

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Mechanically synthesized SiO ₂ –Fe metal matrix composite for effective
	dechlorination of aqueous 2-chlorophenol: the optimum of the preparation
	conditions
1	Yunfei Zhang ^{a,b} , Bo Yang ^{b,*} , Jinhong Fan ^{a,*} , and Luming Ma ^a
5	^a National Engineering Research Center for Urban Pollution Control, State Key Laboratory of
6	Pollution Control and Resources Reuse, College of Environmental Science and Engineering,
7	Tongji University, 200092 Shanghai, P. R. China
8	
9	^b Department of Environmental Engineering, College of Chemistry and Environmental
0	Engineering, Shenzhen University, 518060 Shenzhen, P.R. China
1	
2	
3	
4	
5	
6	
7	
0	
0	
Ð	
)	
	* Corresponding author. Tel.: +86-755-2673 2904; fax: +86-755-2653 6141.

E-mail address: boyang@szu.edu.cn (B. Yang), jinhongfan@tongji.edu.cn (J.H. Fan)

RSC Advances Accepted Manuscript

21 Abstract: In this study, the synthesized abrasives-reinforced metal matrix composites (MMCs) with a microscale size by ball milling (BM) could achieve highly 22 active and stable dechlorination efficiency for aqueous 2-chlorophenol (2-CP). The 23 preparation process of this composite via BM was optimized to obtain high 24 degradation efficiency, especially for the effect of the abrasives including B₄C, SiC, 25 α -Al₂O₃, SiO₂, Fe₃O₄ and Na₂SO₄. The results showed that the hardness of the 26 abrasives in the Fe-based MMCs was closely related with their dechlorination 27 performance. Subsequently, the optimal abrasive, i.e. SiO₂ was further investigated for 28 29 its proper milling conditions with zero-valent iron (ZVI) particles including SiO₂ size, SiO₂ loading, milling time, and the dosage of the process control agent (PCA). 30 Additionally, the influence of other metal categories including Al and Si was also 31 32 investigated for dechlorination; and their low reaction efficiencies were closely related with their passivating film. Finally, the longevity test suggested that the 33 decreased reactivity of the SiO₂-Fe MMC during the storage in air could be recovered 34 35 when consecutively used, mainly due to the promoting effects of inherent structure of SiO₂-Fe MMC with the Fe/C and Fe/SiO₂ interfaces, as well as the effective 36 regeneration of the reactive sites by continuous iron dissolution. 37

38

Keywords: 2-chlorophenol; Abrasives; Ball milling; Dechlorination; Iron metal matrix
composite; Process control agent.

41

- 43
- 44

45 **1. Introduction**

Recently, the zero-valent iron (Fe^0 –ZVI) has been widely used for the reductive 46 dechlorination of chlorinated organic compounds (COCs) under both laboratory and 47 field conditions ¹⁻⁴. By using ZVI as electron donor, many chloralkanes and 48 chlorinated alkenes can be rapidly reduced into non-toxic or low toxic chlorine-free 49 hydrocarbons. Some environmental remediation fields in USA have utilized this 50 reductive material to purify the water containing short-chain COCs. For example, 51 when groundwater passed through the permeable reactive barriers constructed by 52 53 zero-valent iron (FePRBs), the short-chain COCs in the water would be effectively degraded into hydrocarbons ^{5, 6}. However, the dechlorination rate for chlorinated 54 aromatics is rather slow due to their recalcitrant properties, with half-lives of days or 55 longer calculated by pseudo-first-order kinetics ⁷. 56

Lessening the size of Fe⁰ particles to nanoscale is one approach to enhance the 57 dechlorination activity of iron. The nano zero-valent iron (nZVI) has been found to 58 present much higher reactivity than conventional iron particles because of its higher 59 surface area and denser active sites from its nanostructure ⁷. However, its preparation 60 method usually entails the expensive sodium borohydride to reduce ferrous or ferric 61 ion ^{1,7} into ZVI. Moreover, nZVI particles are thermodynamically unstable in solution 62 and tend to aggregate into micro to millimeter scale's particles ⁷. Doping a second 63 64 metal into iron, like Pd, Pt, Ni, and Cu, to form bimetallic catalyst is another approach to enhance the reactivity of iron⁸⁻¹⁰. This enhancement is due to the accelerated iron 65 corrosion by bimetallic galvanic couple and the generation of highly active atomic H* 66 with the doped metal as the catalyst. However, the preparation cost of bimetals and 67 potential leaching of the second metal into groundwater restrict their widely 68 application¹¹. 69

