as determined by QSAR studies, are 
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summarised in Table 3. QSAR study of the radical scavenging (2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2’-

azobis(2-aminopropane) dihydrochloride (AAPH)) ability of 

dipeptides containing Trp and Tyr at the N-terminus was carried 

out.
66

 Differences in the preferred C-terminal amino acid residue of 

dipeptides with ABTS scavenging properties were seen when a Tyr 

or Trp was found at the N-terminus of the dipeptide (Table 3). For 

larger peptides (tri- and tetrapeptides), it was shown that the N-

terminal (high hydrophobicity and low electronic properties) and 

next to the C-terminal (hydrophilic) amino acids were the most 

important in the antioxidant (ferric thiocyanate method, 

autoxidation system of linoleic acid) activity.
64,65

 It was suggested 

that radical scavenging peptides could interact with the lipid phase 

owing to their hydrophobic N-terminal amino acid while the amino 

acid at position 2 (next to the C-terminus) of the peptide could act 

through its ability to form hydrogen bonds with free radicals.
65

 2- 

and 3D descriptors were used to conduct a QSAR study with 

antioxidant (superoxide (SO), ABTS and AAPH radical scavenging) 

peptides possessing 2-20 amino acid residues.
43

 In this study, 

different amino acids were shown to be important depending on 

the radical scavenging activity considered. For the ABTS, AAPH and 

SO scavenging, the C2 and N2 terminal amino acids were the most 

important in relation to the antioxidant activity, while for both 

AAPH and SO scavenging the C3, C4 and C1 were also linked with 

antioxidant activity. Overall, the study of Li and Li
43

 highlighted that 

the C-terminal amino acids had a higher impact on the antioxidant 

(radical scavenging) properties than the N-terminal amino acids. 

The electronic properties were shown to play the most important 

role in radical scavenging ability of the peptides. In addition, the 

presence of a bulky hydrophobic amino acid at the C-terminus was 

also shown to correlate with the radical scavenging ability of 

peptides.
43

 

A recent QSAR study has utilised peptide descriptors linked with 

electron transfer properties, i.e., energy of highest occupied 

molecular orbital (EHOMO) and bond length of active sites (L(X–H)), to 

study the antioxidant activity (
•
OH⋅ and O2

-•
 scavenging) of di- to 

heptapeptides.
78

 The O2
-•

 scavenging ability of peptides correlated 

with high EHOMO and long L(X–H). However, the predictive ability of the 

model designed for 
•
OH scavenging was not very accurate, possibly 

due to interferences of the assay reagents (Cu
2+

). Overall, this study 

has highlighted the role of electron effects on the radical 

scavenging ability of peptides. 

A systematic evaluation of the antioxidant capacity (ferric reducing 

antioxidant power - FRAP) of all possible tripeptides (172 unique 

sequences) from β-Lg has been carried out.
26

 The QSAR analysis 

showed that antioxidant activity was governed by the electronic 

and hydrogen-bonding properties of all amino acids within the 

peptide. For the N- and C-terminal amino acids, it was also shown 

that the steric properties of the amino acids were important. Cys- 

and Trp-containing tripeptides were associated with high 

antioxidant activity. The effect of both of these amino acid residues 

was explained by their ability to interact with free radicals through 

hydrogen (-SH and indole group), electron (S) or proton (aromatic 

ring of Trp) donation. It was found that 3 β-Lg tripeptides (Leu-Thr-

Cys, Cys-Gln-Cys and Gly-Thr-Trp) had a higher antioxidant activity 

than the well-known physiological antioxidant gluthatione (Glu-Cys-

Gly). 

The antioxidant properties of peptides may be determined using a 

wide range of assays. These assays are targeted at quite different 

oxidative species, therefore, leading to different outcomes in terms 

of the peptides’ potential ability to reduce oxidation.
66

 These 

differences highlight the challenges in attempting to find a 

consensus in the structural properties for antioxidant peptides. As 

highlighted in the recent review of Li and Yu,
22

 no clear consensus 

between peptide structure and antioxidant peptides has been 

established using QSAR studies, possibly due to the lack of 

knowledge of the mechanism of action of such peptides. 

4 Bitter peptides 

Besides bioactive properties, the sensory attributes of peptides 

have also been studied using QSAR approaches. The need to 

develop bioactive protein hydrolysates with low bitterness has been 

highlighted in several studies due to the fact that certain food 

protein hydrolysates display bitter attributes, for reviews, see:
79,80

. 