70 Recently, particulate-reinforced metal matrix composites (p-MMCs) have attracted considerable attention in industries application ^{12, 13}. Those p-MMCs are 71 synthesized by embedding a reinforcing material (such as Si₃N₄, AlN, Al₂O₃, quartz 72 sand) into a monolithic metal matrix to improve the raw material properties ^{14, 15}. 73 Compared with the nZVI and bimetals, the preparation of the Fe-based p-MMCs was 74 usually much more convenient and cost-effective, as a result of availability of 75 relatively inexpensive reinforcements, and the development of various processing 76 routes ¹⁶. For example, as a single step process, ball milling (BM) is a convenient and 77 practical technique to homogeneously distribute reinforcement into metal matrix ¹⁷. 78 On the other hand, in the field of environmental technology, BM could be also used to 79 80 produce highly active metallic materials by repeated welding, fracturing, and rewelding of the solid materials ¹⁸. For example, Xu et al. ⁸ recently utilized BM 81 technique to prepare bimetallic Ni/Fe particles and used them to dechlorinate 4-82 chlorophenol in aqueous solution. As a result, Ni particles were dispersed 83 84 homogeneously in Fe phase after BM and highly active and stable dechlorination efficiency was achieved by the ball-milled Ni/Fe particles. So, the use of BM to 85 produce the Fe-based p-MMCs for the removal of environmental pollutants should be 86 promising. However, to our knowledge, seldom such studies have been reported. 87

In this work, we attempted to directly prepare the ball-milled ZVI particles for dechlorination purpose only through mechanically adding abrasive without combining the second metal. This process actually provided a novel synthetic method of ZVI as the reductive material for the degradation of environmental pollutants. The performance of different reinforcement as abrasive was investigated by evaluating the dechlorination efficiency of the synthesized ZVI toward 2-chlorophenol. And the milling conditions were subsequently optimized. In addition, the dechlorination

performances of other zero-valent metals (including Al and Si particles) using the
above ball-milling technique were also explored. Finally, the longevity performance
of the SiO₂–Fe MMC was evaluated.

98 2. Materials and methods

99 2.1. Materials

Fe (>99%, 100 mesh), Al (>99%, 100 mesh), Si (>99%, 100 mesh) and iron(II) 100 sulfate heptahydrate (FeSO₄ 7H₂O) were purchased from Aladdin, Inc. Analytical-101 grade quartz sand (>99%, 10~325 mesh), NaOH (98.0%), and HCl (36-38%) were 102 103 obtained from Tianjing Tianli Chemical Reagent Co., Ltd., Tianjin Guangfu Technology Development Co., Ltd., and Dongguan Dongjiang Chemical Reagent Co., 104 Ltd., respectively. Boron carbide (B₄C, >90%, 100 mesh), Silicon carbide (SiC, 105 98.5%, 100 mesh) and α -Alumina (α -Al₂O₃, 99.99%, 100 mesh) were supplied by 106 Sinopharm Chemical Reagent Co., Ltd. 2-CP (99.9%) and phenol (99.9%) were 107 procured from AccuStandard, Inc. HPLC-grade methanol and ethanol were acquired 108 from TEDIA Co. All solutions were prepared using water with a resistance of 18.2 109 $M\Omega$ from a Millipore-Q system. 110

111 **2.2.** SiO₂-Fe MMC Prepared by Ball Milling

BM was carried out with a planetary ball mill (QM-3SP04, Nanjing University 112 Instrument Corporation) at a rotation speed of 550 rpm without inert gas protection. 113 114 Stainless vials (100 mL) as grinding container were fitted with two different sizes of stainless steel balls: 16 large balls (Φ 10 mm) and 100 small balls (Φ 6 mm). For each 115 BM process, the materials added into the vial included 156 g of steel balls and 5 g of 116 metal and reinforcement mixture. Unless otherwise stated, the weight ratio of metal 117 powder to reinforcement was 9:1. Ethanol (6%, w/w) served as a control agent during 118 BM. To prevent spontaneous combustion of the energetic powder, the container was 119

120 cooled down to room temperature before opening the container lid in air at the end of

121 ball milling.

122 **2.3.** Characterization

The particle morphologies of the MMCs were characterized by scanning electron microscopy (SEM) (Hitachi S-3400N II). The BET surface areas (S_{BET}) of the samples were analyzed through nitrogen adsorption (NOVA 1200E). The size distribution of the SiO₂–Fe MMC was measured using a laser particle size analyzer (Mastersizer 3000, Malvern Instruments Ltd., UK).

128 2.4. Dechlorination of 2-CP and Analysis

Dechlorination was performed in a 100 mL three-neck flask attached with a pH 129 meter (PHS-3C, Shanghai Precision & Scientific Instrument Co., Ltd.). A 50 mL 130 131 aliquot of 2-CP solution with an initial pH=3.0 was added into the flask. Prior to reaction, 2 g of the milled powders was washed in 100 mL of H₂SO₄ solution (pH 1.0) 132 for 10 min and rinsed three times with deionized water. Without drying, the washed 133 SiO₂-Fe MMC particles were placed into the loosely capped flask, and the solution 134 was continuously stirred at 220 rpm with a mechanical stirrer. All experiments were 135 completed at room temperature $(25 \pm 2 \ \text{C})$ and ambient pressure. The concentrations 136 of 2-CP and phenol as products were measured using an HPLC system ¹⁴ (It is noted 137 that no other further hydrogenation products such as cyclohexanone and cyclohexanol 138 were found in GC-ECD analysis as reported in previous literature ^{19, 20}). Data were 139 plotted as mean of duplicates, and error bars indicate deviation from the mean. 140

141

2.5. SiO₂-Fe MMC Stability and Reusability

In order to test the stability of the SiO₂–Fe MMC during storage, the SiO₂–Fe MMC was directly exposed to air at room temperature (25 ± 2 °C). Six consecutive dechlorination cycles using the same SiO₂–Fe MMC (with a dose of 40 g/L) was

tested for estimate its reactivity toward 50 ppm 2-CP at initial pH=3.0 after storage for 10 days. Each cycle was conducted in a 50 mL serum bottle equipped with fresh 2-CP solution, an open-top screw cap, and PTFE-lined septa. After each cycle, the bottle was centrifuged at 5000 rpm for 5 min to separate the SiO₂–Fe particles from the aqueous phase. Subsequently, the used particles were rinsed with 50 mL deionized water; after centrifuged, the supernatant was emptied out. For each cycle, the reaction efficiencies for 2-CP removal were monitored and evaluated.

152 **3. Results and Discussion**

153 **3.1. Effect of Abrasives**

Different reinforcement materials (B₄C, SiC, α -Al₂O₃ and SiO₂) were milled with 154 iron to investigate their effect on dechlorination efficiency of 2-CP. The Na₂SO₄ salt 155 and the Fe₃O₄ oxide were also used as abrasives as comparison. As illustrated in Fig. 156 1, significantly higher dechlorination efficiency was achieved when using the 157 reinforcement materials as abrasives. 78.2% remove efficiency was observed when 158 159 iron milled with SiO₂. Even higher degradation efficiency was presented when employing B₄C, SiC and α -Al₂O₃, which could remove 99.1%, 98.7% and 98.7% of 160 2-CP during 120-min reaction, respectively. However, when iron milling with Fe₃O₄, 161 no enhancements for 2-CP removal efficiency were observed compared with that of 162 the iron milled without abrasives (11.6% and 13.6%, respectively). And as for 163 Na₂SO₄, the remove efficiency was slightly higher, increased to 27.6%. The S_{BET} of 164 the milled powders were also analyzed. As illustrated in Table 1, the observed 165 dechlorination efficiency by those reactive materials agreed well with the trend of 166 their surface area, i.e., B_4C -Fe \approx SiC-Fe $\approx \alpha$ -Al₂O₃-Fe > SiO₂-Fe > Na₂SO₄/Fe \approx 167 Fe₃O₄/Fe. Thus, the smaller iron particles could provide more active sites on the iron 168

RSC Advances Accepted Manuscript

surface for 2-CP adsorption and reaction, thereby increasing the activity for 2-CP
 dechlorination ⁷.

171	Fig. 1
172	The above difference of S_{BET} should be attributed to the different cutting abilities
173	of abrasives for iron particles, which was closely related with their hardness ²¹ . Yılma
174	22 suggested that the harder the abrasive was, the faster and deeper cutting action it
175	would provide and more quickly the milled particles would be ground into small
176	particles. Table 1 listed the hardness index of the concerned abrasives using Mohs'
177	scale ^{23, 24} , whose magnitudes were well corresponding to their surface area except
178	Fe ₃ O ₄ . Within Mohs' scale from 1 to 10, B ₄ C, SiC and α -Al ₂ O ₃ possess relatively
179	higher values i.e., 9.5, 9.3~9.5 and 9.0, respectively, so their S_{BET} were the relatively
180	high as shown in Table 1. In addition, SiO_2 (with a hardness of 7.0) system presented
181	lower surface area than those of B_4C , SiC and α -Al ₂ O ₃ , which was also consistent
182	with the order of hardness values, and so as for Na_2SO_4 , which is 2.8.

183

Table 1

However, though Fe₃O₄ provided a higher hardness values as 6.0 than that of 184 Na₂SO₄, it presented lower surface area and removal efficiency toward 2-CP. This was 185 probably caused by the magnetic force between the Fe_3O_4 and iron particles ²⁵. During 186 the milling, the Fe₃O₄ and iron particles were prone to aggregate together and resulted 187 in the formation of surface-passivating oxide layers (Fe₃O₄) on iron surface 26 . So 188 these oxide layers blocked the active sites on the iron surface and inhibited the 189 dechlorination reaction. Additionally, previous studies ²⁷ demonstrated that the 190 sulfate-containing system would also increase the sorption capacity of the COCs on 191 iron surface, thus increasing the subsequent 2-CP removal efficiency. As a result, 192

using Na₂SO₄ as abrasives presented slightly higher removal efficiency than that of
Fe₃O₄.