The characteristics of bitter peptides as determined by QSAR 

studies are summarised in Table 3. 

In several studies, the R
2
 determined with QSAR models developed 

for bitter peptides was shown to be quite low. This was related to 

the difficulty of accurately measuring bitterness as the its threshold 

is subject to interindividual variation in humans.
48

 Asao, et al.
81

 

conducted a QSAR study on short (di- and tri-) peptides and their 

derivatives and showed a positive link between lower bitterness 

threshold and the peptides’ physicochemical properties (i.e., length 

of the carbon backbone and octanol/water partition coefficient). In 

line with structural studies conducted on bitter short (di- and tri-) 

peptides, other QSAR studies have shown that hydrophobicity and 

size of the amino acids at the C1 and C2 position of peptides, 

respectively, correlated positively with bitterness.23,24 

For datasets incorporating larger peptides (2-14 amino acid 

residues, n = 224), it was shown using the 3-z scale that the 

bitterness was correlated with hydrophobic amino acids in the C1 

position and bulky, basic and hydrophilic amino acids in N1 (N-

terminal) position of the peptides.
25

 The molecular mass, 

hydrophobicity, number of amino acid residues in the peptide 

together with the amino acid descriptors of the 3-z scale were 

incorporated in a PLSR. The previous physicochemical parameters 

had a higher influence on the bitterness than the 3-z scale. This 

suggests that the bitterness depends on the overall properties of 

the peptide rather than on the properties of specific amino acids 

within the peptide sequence.
25

 

A number of QSAR studies have attempted to identify peptides 

displaying both good bioactivity profiles and low bitterness. It has 
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been shown that several potent ACE inhibitory or antioxidant short 

peptides (2 to 3 amino acid residues) were also bitter.
23,40,48,82

 In 

contrast, in another study,
24

 no direct correlation was seen 

between ACE inhibitory properties and bitterness of di- or 

tripeptides. The number of possible dipeptide combinations (20
2
 = 

400) is lower than that of larger peptides, increasing the structural 

diversity of larger peptides. Therefore, the likelihood of identifying 

highly BAP candidates with low bitterness is increased with larger 

peptides. In addition, the C1 to C4 amino acid residues are important 

in peptide binding to ACE. Hence the interest of identifying peptides 

with 3-4 amino acid residues having high ACE inhibitory activity and 

a good sensory profile.
23,48

 

5 Limitations of QSAR for the study of BAPs 

The main limitations of QSAR analysis, which relate to peptide 

descriptors, dataset and the methodology used for model 

development and validation, have been comprehensively reviewed 

by Cherkasov, et al.18 It has been pointed out on a number of 

occasions that some of the amino acid scales may be challenging to 

interpret especially when the different components of the scale do 

not represent a defined physicochemical and/or structural 

property.
64

 However, it is still possible to identify preferred amino 

acids in specific locations on peptides which would correlate with 

high bioactivity. The choice of peptide descriptors to build the QSAR 

model may have an impact on model accuracy. Over the years, 

different amino acid scales have been developed, incorporating a 

higher number of physicochemical properties or structural 

characteristics which are deemed important for the bioactive 

properties of peptides (Table 1 and 2). Generally, QSAR models are 

constructed with several amino acid scales or a wide range of 

peptide physicochemical properties. Subsequently, peptide 

descriptors giving the highest correlation with the bioactivity are 

selected. Several QSAR approaches have suggested that specific 

scales allowed obtention of QSAR models with higher correlation 

and cross-validation coefficients (R
2
 and Q

2
, respectively), which has 

generally been the case with the more recently developed amino 

acid descriptor scales.37,39,49,83,84 

Some QSAR studies incorporating relatively large numbers of BAPs 

in the dataset have been conducted with bioactivity data obtained 

using different experimental conditions (enzyme:substrate ratio, 

source of enzymes, substrate, temperature, etc.), which makes the 

validity of the models developed questionable. Several studies have 

also not taken into account the mode of action of the peptides with 

certain biological receptors. This is particularly relevant for enzyme 

inhibition assays where peptides may act at the active site 

(competitive enzyme inhibition) or outside the active site (modes of 

inhibition other than competitive) of the target enzyme(s). 