Based on above results, the reinforcement materials including B_4C , SiC, α -Al₂O₃ and SiO₂ are the appropriate abrasives to prepare highly efficient ZVI particles for the dechlorination of 2-CP. However, due to its low cost, SiO₂ was selected as the optimum abrasive in this system. Subsequently, the preparation conditions of the SiO₂-Fe MMC were further investigated in the following experiments.

3.2. Effect of SiO₂ Sizes and SiO₂ Loading

201 The reinforcement materials have important effects on the property of ball-milled material and the subsequent dechlorination efficiency, which provided a cutting action 202 for iron in the milling process and also served as the interface for dechlorination 203 reaction ¹⁴. So, the effects of SiO₂ size and its loading on dechlorination efficiency 204 were investigated. As illustrated in Fig. 2, the dechlorination efficiency increased with 205 increasing the SiO₂ size. Generally, abrasives with relatively small size do not have a 206 large cutting force, which is more suitable for grinding function to material polishing. 207 So it was not favorable for effectively reducing the particle size of iron ^{21, 28}. Thus, 208 lower removal efficiency for 2-CP appeared in the iron milled with smaller SiO₂ 209 particles. Coronado et al. ²⁹ also reported that the wear rate of α -Al₂O₃ for Fe 210 increased with increasing abrasives sizes until reaching a critical particle size (about 211 116 μ m). Therefore, relatively large size of SiO₂ (10~20 mesh) as abrasive presented 212 higher forming performance of ZVI particles and dechlorination efficiency. 213

214

Fig. 2

Fig. 3 shows the dechlorination efficiency of 2-CP using the SiO_2 -Fe MMC prepared by different SiO_2 loading. It indicates that, even adding small fraction of

SiO₂ (5%), the remove efficiency of 2-CP was significantly increased (from 16.2% to 82.6%). And the highest remove efficiency was achieved for milling with 10% SiO₂ loading. However, further increase in SiO₂ content led to a reduction of 2-CP remove efficiency (especially from 20% to 40%). In fact, it can be inferred that the dechlorination reaction should be mainly occurred at the quartz sand/iron interfaces ¹⁴. In the reductive dechlorination reaction, the iron was the ultimate electron donor 30 . **RSC Advances Accepted Manuscript** The introducing of quartz sand in the iron matrix was not only favorable for the formation of discontinuous iron phase, thus promoting the iron dissolution and subsequent dechlorination reaction. The uniform distribution of the quartz sand could also retard the reactivity drop for the SiO₂-Fe MMC by separating the iron precipitates from formation of the dense oxide layers. As a result, the dechlorination efficiency of 2-CP increased due to the formation of more reactive sites with increasing the SiO₂ loading from 0% to 10%. However, too much SiO₂ loading would decrease the available electrons transferred from ZVI to 2-CP since the excessive SiO₂ in SiO₂-Fe MMC decreased the proportion of iron as electron donor during dechlorination ³¹. So, the 10% SiO₂ loading was the optimum adding ratio to prepare this MMC material for dechlorination. Therefore, the following studies adopted the 10% SiO₂ loading with a diameter of $10\sim20$ mesh as ball-milling parameter.

235

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Fig. 3

236

The BM is a solid-state powder processing involving repeated welding, fracturing, 237 and rewelding of powder particles ¹⁸. Process variables in this method especially 238 milling time, PCA amount have great influences on the final structure and 239 morphology of the powders ^{26, 32}, so their influence on 2-CP dechlorination efficiency 240

3.3. Effect of Milling Time and Amount of PCA

241 was investigated. As illustrated in Table 2, the dechlorination efficiency increased with increasing the milling time from 0 h to 4h. In the early stages of milling, the 242 ductile iron particles tended to be deformed, whereas the brittle SiO₂ particles 243 fractured into small particles; at this stage fracturing was dominant, the size of the 244 milled powder became smaller. When longer time was applied, these flattened 245 particles began to get cold welded together and form the aggregated particles. After a 246 certain time of milling, the rate of welding is dynamically balanced with that of 247 fracturing and the average particle size of the powders remains relatively unchanged 248 ³³. On the other hand, previous studies have suggested the organic PCA tended to be 249 decomposed into carbon with the proceeding of the milling and the addition of the 250 quartz sand would accelerate the carbonization rate ³⁴. So, when iron and carbon 251 particles are in contact, massive microscopic galvanic cells will be formed 252 spontaneously between the iron (anode) and carbon (cathode), thus accelerating the 253 iron dissolution and subsequent dechlorination reaction. Therefore, longer milling 254 time benefited the carbonization of the PCA and the formation of smaller particle size 255 32 , so the 2-CP dechlorination efficiency was improved due to the formation of more 256 Fe-C galvanic cell and more active sites in SiO₂-Fe system ^{7, 14, 35}. In consideration of 257 activity and cost, 3 h was used to prepare the SiO₂-Fe MMC particles. 258

259

Table 2

260	In addition, the effect of PCA dosage on the degradation of 2-CP were also
261	investigated. As illustrated in Table 2, increasing the PCA dosage from 0% to 6%
262	significantly increased the dechlorination efficiency; however, the dechlorination
263	efficiency was decreased when further increasing its dosage from 6% to 10%. This
264	phenomenon could be explained by the dual effect of the PCA served during the

265	mechanical milling, i.e., (i) the carbon source and (ii) the lubricant. At the same
266	milling time, higher PCA dosage was favorable for the formation of more Fe-C
267	galvanic cells and promoted the following dechlorination reaction. However, when
268	the dosage of PCA was larger than >6%, the dechlorination efficiency was decreased,
269	probably because the milling time was not long enough to carbonize all PCA present.
270	So, the remaining trapped PCA (ethanol) in the inherent structure of the MMC
271	hindered the 2-CP adsorption and the subsequent dechlorination reaction ³⁶ . On the
272	other hand, the balance between cold welding and fracturing requires a certain amount
273	of PCA ^{32, 34} . When the ethanol was less than 6 <i>wt.</i> %, such as 1, 2 or 4 <i>wt.</i> %, its
274	amount was not sufficient enough to cover the surfaces of the powder particles. As a
275	result, the powders tend to cold-weld into large particles in the milling process, which
276	would decrease the dechlorination efficiency due to the decreased active sites ³⁷ .
277	However, an excess amount of PCA would decrease the effectiveness of ball-powder
278	collisions. Because the lubricating effect of the PCA could make powder particles
279	slide laterally easily during collision ³⁸ . Therefore, the optimized milling conditions
280	for synthesizing the SiO ₂ –Fe MMC were determined by milling for 3 h with a 6%
281	PCA addition. The formed powder was microscale-sized with a diameter of 20.4 μm
282	(D50, median diameter) in the above milling condition (Fig. 4).

283

Fig. 4

284

As the common zero-valent metal, Al and Si were also used as reduction material to remove environmental pollutants ^{39, 40}. So the effect of these metals on 2-CP degradation efficiency was subsequently investigated. As illustrated in Table 3, SiO₂-Si and SiO₂-Al could not effectively degrade 2-CP in the 120-min of test

3.4. Effect of Zero Valent-Metal Categories

period. But for SiO₂–Fe, 91.8% of 50 ppm 2-CP could be removed within 120-min reaction. The surface morphologies of the different MMCs were also characterized as shown in Fig. 5. The SiO₂–Al particles had an obviously smooth surface and clearly chopped sharp edges. It also indicated that the SiO₂–Si processed much smaller sizes compared with those of SiO₂–Al and SiO₂–Fe. While, most of SiO₂–Fe particles were intertwined into kinks-like structure.

295

Table 3

296

Fig. 5

The possible explanation for above dechlorination performance could be 297 attributed to the nature difference of the passivating film on the surface of MMCs. For 298 SiO_2 -Al and SiO_2 -Si, the corrosion dissolution of Al⁰ and Si⁰ was inhibited by their 299 dense passivating film on the surface and, concomitantly, hindering the subsequent 300 dechlorination reaction $^{40, 41}$. This could be proved by the fact that no obvious H₂ 301 bubble was observed in the reaction for both SiO₂-Al and SiO₂-Si system and a 302 relatively constant pH value (~5.8 and ~ 6.0 for SiO₂-Al and SiO₂-Si system, 303 respectively) appeared after 5-min reaction. As for Al, the native alumina film 304 reformed easily by the reversible hydrolysis and condensation reactions even 305 pretreated before by acid 41 . And given that the solution stable at ~5.8, the surface 306 aluminum oxide layers are extremely stable at this condition based on our previous 307 studies ^{42, 43}. Similar as that of Al, the Si surface was also covered by the fairly stable 308 hydrogen-terminated silicon (H-Si) and silicon oxide, which was hardly dissolved in 309 acid conditions ⁴⁰. However, the Fe could maintain continuous dissolution even at 310 weak acidity or even neutral surroundings, which was attributed to the relatively weak 311 interaction between hydroxides/oxides and Fe surface as well as the intertwined 312

RSC Advances Accepted Manuscript

structure of the SiO₂–Fe (Fig. 5) $^{42, 44, 45}$. Johnson et.al 46 and Farrel et.al 47 reported that the continuous remove of contaminants could still be achieved even at initial pH 5.8 and 6.2, respectively. So, 2-CP could be effectively removed by SiO₂–Fe in this system.