Recently, Nongonierma and FitzGerald
63

 have shown when using 

QSAR that it was only possible to obtain a statistically significant 

correlation between DPP-IV inhibition of peptides and their 

descriptors when applying a series of filters such as IC50 data 

obtained under the same experimental conditions for inhibitors 

with the same mode of DPP-IV inhibition (competitive). While many 

QSAR studies have yielded models with statistically significant 

correlations, other studies have not achieved this result, possibly 

due to the relatively low number of peptides in the training set, 

structural diversity and/or structural relevance of the peptides 

therein.
31,51,66

 This again highlights the importance of the 

quality/heterogeneity of the data which may be included in the 

QSAR model.
18

 In addition, when the mechanism of action is not 

fully understood, e.g., mode of enzyme inhibition, it can be 

challenging to select meaningful peptide descriptors to build QSAR 

models. 

In addition to selecting the appropriate peptide sequences to build 

QSAR models, a limited number of studies have attempted to train 

the models with so-called “negative datasets” which incorporate 

peptides which do not display any bioactivity. In their QSAR 

approach developed with ACE inhibitory peptides, Kumar, et al.
49

 

have also included negative datasets to develop classification 

models in order to assign unknown peptides to a category of active 

or inactive peptides. These models have been incorporated in a 

freely available web resource 

(http://crdd.osdd.net/raghava/ahtpin). 

6 Utilisation of specific features in the targeted 

release of BAPs from dietary proteins during 

enzymatic hydrolysis 

Studies which have embarked on translating QSAR findings to the 

targeted release of BAPs through dietary protein hydrolysis are 

scarce. The development of enzymatic strategies to release 

promising BAPs from food proteins is of significant interest to the 

food industry. Enzymatic hydrolysis is well accepted as a food-grade 

approach for the large-scale production of BAPs in a relatively cost-

efficient manner.
1,17

 In order to release specific BAP sequences 

from food proteins, knowledge of both the amino acid sequence of 

the protein as well as the enzyme specificity and kinetics is 

required. 

Using QSAR models applied to ACE inhibitory peptides, an in silico 

approach was developed in order to predict dietary protein 

substrates which would act as good precursors of ACE inhibitory 

peptides.85 The ACE IC50 value of peptides predicted in silico to be 

released from the major proteins present in 15 food commodities 

by thermolysin and combinations of thermolysin and pepsin then 

thermolysin, pepsin and trypsin were determined by QSAR. This 

analysis allowed the identification of meat (pork, beef and chicken) 

proteins as rich sources for potent ACE inhibitory peptides (IC50 < 10 

µM). 

Validation of the in silico results with in vitro testing of the 

hydrolysates is needed to confirm their potential bioactivity. The 

prediction ability of QSAR combined with peptide cutters to release 

ACE inhibitory peptides from the major egg white proteins was 

studied by Majumder et al. 
86

 They predicted that thermolysin 

Page 11 of 15 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

followed by pepsin digestion of ovotransferrin would allow the 

release of potent ACE inhibitory peptides (Ile-Arg-Try, Leu-Lys-Pro 

and Ile-Gln-Try). The three target peptides could not be identified 

by liquid chromatography (LC)-MS/MS. However, precursors of the 

target peptides were found within the digest. The inability to 

release the three target peptides was imputed to the limited access 

of the enzymes to certain peptide bonds possibly due to the 

globular structure of ovotransferrin. Based on the knowledge of 

ACE inhibitory peptide structure, which generally possess Pro 

residues at their C-terminal region, a post-Pro endoproteinase 

preparation from Aspergillus niger (An-PEP) was employed to 

hydrolyse a Pro-rich protein substrate, i.e. bovine β-casein.
87

 The 

hydrolysate generated after 24 h incubation of β-casein with An-

PEP at pH 6.0 and an enzyme to substrate (E:S) ratio of 2.5 (w/w) 

was a particularly potent inhibitor of ACE, having an IC50 value of 

16.41 ± 6.06 µg mL
-1

. Subsequently, LC-MS characterisation of the 

peptides within this hydrolysate followed by confirmatory studies 

with synthetic peptides revealed that the bioactivity was linked to 

the presence of several C-terminal Pro containing peptides, some of 

which had ACE IC50 values in the µM range. 

Other examples illustrating the use of in silico predictions to guide 

hydrolysis generation may be found in the development of DPP-IV 

inhibitory peptides. Tulipano et al.
62

 predicted, using a peptide 

cutter approach, that gastrointestinal digestion of β-lactoglobulin 

(β-Lg) would yield a higher number of DPP-IV inhibitory peptides 

than that of α-lactalbumin (α-La). Their prediction was 

subsequently validated by the fact that a β-Lg gastrointestinal 

digest had a higher DPP-IV inhibitory potency than an α-La digest. 