317 **3.5** Stability and Reusability of the SiO₂–Fe MMC

The stability of the SiO₂-Fe MMC prepared at the above optimized conditions 318 was evaluated to study whether its high activity would sustain during storage, which 319 is essential to practical application. Although the dechlorination efficiency for those 320 particles stored in air for 10 days was decreased from 91.8% to 72.4% in the first run, 321 its reactivity could be recovered when consecutively used. For example, both the 2-322 CP removal percent were still more than 95% from the second to the third cycle. And 323 the dechlorination efficiency at the sixth run could still achieve 71.0% and 60.5% for 324 the fresh prepared and after stored particles, respectively. The relatively stable 325 performance of SiO₂-Fe MMC for dechlorination in the above tests should be 326 attributed to its inherent structure. Unlike the core-shell structure of the common 327 bimetal materials ⁴⁸⁻⁵⁰. The SiO₂–Fe MMC was constituted by numerous iron-carbon 328 interface and quartz sand/iron interface in its relative uniform system. Those disperse 329 interfaces could provide the driving force for sustained iron corrosion in water. Thus, 330 the reactivity could be effectively remained due to the continuously regeneration of 331 the active sites. Therefore, the SiO₂-Fe MMC could provide better longevity and 332 practicability than the core-shell bimetals. 333

334 4. Conclusion

In this work, the preparation conditions of the reinforcement/metal MMCs were optimized by evaluating their reactivity to dechlorinate 2-CP in aqueous solution. The effect of the abrasives on dechlorination efficiency was investigated including B_4C ,

SiC, α-Al₂O₃, SiO₂, Fe₃O₄ and Na₂SO₄. It was found that the B₄C-Fe, SiC-Fe, α-338 Al₂O₃-Fe and SiO₂-Fe MMC could effectively degrade 2-CP, which possessed 339 relative high hardness for the abrasive used. However, SiO₂ was selected as the 340 optimal abrasive due to its low cost. Subsequently, it was further optimized for the 341 preparation conditions of SiO₂-Fe MMC, which finally included 10~20 mesh SiO₂, 342 10% of SiO₂ loading, milling for 3 h and 6% PCA addition. Under the optimized 343 preparation condition, the synthetic SiO₂-Fe MMC achieved a degradation efficiency 344 of 91.8% 2-CP (0.389 mM) in 3 h using a dosage of 40g/L at initial pH=3.0. The 345 346 influence of other metal categories including Al and Si was also investigated for dechlorination; and their low reaction efficiencies were closely related with their 347 passivating film. Additionally, the micorsized SiO₂-Fe MMC could recover its 348 reactivity after storage in air, which could avoid the deactivation the bimetallic system 349 with core-shell structure or the aggregation of nZVI particles. Therefore, it would 350 benefit the potential application of SiO₂-Fe MMC in the permeable reactive barrier 351 technologies for the treatment of COC-contaminated groundwater. 352

353

354 Acknowledgments

We thank the National High-Tech Research and Development Program of China (863 Program, 2013AA062705), the National Natural Science Foundation of China (21547011, 21177089, 51108330), and the Shenzhen Science and Technology Project for Fundamental Research (JCYJ20150324141711622, JCYJ20150529164656097).

359

360

RSC Advances Accepted Manuscript

362		
363		
364		
365	Ref	erences
366	1.	C. M. Kocur, A. I. Chowdhury, N. Sakulchaicharoen, H. K. Boparai, K. P.
367		Weber, P. Sharma, M. M. Krol, L. Austrins, C. Peace and B. E. Sleep, Environ
368		Sci Technol, 2014, 48, 2862-2869.
369	2.	Y. L. Jiao, C. C. Qiu, L. H. Huang, K. X. Wu, H. Y. Ma, S. H. Chen, L. M. Ma
370		and D. L. Wu, Applied Catalysis B: Environmental, 2009, 91, 434-440.
371	3.	R. A. Doong, S. Saha, C. H. Lee and H. P. Lin, RSC Advances, 2015, 5,
372		90797-90805.
373	4.	X. S. Zha, L. Ma and Y. Liu, RSC Advances, 2016, 6, 16323-16330.
374	5.	L. M. Ma and W. X. Zhang, Environ Sci Technol, 2008, 42, 5384-5389.
375	6.	Y. Furukawa, J. W. Kim, J. Watkins and R. T. Wilkin, Environ Sci Technol,
376		2002, 36 , 5469-5475.
377	7.	R. Cheng, J. L. Wang and W. X. Zhang, J Hazard Mater, 2007, 144, 334-339.
378	8.	F. Y. Xu, S. B. Deng, J. Xu, W. Zhang, M. Wu, B. Wang, J. Huang and G. Yu,
379		Environ Sci Technol, 2012, 46, 4576-4582.
380	9.	B. W. Zhu and T. T. Lim, <i>Environ Sci Technol</i> , 2007, 41 , 7523-7529.
381	10.	Y. Lv, Z. Niu, Y. Chen and Y. Hu, RSC Advances, 2016, 6, 20357-20365.
382	11.	M. Zhang, D. B. Bacik, C. B. Roberts and D. Zhao, Water Res, 2013, 47,
383		3706-3715.
384	12.	L. Zhong, F. Ye, Y. Xu and J. Li, Mater Design, 2014, 54, 564-569.
385	13.	T. Wang, M. Shozaki, M. Yamamoto and A. Kagawa, Mater Design, 2015, 66,
386		498-503.

387	14.	Y. Zhang, B. Yang, Y. Han, C. Jiang, D. Wu, J. Fan and L. Ma, Chemosphere,
388		2016, 146 , 308-314.
389	15.	S. Sulaiman, M. Sayuti and R. Samin, J Mater Process Technol, 2008, 201,
390		731-735.
391	16.	I. Ibrahim, F. Mohamed and E. Lavernia, J Mater Sci, 1991, 26, 1137-1156.
392	17.	A. Pakseresht, H. A. Baghbaderani and R. Yazdani-Rad, T Indian I Metals,
393		2016, 69 , 1007-1014.
394	18.	S. I. Li, W. I. Yan and W. x. Zhang, Green Chem, 2009, 11, 1618-1626.
395	19.	C. Molina, A. Pizarro, J. Casas and J. Rodriguez, Applied Catalysis B:
396		Environmental, 2014, 148, 330-338.
397	20.	L. Yin, J. Niu, Z. Shen and J. Chen, Environ Sci Technol, 2010, 44, 5581-5586.
398	21.	R. Gåhlin and S. Jacobson, Wear, 1999, 224, 118-125.
399	22.	N. G. Yılmaz, Rock Mech Rock Eng, 2011, 44, 725-733.
400	23.	D. R. Lide, ed., CRC handbook of chemistry and physics, CRC Press, Boca
401		Raton, 2000, pp 4-154.
402	24.	G. V. Samsonov, Handbook of the Physicochemical Properties of the
403		Elements, Ifi/Plenum New York-Washington, New York-Washington, 1968, pp
404		432.
405	25.	R. Hong, T. Pan, Y. Han, H. Li, J. Ding and S. Han, J Magn Magn Mater,
406		2007, 310 , 37-47.
407	26.	E. Ganjeh, H. Khorsand and S. Shahsavar, Mater Lett, 2015, 143, 144-147.
408	27.	J. F. Devlin and K. O. Allin, <i>Environ Sci Technol</i> , 2005, 39 , 1868-1874.
409	28.	B. Moshtaghioun, A. Monshi, M. Abbasi and F. Karimzadeh, International
410		Journal of Refractory Metals and Hard Materials, 2011, 29, 645-650.
411	29.	J. Coronado and A. Sinatora, <i>Wear</i> , 2011, 271 , 1804-1812.

- 412 30. T. Li and J. Farrell, *Environ Sci Technol*, 2000, **34**, 173-179.
- 413 31. Y. H. Liu, F. L. Yang, P. L. Yue and G. H. Chen, *Water Res*, 2001, 35, 1887414 1890.
- 415 32. L. Lu and Y. Zhang, *J Alloy Compd*, 1999, **290**, 279-283.
- 416 33. L. Kollo, M. Leparoux, C. R. Bradbury, C. Jäggi, E. Carreño-Morelli and M.
 417 Rodríguez-Arbaizar, *J Alloy Compd*, 2010, **489**, 394-400.
- 418 34. V. G. Surkov, A. K. Golovko and O. I. Lomovsky, Khimiya v interesakh
 419 ustoichivogo razvitiya, 2010, 18, 165-170.
- B. P. Chaplin, M. Reinhard, W. F. Schneider, C. Schüth, J. R. Shapley, T. J.
 Strathmann and C. J. Werth, *Environ Sci Technol*, 2012, 46, 3655-3670.
- 422 36. D. Rath and K. Parida, *Ind Eng Chem Res*, 2011, **50**, 2839-2849.
- 423 37. B. Long, H. Zuhailawati, M. Umemoto, Y. Todaka and R. Othman, *J Alloy*424 *Compd*, 2010, **503**, 228-232.
- 425 38. L. Shaw, J. Villegas, H. Luo, M. Zawrah and D. Miracle, *Metallurgical and*426 *Materials Transactions A*, 2003, 34, 159-170.
- 427 39. W. Liu, H. Zhang, B. Cao, K. Lin and J. Gan, *Water Res*, 2011, 45, 1872-1878.
- 428 40. R. A. Doong, K. T. Chen and H. C. Tsai, *Environ Sci Technol*, 2003, 37, 2575429 2581.
- 41. B. C. Bunker, G. C. Nelson, K. Zavadil, J. Barbour, F. Wall, J. Sullivan, C. F.
 Windisch, M. Engelhardt and D. R. Baer, *The Journal of Physical Chemistry B*, 2002, **106**, 4705-4713.
- 433 42. B. Yang, Y. Zhang, S. Deng, G. Yu, Y. Lu, J. Wu, J. Xiao, G. Chen, X. Cheng
 434 and L. Shi, *Chem Eng J*, 2013, 234, 346-353.
- 435 43. B. Yang, J. X. Zhang, Y. Y. Zhang, S. B. Deng, G. Yu, J. H. Wu, H. Zhang and
- 436 J. H. Liu, *Chem Eng J*, 2014, **250**, 222-229.