Recently, the targeted release of known DPP-IV inhibitory peptides 

from α-La has been studied.88 Approximately 64% of the peptide 

sequences predicted to be released in silico by digestion of α-La 

with elastase were identified by LC-MS/MS in an α-La elastase 

digest. The differences between in silico predictions and in vitro 

peptide release were possibly due to the presence of disulphide 

bonds within the α-La sequence. All five DPP-IV inhibitory peptides 

predicted to be released in silico were identified in the α-La elastase 

digest. Currently, the number of studies translating in silico results 

to BAP release in vitro are limited. However, the above studies have 

demonstrated the benefit of employing in silico approaches as a 

means to select enzyme×substrate combinations which may result 

in the release of potent BAPs. 

In addition to enzyme specificity and protein sequence knowledge, 

a wide range of physicochemical parameters (pH, temperature, E:S 

ratio, protein concentration, etc.) can affect both the enzyme 

activity and the protein conformation. Therefore, peptide release is 

highly dependent on the conditions employed during food protein 

hydrolysis. Understanding of the impact of hydrolysis parameters 

on hydrolysate bioactivity has been systematically studied using 

multifactorial experimental design and response surface 

methodology (RSM) approaches.
89

 In particular when a specific 

peptide sequence is being targeted for enzymatic release, RSM may 

be employed to determine the hydrolysis parameters for an 

optimum yield of the peptide. For example, RSM has been applied 

to optimally release an ACE inhibitory peptide, His-Leu-Pro-Leu-Pro 

(β-casein f(134–138)), from casein using Corolase PP, an intestinal 

enzyme preparation.
90

 The optimum conditions were found to be 

24 h hydrolysis using an E:S ratio of 6% (w/w). 

7 Conclusions 

QSAR approaches have successfully been used to increase the 

level of understanding of the structural characteristics of 

peptides which are linked with specific bioactivities. In 

agreement with earlier structural studies, different QSAR 

analyses have generally identified the same structural features 

in peptides with potent in vitro bioactivity. To date, it appears 

that only a limited number of QSAR studies have allowed the 

design and discovery of more potent BAPs. Interesting studies 

have been recently conducted to also take into account the 

sensory properties of the peptides. Therefore, allowing, for 

example, the identification of peptides with high in vitro 

bioactivities and low bitterness attributes. 

The production of food protein hydrolysates enriched with 

these potent BAPs may be achieved through the utilisation of 

design of experiments combined with RSM approaches to 

predict the optimum hydrolysis parameters which would yield 

the enzymatic release of BAPs. Combination of QSAR with 

other in silico tools and peptide library approaches will allow 

the development of systematic methods for the discovery of 

novel and potent BAPs. For instance, QSAR models have been 

used to predict the bioactivity of very large sets of peptide 

sequences with unknown bioactivities.
26,63

 These large sets of 

peptides may correspond, for example, to all possible amino 

acid combinations to generate a specific peptide size, peptides 

which may be present within a specific proteome, novel 

peptide sequences as well as protein-derived peptides 

identified within humans. 

Overall, many of the QSAR studies appear to have highlighted 

the importance of hydrophobic amino acids (Pro, Trp, Leu, Ile, 

Val and Ala) for a wide range of bioactive properties (ACE, 

DPP-IV and renin inhibition). Interestingly, the presence of 

some of these residues (i.e., Pro) within peptide sequences 

have been linked with gastrointestinal or serum stability in 

vivo, which potentially makes them interesting candidates for 

the development of functional foods targeted at human 

nutrition. 

To date, it appears that certain bioactivities (e.g., renin and 

DPP-IV inhibition) have not been extensively studied with 

QSAR approaches. More research in this area will allow the 

development of more potent BAPs and ultimately the 

identification of enzymatic hydrolysis strategies to optimally 

release such peptide sequences. The main challenge in 

applying QSAR approaches to certain bioactive properties lies 

in the fact that the target and mode of action of the peptides is 

not known, making it virtually impossible to develop 

meaningful models. Therefore, more research is also needed in 

this area. 
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QSAR studies may help to better understand structural requirements for peptide bioactivity and therefore to develop potent BAPs.  
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