437	44.	Z. Zhang, N. Cissoko, J. J. Wo and X. H. Xu, J Hazard Mater, 2009, 165, 78-
438		86.
439	45.	Y. F. Su, C. Y. Hsu and Y. H. Shih, Chemosphere, 2012, 88, 1346-1352.
440	46.	T. L. Johnson, M. M. Scherer and P. G. Tratnyek, Environ Sci Technol, 1996,
441		30 , 2634-2640.
442	47.	J. Farrell, M. Kason, N. Melitas and T. Li, Environ Sci Technol, 2000, 34, 514-
443		521.
444	48.	T. Tabakova, L. Ilieva, P. Petrova, A. Venezia, G. Avdeev, R. Zanella and Y.
445		Karakirova, <i>Chem Eng J</i> , 2015, 260 , 133-141.
446	49.	C. H. Lin, Y. H. Shih and J. MacFarlane, Chem Eng J, 2015, 262, 59-67.
447	50.	C. Luo, Z. Chen, D. Wu and L. Ma, Chem Eng J, 2014, 241, 376-383.
448		
449		
450		
451		
452		
453		
454		
455		
456		
457		

458

Fig. 1. The effect of different abrasives (100 mesh) on the removal of 50 ppm 2-CP in aqueous solution at initial pH=3.0 using the dosage of 40 g/L. (milling conditions: 10% abrasive, 6% PCA, milling time = 3h)

462

463

464

Fig. 2. The effect of SiO_2 size on the removal of 50 ppm 2-CP in aqueous solution at initial pH=3.0 using 40 g/L SiO₂-Fe MMC. (milling conditions: 10% SiO₂, 6% PCA, milling time = 3h)

Fig. 3. The effect of SiO₂ dosage ($10\sim20$ mesh) on the removal of 50 ppm 2-CP in aqueous solution at initial pH=3.0 using 40 g/L SiO₂-Fe MMC. (milling conditions:

6% PCA, milling time = 3h)

Fig. 4. The particle size distribution of the SiO₂-Fe MMC before and after ball milling for 3 h. (milling conditions: 10% SiO₂($10\sim20$ mesh), 6% PCA, milling time = 3h)

482

Fig. 5. SEM morphologies of the powders after milling for 3 h (a) the Fe alone, (b) SiO₂ and Fe, (c) SiO₂ and Al, (d) SiO₂ and Si. (milling conditions: 10% SiO₂($10\sim20$ mesh), 6% PCA, milling time = 3h)

Table 1. The hardness of the different abrasives and the surface area of the
 milled abrasives-Fe MMCs.^a

Name	Formula	$S_{\rm BET}({\rm m}^2/{\rm g})$	Mohs scale hardness ^{23, 24}
Boron carbide	B_4C^b	20.34	9.5
Silicon carbide	SiC ^b	20.21	9.3~9.5
Alpha- Alumina	α -Al ₂ O ₃ ^b	19.94	9.0
Quartz sand	SiO ₂ ^b	13.11	7.0
Magnetite	Fe ₃ O ₄ ^b	3.18	6.0
Iron	Fe	2.81	4.0
Sodium	Na ₂ SO ₄	2.90	2.8

sulfate

^a milling conditions: 10% abrasives (100 mesh), milling for 3 h, milling
speed=550 rpm.

491 b the size of abrasives used was 100 mesh.

492

493 **Table 2.** The effect milling time and PCA dosage on the dechlorination of 2-CP 494 in aqueous solution using SiO₂–Fe MMC. ^{*ab*}

milling time	PCA dosage	Removal percent
(h)	(%, <i>w/w</i>)	(%)
0		12.3
0.5		37.1
1	6	65.3
2	0	82.8
3		91.8
4		90.5
	0	20.3
	1	45.5
	2	63.4
3	4	86.5
	6	91.8
	8	65.3
	10	57.8

^{*a*} Reaction conditions: SiO_2 -Fe MMC dose = 40 g/L, initial pH=3.0, 2-CP concentration = 50 mg/L).

497 ^b milling conditions: 10% SiO₂ (100 mesh), milling for 3 h.

498

499 **Table 3.** The effect of metal categories on the dechlorination of 2-CP in aqueous 500 solution using SiO_2 -metal particles.^{*a*}

Metal	t = 5min		t = 120 min		
categor ies	pH^b	2-CP concentration (mM)	рН	2-CP concentration (mM)	phenol concentration (mM)
Al	5.35	0.342	5.53	0.340	ND ^a
Si	5.89	0.298	5.99	0.299	ND^{a}
Fe	6.05	0.315	6.30	0.032	0.25

^a Reaction conditions: SiO_2 -metal MMC dose = 40 g/L, initial pH=3.0, 2-CP concentration = 50 mg/L).

^b The pH meter (PHS-3C) was calibrated using buffers in aqueous solution. Buffer with pH values of 4.00 and 6.86 in water gave values of 4.01 and 6.83, respectively.

Graphical Abstract:

