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By means of extensive computer simulations, we investigate the formation of columnar structures (stacks) in concentrated solu-

tions of semiflexible ring polymers. To characterize the stacks we employ an algorithm that identifies tube-like structures in the

simulation cell. Stacks are found both in the real system and in the fluid of soft disks interacting through the effective anisotropic

pair potential derived for the rings [P. Poier et al., Macromolecules, 2015, 48, 4983-4997]. Furthermore, we investigate binary

mixtures of cluster-forming and non-cluster-forming rings. We find that monodispersity is not a requirement for stack formation.

The latter is found for a broad range of mixture compositions, though the columns in the mixtures exhibit important differences

to those observed in the monodisperse case. We extend the anisotropic effective model to mixtures. We show that it correctly

predicts stack formation and constitutes a significant improvement with respect to the usual isotropic effective description based

only on macromolecular centers-of-mass.

1 Introduction

A rapidly growing body of research has been devoted to poly-

mer rings over the last years, in different fields of mathemat-

ics, physics, chemistry and biology. The simple operation of

joining permanently the two ends of a linear chain to form a

topologically different object — a ring — has a dramatic ef-

fect on the properties of the former. A well-known example is

their different scaling behaviour. Linear chains in θ -solvent

or in polymer melts behave as ideal chains (no excluded-

volume interactions) and adopt random-walk conformations1.

Thus, their size scales with their polymerization degree N

as Dg ∼ N1/2, with Dg the diameter of gyration. However,

the size of isolated ideal rings (keeping the topological con-

straints; i.e., bond uncrossability) scales as2–9 Dg ∼ NνF , with

νF ≈ 0.588 the Flory exponent. In the melt state, strongly

entangled ring polymers adopt crumpled globular conforma-

tions, with an effective scaling exponent showing a crossover

from ν ∼ 0.4 to ν ∼ 0.33− 0.36 in the limit of large N 10–12.

Topological constraints have also a deep impact on the rheo-

logical properties of entangled ring polymer melts. Thus, the

stress relaxation displays a long power-law decay with time,

instead of the entanglement plateau followed by exponential
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decay observed in entangled linear chains13,14. Moreover, the

viscosity of entangled rings exhibits a weaker dependence on

the polymerization degree than their linear counterparts14–16.

Static and dynamic properties of rings have been much less

explored in the intermediate concentration regime between di-

lute solutions and melts. This regime is of practical relevance

because of its implications in, e.g., biophysics (living cells

contain concentrated solutions of biomacromolecules). Ac-

cordingly, topological interactions between ring polymers —

a simple picture for chromatin loops — have been invoked for

explaining the creation of chromosome territories17–22.

The investigation of ring polymer properties in the semidi-

lute regime can be facilitated by using a coarse-graining ap-

proach. In this methodology the internal degrees of freedom

of the polymer (i.e., the monomer coordinates) are replaced

by a reduced set of suitably-chosen effective coordinates. In

this way, each real macromolecule is substituted by a single-

particle (represented by the effective coordinates) interacting

with the others through an effective potential. The micro-

scopic information of the real macromolecule determines the

form of the effective potential. This potential is generally

ultrasoft23 since, unlike hard or quasi-hard objects, macro-

molecules can interprenetrate at a moderate energetic cost.

Simulation of the fluid of ultrasoft particles provides an eco-

nomical route to investigate properties of the real macromolec-

ular solution. Indeed, by using the effective coordinates, most

of the degrees of freedom are removed and the computational

effort is largely reduced.

The methodology of coarse-graining is well-established and

has found successful application in, e.g., polymer chains24–26,
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star polymers27–30, star-shaped polyelectrolytes31,32, den-

drimers33–35, block copolymers36–38 and rings39,40, among

others. The dramatic effect of the ring topology on the poly-

mer properties with respect to those for the case of linear

chains becomes again evident in the effective potential. Lin-

ear chains interact through effective Gaussian potentials24,25.

However, for ring polymers a non-Gaussian potential is found,

which can even show a minimum at zero distance39,40 and in-

cludes a contribution from the topological-potential41. The

effective attraction associated to this minimum is a direct con-

sequence of the usual configurations of two rings with coinci-

dent or very close centers-of-mass: in such configurations one

of the rings ‘opens up’ to be threaded by the other one39,42.

The effective interaction can lead to a striking feature in rings

with, purely repulsive, excluded volume interactions between

the monomers. Namely, a cluster phase can emerge in the case

of semiflexible rings40, which unlike flexible rings12,39, only

show a weak shrinkage with increasing concentration, facili-

tating full interpenetration40.

The identification of the relevant degrees of freedom is an

essential part in the design of an effective model23,43. In many

situations of interest, the macromolecule is represented as a

point particle at the position of a selected monomer (e.g., the

central one in a star polymer) or more generally the position

of the macromolecular center-of-mass. If the latter is cho-

sen as the effective coordinate, the effective ultrasoft potential

is bounded, since the centers-of-mass of two macromolecules

can coincide at a finite energetic cost. Hence the ultrasoft par-

ticles are fully penetrable. Because of their simplicity, this

family of ultrasoft particles has motivated a huge amount of

theoretical and computational investigations, leading to the

discovery of new structural and dynamic scenarios with po-

tential realization in solutions of real macromolecules44–61.

The choice of the center-of-mass position as the sin-

gle relevant effective coordinate results by construction in,

rotationally-averaged, isotropic effective potentials. However,

this approach is not justified for every macromolecule, as e.g.,

in the case of semiflexible ring polymers. In ref.40 semiflex-

ible rings were coarse-grained to ultrasoft particles interact-

ing by an isotropic potential, dependent only on the relative

distance between centers-of-mass. In an intermediate range

of N-values, corresponding to ratios of contour-to-persistence

length N/sp ∼ 6.7, clustering of the rings was observed both

in the real monomer-resolved system and in the isotropic ef-

fective model. This was recognized by a peak at distance

r = 0 in the radial distribution function g(r) of the centers-

of-mass. However, clustering in the real system was markedly

anisotropic. The cluster phase in the real system was formed

by disordered columns (‘stacks’) of oblate rings, penetrated

by bundles of elongated prolate rings. Though for small N,

N/sp ∼ 2.7, interpenetration and clustering was negligible

(g(r → 0)≪ 1) due to excluded volume, anisotropic stacking

of the rings was still observed. These features were not cap-

tured by the effective isotropic potential, which indeed did not

take into account the orientation-dependent character of the

real interactions, and led to the formation of isotropic clus-

ters. Rings with high bending stiffness or few monomers

have a strong tendency to orient with respect to other rings

in their proximity. Thus, the energetic cost paid for mutually

approaching two stiff rings to a fixed (small) separation be-

tween their centers-of-mass is highly dependent on their rel-

ative orientation. The absence of this feature in the effective

isotropic model did not only result in the failure to predict

the anisotropic character of the stacks and clusters. It also re-

sulted in a poor description, in dense solutions, of rotationally-

averaged static correlation functions as g(r).

In order to improve the description of the real monomer-

resolved system, an anisotropic effective model for semiflexi-

ble ring polymers has been introduced62. In that model, the ef-

fective particles are defined as soft disk-like molecules. These

were represented not only by the positions of their centers-

of-mass, but also by the direction in which their faces were

oriented. A considerable improvement in the description of

the monomer-resolved system was achieved by the effective

anisotropic model for small-N (non cluster-forming) and in-

termediate N (cluster-forming). Namely, in comparison to the

isotropic model, it provided a much better description of g(r),
and was applicable over a broader density range. It also ac-

counted for the orientational correlations between neighbour-

ing rings. The isotropic model provided, however a better de-

scription than the anisotropic one in the case of (non cluster-

forming) long rings (large N, N/sp ∼ 13.3). This was at-

tributed to the overestimation of the orientational effects in

the interactions between long rings, which are much more de-

formable than those with small or intermediate N and the same

stiffness. We restrict ourselves to unknotted ring polymers in

this work, although the same approach could also be used to

derive the effective potential between ring polymers contain-

ing knots, which can can have a significant influence on both

the structural as well as dynamic properties of the system63. In

ref.64,65 Heinemann et al. follow a similar approach showing

that the anisotropy in the effective interactions of the molecule

coronene plays a crucial role in its structural properties.

In this article we investigate whether stacking is reproduced

by the anisotropic effective model, and how the results com-

pare with respect to the real monomer-resolved system. To

this end, we introduce an algorithm to define a stack of ring

polymers, and compare the distribution of stack sizes in the ef-

fective and monomer-resolved systems. Furthermore, we ex-

amine whether monodispersity is required for the occurrence

of stacks, by investigating binary mixtures of rings of different

sizes. In particular, we simulate mixtures of rings with inter-

mediate and small N, which form and do not form, respec-

tively, cluster phases in the monodisperse case. We find that
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stacking is resilient to polydispersity, persisting even in mix-

tures with 50 % of non cluster-forming rings. The article is

organized as follows. In Section 2 we summarize model and

simulation details40 of the monomer-resolved and monodis-

perse effective system. In Section 3 we introduce the algo-

rithm for identifying stacks. In Section 4 we summarize the

method to derive the effective potentials62. In Section 5 we

characterize stacks in the monodisperse systems. In Section 6

we show results for effective potentials corresponding to the

cross-interactions between small and intermediate rings. In

Sections 7 and 8 we show results for the binary mixtures and

characterize, respectively, static correlations and stacks. We

compare the obtained results for the real mixtures and the ef-

fective systems. Conclusions are given in Section 9.

2 Model and Simulation Details

The monomer-resolved system consists of bead-spring rings.

Non-bonded interactions between monomers are given by the

cut-and-shifted Lennard-Jones (LJ) potential66:

VLJ(r) =

{

4ε
[

(

σ
r

)12
−
(

σ
r

)6
+ 1

4

]

if r < 21/6σ ;

0 if r ≥ 21/6σ .
(1)

This potential is purely repulsive, accounting then for

monomer excluded volume interactions. Bonded monomers

also interact through a FENE potential66:

VFENE(r) =−
kR2

0

2
ln

[

1−

(

r

R0

)2
]

. (2)

Rigidity is introduced via the bending potential

Vbend(θ) = κ(1− cosθ)2, (3)

where θ is the angle between two consecutive bond vec-

tors. We choose ε = kBT , k = 30kBT/σ2, R0 = 1.5σ and

κ = 30kBT , where kB is the Boltzmann constant and T the

temperature. All simulations are done at kBT = 1. In what

follows absolute distances will be given in units of the LJ di-

ameter σ . The characteristic ratio C∞ and persistence length

bsp of the model are estimated62 as C∞ ∼ 15 and bsp ∼ 7.5,

where b is the bond length (b ∼ 0.97). We performed standard

Langevin dynamics simulations to investigate solutions of the

monomer-resolved rings at different densities. We define the

reduced density as ρ∗ = nV−1D3
g0, with n the number of rings,

V the volume of the simulation box, and Dg0 the diameter of

gyration of the ring at infinite dilution (ρ∗ = 0). The overlap

density is defined as ρ∗ = 1 and represents the concentration

at which the peripheria of the rings start to overlap. The inves-

tigated solutions covered a broad range of densities from high

dilution to several times the overlap density.

The effective isotropic and anisotropic potentials were de-

rived (see below) from the distribution functions of the rela-

tive distances (in both cases) and the relative orientations (in

the anisotropic case). Such distributions were sampled from

simulations of two isolated rings at different relative distances.

Bias Monte Carlo and molecular dynamics methods were used

for efficient sampling40,62. The solutions of the ultrasoft parti-

cles, interacting through the effective isotropic or anisotropic

potentials, were simulated by standard Langevin and Monte

Carlo dynamics. As in the monomer-resolved case, they cov-

ered a broad range of densities from high dilution to several

times the overlap density. Further simulation details are given

in refs.40,62.

3 Algorithm for the Identification of Stacks

Now we describe the algorithm to identify the stacks of rings.

Defining a condition for two rings to be neighbour particles

in a stack is sufficient to identify all the stacks in the system.

To identify a stack we randomly choose some ring A and start

with a set that contains only this ring as a member. We con-

tinue to extend the set by the neighbours of its members until

no new rings are added, and the set thus corresponds to the

stack which contains the ring A. We repeat the procedure for

the rings that are not part of any stack yet and thus gradually

identify the stacks in the system.

We will formulate the condition for two rings to be neigh-

bours in a stack in terms of the effective coordinates of the

rings, defined in ref.62, which are accessible in both the ef-

fective and the monomer-resolved simulations. Let us con-

sider two rings with the effective coordinates (R(1),d(1)) and

(R(2),d(2)). R(i) refers to the center-of-mass of the respective

ring and d(i) to its normalized director (|d(i)|= 1). The direc-

tor is defined along the direction of the smallest eigenvalue of

the gyration tensor of the ring. Thus, for an ideally flat ring

the director is perpendicular to the plane of the ring. We define

r ≡ R(2)−R(1) as the relative vector between the centers-of-

mass of the rings. We formulate our criteria for identifying

stacks such that they contain rings that form tube-like struc-

tures. While it is possible that other rings interpenetrate these

tubes, we will not aim at identifying them as members of the

stack. Therefore, the first condition for two rings to be neigh-

bours in a stack is that their directors are almost parallel:

|d(1) ·d(2)|> 1−∆γ, (4)

where the parameter ∆γ is fixed to some value (see below) and

quantifies how much the directors of two neighbours in a stack

can deviate from a perfectly parallel orientation (∆γ = 0). Fur-

thermore, the centers-of-mass of neighbours in a stack must

be close to each other. We differentiate between the dis-

tance in the d(1) direction, which is given by |r · d(1)|, and
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in the direction orthogonal to it, which can be computed as

|r−d(1)(r ·d(1))|. We restrict both of these distances indepen-

dently:

|r ·d(1)|< v||, (5)

|r−d(1)(r ·d(1))|< v⊥. (6)

For perfectly parallel rings v|| controls the maximum distance

between the ring surfaces, while v⊥ sets how much misalign-

ment between the centers-of-mass of the two rings is accepted.

Conditions (4) - (6) must be simultaneously fulfilled.

It is arbitrary which ring has the label 1 and therefore the

result of whether the two rings are neighbours in a stack must

not depend on it. However, conditions (5)-(6) have an explicit

dependence on d(1). In order to restore the 1 ↔ 2 symme-

try, we also classify rings 1 and 2 as belonging to the same

stack if the conditions in (5)-(6) are satisfied for d(1) → d(2).

Since, for small ∆γ , the condition (4) requires d(1) and d(2)

to be similar, the change d(1) → d(2) just slightly modifies the

numerical values of the left sides of conditions (4)-(6), which

are still fulfilled.

The parameters ∆γ , v|| and v⊥ have to be set by hand. If one

only wants the algorithm to identify a stack if the rings form

perfect tubular structures, one has to choose ∆γ,v⊥ → 0, with

some finite v||, quantifying by how much the rings forming

the tube can be separated. We have chosen finite values for ∆γ
and v⊥, since the stacks formed by the rings in simulations al-

ways exhibit imperfections with respect to a perfect tube-like

arrangement. We use v|| = 3σ , v⊥ = 2.5σ , ∆γ = 0.1 for the

identification of stacks of rings with N = 50 monomers, and

v|| = 5σ , v⊥ = 5σ , ∆γ = 0.1 in the case of larger rings with

N = 100 monomers. This choice of parameters is justified a

posteriori, since it has resulted in the identification of stacks

that are compatible with our intuitive notion of tube-like struc-

tures. The stack-identification algorithm together with this

choice of parameters therefore provides an unambiguous def-

inition of stacks of ring polymers. We have to emphasize that

this definition is not the only sensible one, and that the results

obtained with a 10% variation in the parameters ∆γ , v|| and v⊥
were qualitatively identical.

Using this algorithm we can determine the stacks in config-

urations of anisotropic effective, as well as monomer-resolved

systems. As shown below, for both levels of description we

observe the formation of long columns at sufficiently high

densities. On the other hand, in the isotropic effective model

stacks are never observed, confirming that in order to describe

the system at high densities, at least at a qualitative level, the

introduction of anisotropy is essential. It is interesting to note

that the absence of stacks in the isotropic effective model is

not self-evident, since there exist other systems where the in-

teractions between particles are also isotropic and stacks, i.e.

linear clusters, are formed67,68.

4 Derivation of the Effective Potentials

In refs.40,62 we derived isotropic and anisotropic effective po-

tentials for the description of monodisperse systems of semi-

flexible ring polymers. One can extend these models for the

description of mixtures, by introducing interaction potentials

between different ring types. In this work, we will limit our-

selves to mixtures of rings with N = 20 and N = 50 monomers,

but an extension to other binary, or multicomponent mixtures

is straightforward. As discussed in ref.62 this corresponds to

rings with a contour to persistence length ratio N/sp of ∼ 2.7
and ∼ 6.7 respectively (rings of N = 100 to be discussed be-

low have N/sp ∼ 13.3). The diameter of gyration at infinite

dilution of the rings with N = 20,50 and 100 monomers is

Dg0 = 5.9σ , 13σ and 21.5σ respectively.

To determine the effective interaction potential between dif-

ferent ring types, we follow a similar procedure to that re-

ported in ref.62 for the case of identical rings. In particular,

we carry out simulations of a system of two ring polymers.

We then determine P(r,cosθ1,cosθ2,ϕ), which is the prob-

ability density to find the two rings at a certain distance and

relative orientation with respect to each other. The arguments

of P refer to the effective coordinates defined in Eq. (6) in

ref.62. Namely, r is the distance between the centers-of-mass

of the two rings (denoted as 1 and 2), and θi is the angle be-

tween the vector r joining the centers-of-mass and the director

d(i) of the i-ring. The angle ϕ is the angle between d
(1)
⊥ and

d
(2)
⊥ , which are the components of d(1) and d(2) perpendicular

to r. It is important to note at this point that if the two rings

are not identical (different N), the distribution P is not invari-

ant under the exchange of cosθ1 and cosθ2, since these now

refer to directors of nonequivalent rings. For this reason also

the effective interaction between different ring types loses the

cosθ1 ↔ cosθ2 symmetry. We then compute the anisotropic

pair correlation function as

g(r,cosθ1,cosθ2,ϕ) =
P(r,cosθ1,cosθ2,ϕ)

Pid (r,cosθ1,cosθ2,ϕ)
, (7)

where Pid ∼ r2 is the probability density for an ideal

gas of (non-interacting) effective particles. To determine

P(r,cosθ1,cosθ2,ϕ) we employed umbrella sampling. De-

tails of the simulations were explained in section 3 in ref.62.

The effective anisotropic potential is obtained as

βVeff (r,cosθ1,cosθ2,ϕ) =− ln [g(r,cosθ1,cosθ2,ϕ)] . (8)

with β = (kBT )−1. In the isotropic case, the procedure to ob-

tain the effective potential between different types of rings

is identical to the former. As in the monodisperse case, one

can deduce the radial distribution function giso(r) by aver-

aging over cosθ1,2 and ϕ in the anisotropic pair correlation

function, and obtains the isotropic interaction potential as

βViso
eff(r) =− lngiso(r).
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(a) (b)

(c) (d)

Fig. 1 Snapshots of a monomer-resolved system of ring polymers with N = 50 monomers. Rings belonging to the same stacks are dyed with

identical colors. Turquoise polymers belong to a stack with less than 5 members. Snapshots (a), (b) are taken from a simulation at density

ρ∗ = 16.3, while (c), (d) are for the density ρ∗ = 20.0. The snapshots (a), (c) contain all the particles simulated, while turquoise rings are not

shown in (b), (d).

1–21 | 5

Page 5 of 21 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



5 Formation of Stacks in Monodisperse Sys-

tems

Using the previously described algorithm for the identifica-

tion of stacks, we have analyzed configurations of monomer-

resolved and effective simulations of monodisperse systems

of ring polymers with N = 50 and N = 100 monomers. In

figure 1 we present simulation snapshots of a monomer-

resolved monodisperse system containing rings with N = 50

monomers. The snapshots are both at high densities, namely

ρ∗ = 16.3 and 20.0 respectively. In the snapshots, rings be-

longing to the same stack have identical colors. Rings which

are not part of any stack or part of a stack that contains less

than 5 rings are painted in turquoise. The particular choice

of 5 allows us to discard all temporarily formed small groups

of rings. For every density, we display two snapshots, where

in the first all the rings are shown while in the second the

turquoise rings are hidden for clarity. It can be seen that al-

ready at the lower density the majority of the stacks contain

more than 5 rings and at the larger density one can spot sev-

eral long columns that extend throughout the whole simula-

tion box. For clarity, rings are always depicted as a whole and

therefore individual monomers can lie outside of the periodic

boundaries of the simulation box, while the center-of-mass of

a ring is always within the boundaries. Some of the columns

continue over the periodic boundary conditions. Columns can

grow very long at large densities, however they do not display

any orientational order within the simulation time.

In figure 2 analogous snapshots of the anisotropic effec-

tive system are shown. At the density ρ∗ = 20 one can

see some stacks containing 20 or more rings, but the length

of the columns is reduced with respect to the corresponding

monomer-resolved system. Comparing the snapshots of the

effective model with the ones in figure 1 one sees that the in-

terpenetration of the rings is disfavored in the effective case.

The reason for this might be that in the effective simulation an

individual ring, which is squeezed within a stack that stands

orthogonal to it, pays a very high free energy penalty, since

one adds up pair terms of effective potential for every interpen-

etrated ring in the stack. However, in the monomer-resolved

simulation the deformation energy to squeeze a ring within

one or several rings does not differ by such a big amount and

the energy barrier for the interpenetration of stacks is therefore

lower. This feature was already indirectly observed in figure

11(b) in ref.62, where it was found that the directors of neigh-

boring rings are more likely to be orthogonal in the monomer-

resolved than in the effective simulation. This can also be re-

lated to the enhanced stack size in the monomer-resolved sim-

ulation, since interpenetration enhances the directionality of

the stacking and therefore also the formation of long columns.

In addition, interpenetration should enhance the alignment of

the centers-of-mass of the stacked rings, and one can indeed

see that the columns in the monomer-resolved snapshots are

straighter than in the effective ones. By increasing the den-

sity to ρ∗ = 30, the length of the columns formed by the soft

disks increases significantly and the stack length distribution

becomes comparable to the one observed at ρ∗ = 20 in the

monomer-resolved simulation, while the center-of-mass align-

ment of the disks within a stack is still reduced with respect to

the monomer-resolved simulation.

0 25 50 75 100 125 150 175 200
n

c

0.001

0.01

0.1

1

P
(n

c)

ρ*
 = 30.0, eff

ρ∗
 = 20.0, eff

ρ∗
 = 12.8, eff

ρ∗
 = 20.0

ρ∗
 = 16.3

Fig. 3 Probability distribution, P(nc), for a ring to be part of a stack

with nc members for different densities in anisotropic effective and

monomer-resolved simulations. Results for the former are indicated

by eff in the legend, on which the density ρ∗ is also quoted.

In figure 3 we have compared the distribution of stack

lengths at different densities. The plotted function P(nc) gives

the probability that a randomly chosen ring is part of a stack

with nc members. To compute P(nc) we have analyzed sev-

eral configurations, which are separated by 106 MD steps in

the case of the monomer-resolved system and by 2×104 MC

steps for the anisotropic effective system. Errorbars have been

computed assuming that the P(nc) distributions of different

configurations are uncorrelated. The small errorbars for the

P(nc) distribution evaluated for the highest simulated densi-

ties might underestimate the real error, since the cluster dy-

namics becomes glassy at high densities (for more details see

ref.61) and the assumption that the analyzed configurations are

uncorrelated is therefore not valid. While the formation of

stacks is obviously enhanced in the monomer-resolved sim-

ulation, the effective model eventually shows the same stack

length distribution at higher densities. One can for instance

see that the stack size distributions for the soft disk model at

ρ∗ = 20 and ρ∗ = 30 are almost identical to those obtained
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(a) (b)

(c) (d)

Fig. 2 Snapshots of a simulation of soft disks, representing ring polymers with N = 50 monomers. The effective particles are visualized by

perfect circles of radius Rg0 = 6.5σ , with director vectors and centers-of-mass identical to those of the corresponding effective particles. Rg0

is the radius of gyration of the represented rings at zero density. Rings belonging to the same stack are dyed with identical colors. Turquoise

rings belong to a stack with less than 5 members. Snapshots (a), (b) are taken from a simulation at density ρ∗ = 20.0, while (c), (d) are for the

density ρ∗ = 30.0. The snapshots (a), (c) contain all the particles simulated, while turquoise rings are not show in (b), (d).
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for the monomer-resolved model at ρ∗ = 16.3 and ρ∗ = 20.0,

respectively. These results demonstrate that the anisotropic

effective model is a significant improvement over an isotropic

model, where the formation of stacks is excluded in first place.

Although quantitative agreement with the monomer-resolved

simulation cannot be achieved, the formation of stacks is cor-

rectly predicted and even the stack-size distribution is similar

to that of a monomer-resolved simulation at a lower density.

Fig. 4 Snapshot of a monomer-resolved system of ring polymers

with N = 100 monomers at density ρ∗ = 44.2. Rings belonging to

the same stack are dyed with identical colors. Turquoise polymers

belong to a stack with less than 5 members.

Analogously we have analyzed configurations of systems

with N = 100 monomers. In ref.62 we found that for these

long rings the agreement of the soft disk model with the real

system was worse than in the case of the smaller ring sizes

N = 20 and N = 50. The anisotropic model even provided

a worse description than the isotropic one for the correlation

functions of N = 100. We attributed this to the fact that the

long rings have a larger ratio between contour and persistence

length, and are thus more easily deformed. At higher densi-

ties, they therefore acquire collapsed configurations that sig-

nificantly deviate from the most probable ones in the infinitely

dilute limit, at which the effective interactions have been de-

rived. In this work we have performed new simulations of

the real system for N = 100, investigating higher densities

than in ref.62. As can be seen in figure 4, if one continues

to increase the density in the monomer-resolved simulations,

the rings again favor configurations which are expanded and

much closer to disk-like shapes than those found at lower den-

sities. The reason for this might be that if the volume per

ring becomes very small, the system prefers a more optimally

packed state, where individual rings have more space to fluctu-

ate. At some density a configuration of expanded rings, which

are packed within columns, is apparently the best compromise

for the system, and in this state the individual rings are again

more disk-like.

As a consequence the configurations of the anisotropic and

the monomer-resolved system at high densities are qualita-

tively similar, and long columns are formed in both cases. For

the effective system, the stacks also orient themselves with re-

spect to each other, while this does not happen to the same ex-

tent in the monomer-resolved simulation. Therefore, for high

densities the disk-like nature of the effective model is again an

appropriate description for the long rings, at least at a qualita-

tive level.

6 Effective Model for Binary Mixtures

We have computed the anisotropic effective correlation func-

tion g(r,cosθ1,cosθ2,ϕ) between two stiff ring polymers con-

taining N = 20 and N = 50 monomers at infinite dilution,

which is related to the interaction potential between effec-

tive particles of different types via equation (8). The four-

dimensional pair correlation function is difficult to visualize,

however we can consider a reduced version of this function:

g(r,d(1) ·d(2)) =
P(r,d(1) ·d(2))

Pid(r,d(1) ·d
(2)
)
. (9)

Here P(r,d(1) ·d(2)) is the probability distribution to find two

isolated ring separated by a distance r and with a scalar prod-

uct d(1) ·d(2) between their directors, while Pid ∼ r2 gives the

same distribution for two non-interacting rings. In figure 6 we

present results for the function

G(r,d(1) ·d(2)) =
g(r,d(1) ·d(2))

giso(r)
, (10)

which gives the probability distribution of the scalar product

between the directors of two isolated rings at a fixed mutual

distance r. The abscissa in the plot is given by r/Dg0, where

Dg0 refers to the diameter of gyration of the N = 50 rings at in-

finite dilution. In the following, r/Dg0 will always refer to the

distance normalized by the diameter of gyration of the larger

rings in the mixture. Compared to the G(r,d(1) ·d(2)) of identi-

cal ring polymers62, the anisotropy is significantly reduced. In

particular the distribution of d(1) ·d(2) is almost flat for small

distances r, where the directors had a tendency to be orthogo-

nal with respect to each other in the case of identical rings. For

r ≈ 0.4Dg0 the directors do have a tendency to orient parallel,

but the extent of this is much weaker than for identical N = 50

and even N = 100 rings.
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ulation, the correlation function between N = 20 rings, g20,20,

exhibits a characteristic peak similar to that observed in the

monodisperse system of N = 20 rings (figure 7 in ref.62). For

the anisotropic effective system on the other hand the peak in

g20,20 is missing at ρ∗ = 10 and looks similar to the correla-

tion function measured in a monodisperse system of N = 20

rings at a lower density. For the higher density, ρ∗ = 15.7, the

peak in g20,20 emerges also in the anisotropic effective model,

but it is much less pronounced than in the monomer-resolved

system at the same density. The peak of the g50,50 correlation

function at r → 0 is an indication of the formation of clusters,

and the corresponding stacks are found both in the anisotropic

effective and in the monomer-resolved systems. However,

in the monomer-resolved case the peak is much more pro-

nounced and correspondingly also the length of the stacks is

increased (see below). Additionally, the g20,50 curve exhibits a

pronounced peak in the monomer-resolved system for r → 0,

which reflects that the clusters are formed both by N = 50 and

N = 20 rings. In the anisotropic effective system this maxi-

mum is also visible but much less pronounced, indicating that

there are less small rings locked within the columns than in

the monomer-resolved system.

0.5 1 1.5
r/D

g0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
r)

g
20,20

g
20,50

g
50,50

Fig. 9 Pair correlation functions, at density ρ∗ = 3.9, for the 1:1

mixture, in the full monomer-resolved simulation (symbols), the

anisotropic effective model (solid lines) and the isotropic effective

model (dashed lines). Different colors refer to the pair correlation

function between different types of rings (see legend).

We introduce the function P(d(1) ·d(2)), defined as the prob-

ability density distribution for the scalar product between the

directors d(1) and d(2) of two ring polymers that are sepa-

rated by a distance r < 0.6Dg0. Therefore, this function pro-

0 0.5 1 1.5
r/D

g0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
r)

g
20,20

g
20,50

g
50,50

Fig. 10 Pair correlation functions, at density ρ∗ = 10.0, for the 1:1

mixture, in the full monomer-resolved simulation (symbols), the

anisotropic effective model (solid lines) and the isotropic effective

model (dashed lines). Different colors refer to the pair correlation

function between different types of rings (see legend).

0 0.5 1 1.5
r/D
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1.0
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20,50

g
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Fig. 11 Pair correlation functions, at density ρ∗ = 15.7, for the 1:1

mixture, in the full monomer-resolved simulation (symbols), the

anisotropic effective model (solid lines) and the isotropic effective

model (dashed lines). Different colors refer to the pair correlation

function between different types of rings (see legend).
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Fig. 12 Probability density P(d(1) ·d(2)) for the scalar product

d(1) ·d(2) between the directors of two close-by rings (r < 0.6Dg0).

The presented results are computed for the 1:1 mixture. Different

data sets correspond to distributions for pairs of rings with identical

or different N (see legend). Panels (a) and (b) show results for

ρ∗ = 3.9 and ρ∗ = 15.7, respectively. Symbols correspond to

monomer-resolved simulation data and lines to results obtained in

simulations of the effective soft disks.

vides information about orientational correlations in the sys-

tem. Figure 12 shows the former distribution, computed both

for the monomer-resolved system and the anisotropic effective

model, at the densities ρ∗ = 3.9 and 15.7. For the smaller den-

sity the anisotropic effective model and the monomer-resolved

system are in very good quantitative agreement. For the larger

density the rings in the monomer-resolved system are more

likely to orient parallel with respect to each other, and corre-

spondingly orthogonal orientations of the directors are largely

suppressed. This is consistent with the fact that the large rings

in the monomer-resolved system are often part of long stacks,

and are therefore almost parallel oriented with respect to each

other. We will further elaborate on this in the next section.

At the higher density, ρ∗ = 15.7, the rings in the soft-disk

mixture also exhibit an enhanced probability to orient parallel

with respect to each other, but while the qualitative behav-

ior is correct, this enhancement is much weaker than in the

monomer-resolved case. Correspondingly, we will show in the

next section that the rings also form stacks in the anisotropic

effective model, though their length is reduced with respect to

the monomer-resolved mixture at the same density.

Finally, we also carried out simulations of an asymmetric

binary mixture, where 364 chains contained N = 20 and the

other 1454 rings consisted of N = 50 monomers, we will call

this system the 1:4 mixture in the following. The partial ra-

dial distribution functions for this solution are shown in fig-

ure 13 for the representative densities ρ∗ = 11.9 and 18.6.

The qualitative trends of the correlation functions, both for the

monomer-resolved and the effective anisotropic model, are the

same as those displayed in figure 11 for the symmetric mix-

ture at a similar density ρ∗ = 15.7. This finding suggests that

there is a broad range of compositions in mixtures of small

and intermediate rings that will present the qualitative scenario

presented above.

8 Formation of Stacks in Binary Mixtures

Finally, we characterize formation of stacks in binary mixtures

of rings, to clarify whether monodispersity is a requirement

for the formation of long columns, and to test if the anisotropic

effective model for mixtures is able to capture the essential

features of stacking at high densities. To this end, we have

applied the algorithm described in section 3 to identify stacks

of the large rings in configurations taken from simulations of

the mixtures. First we concentrate on the 1:1 mixture, which

contains the same number of rings with N = 20 and N = 50

monomers.

In figure 14 we show the same configuration of a monomer-

resolved simulation at density ρ∗ = 15.7 in four different rep-

resentations (see caption). It can be seen that most rings are

part of stacks containing 5 or more rings, which are inter-

penetrated by the small rings. The large rings are not only
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(a) (b)

(c) (d)

Fig. 14 Visualizations of the same configuration of a monomer-resolved simulation for the 1:1 mixture at density ρ∗ = 15.7. Large rings

which are part of the same stack have identical colors. If the stack has less than 5 members they are colored pink. All small rings are colored

turquoise. In (a) we show a snapshot with all the rings, while in (b) the pink and turquoise rings are not shown. For displaying the snapshots

(c), (d) we have first computed the effective coordinates (centers-of-mass and directors) of the monomer-resolved rings (not to be confused

with the soft disks of the simulations of the effective model). Then we have represented the real rings by perfect circles with the same

centers-of-mass and directors as the corresponding real rings. Moreover the circles have a radius Rg0 (different for N = 20 and N = 50)

identical to that of the corresponding real rings at zero density. The representation of the snapshots (c), (d) in terms of the effective

coordinates facilitates visualization of the internal structure of the stacks. In (c) all the rings are displayed. The pink and turquoise rings are

not shown in (d).
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(a) (b)

(c) (d)

Fig. 15 Snapshots of a simulation of effective soft disks, representing the 1:1 mixture. The effective particles are visualized by perfect circles,

with centers-of-mass and directors identical to those of the effective particles. Large rings which are part of the same stack have identical

colors. If the stack has less than 5 members they are colored pink. All small rings are colored turquoise. The snapshots (a), (b) are taken from

a simulation at density ρ∗ = 15.7, while (c), (d) are for the density ρ∗ = 24.9. The snapshots in (a), (c) contain all particles simulated, while

the turquoise and pink particles are not shown in (b), (d).
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Fig. 13 Pair correlation functions, at densities ρ∗ = 11.9 (a) and

18.6 (b), for the 1:4 mixture in the full monomer-resolved

simulation (symbols), the anisotropic effective model (solid lines)

and the isotropic effective model (dashed lines). Different colors

refer to the pair correlation function between different types of rings

(see legend).

parallel with respect to each other, but their centers-of-mass

are also aligned, which allows for an unblocked view through

the columns if the small rings are not shown and the column

stands along your view.

Figure 15 displays configurations of the soft-disk mixture

at the densities ρ∗ = 15.7 and 24.9. We can see that stacks

are formed in the anisotropic effective system, but at the same

density they are shorter than for the monomer-resolved case.

The reason for this could be that the free energy penalty for

a small ring which interpenetrates a column is overestimated

because the effective potential is pairwise additive and we thus

add up contributions due to interactions with many large rings.

Analogously, a large ring can be interpenetrated by many

small rings and the same interaction penalty is summed up

for each additional interpenetration. In the monomer-resolved

model on the other hand the free energy penalty could be

smaller, since for instance the entropy of a large ring that is

interpenetrated by a small one is restricted in first place and it

might not reduce by the same amount if a second small ring is

locked in. In figure 14, we can indeed see that in the full simu-

lation it is common that large rings are simultaneously pierced

by several small rings, while this hardly ever happens in con-

figurations of the effective system displayed in figure 15. By

increasing the density in the effective system we eventually

encountered systems with a similar probability distribution

P(nc) as observed in the monomer-resolved simulation at a

smaller density. An example of this fact is illustrated in figure

16, where a configuration of the monomer-resolved mixture

(ρ∗ = 10.8) and of the effective soft-disk mixture (ρ∗ = 12.7)

are displayed. In both cases the small rings, as well as large

rings not being part of a stack of at least 5 members are not

shown. Both snapshots are qualitatively similar. The simi-

larity observed in these snapshots at this and other densities

suggests that the anisotropic effective model is at least quali-

tatively able to reproduce the formation of stacks also for the

case of binary mixtures.

Figure 17 shows the probability P(nc) for an individual

large ring to be part of a stack with nc members. As in the

monodisperse case, we find that for a given monomer-resolved

system there exists an effective soft-disk system, at a higher

density, with a similar stack size distribution. The formation of

stacks is typically accompanied by a high maximum at r → 0

in the radial distribution function of the large rings. This can

be seen in figure 18 where we plot this correlation function

for the monomer-resolved and the anisotropic effective mod-

els. While the maximum is lower in the soft-disk model than

in the monomer-resolved one, it also increases with the den-

sity.

Finally, we have also characterized stacks in simulations of

the 1:4 mixture. Figure 19 shows two representations of the

same configuration, for density ρ∗ = 18.6, of the monomer-

resolved 1:4 mixture. We can see that the system still forms
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(a)

(b)

Fig. 16 Snapshot (a) represents a visualization of the effective

degrees of freedom in a configuration taken from a

monomer-resolved simulation at density ρ∗ = 10.8, while (b)

represents a configuration from a simulation of the anisotropic

effective model at ρ∗ = 12.7. In both cases the small rings, as well

as large rings which are not part of a stack with at least 5 members,

are not shown.
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Fig. 17 Probability distribution, P(nc), for a large ring to be part of

a stack with nc members, in simulations of the 1:1 mixture.
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Fig. 18 Radial pair distribution function of the large rings for a

simulation of the 1:1 mixture. Data is shown for the

monomer-resolved simulation (symbols), the anisotropic effective

model (solid lines) and the isotropic effective model (dashed lines).
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(a)

(b)

Fig. 19 Visualizations of a configuration from a monomer-resolved

simulation of the 1:4 mixture at density ρ∗ = 18.6. In (a) we show a

snapshot with all the rings, while in (b) only the small rings are

shown.

long columns of large rings penetrated by small ones. In snap-

shot 19a all the rings are displayed, while in 19b only the

small rings are shown. Interestingly, the small rings do not

fill all the columns formed by the large ones. Moreover, the

columns in which the small rings are present are not filled ho-

mogeneously; the small rings agglomerate within some tubes

formed by the large rings, while others remain hollow of small

rings. This agglomeration is consistent with the sharp peak

observed in the radial distribution function of the small rings

g20,20 (see figure 13 above). The fact that the small rings ag-

gregate within the large rings could mean that the free energy

penalty of many small rings interpenetrating a few large ones

is smaller than that of many large rings being interpenetrated

by individual small rings. This interpretation is also consistent

with the reduced amount of interpenetration observed in the

anisotropic effective model. This only includes pair interac-

tions and therefore does not take into account that, for the real

rings, the energy penalty of inserting an additional small ring

inside a large one is not necessarily identical to the free en-

ergy penalty due to the interpenetration of the first small ring.

A snapshot of the asymmetric effective soft-disk mixture at

the former density ρ∗ = 18.6 is displayed in figure 20. Again,

columns are formed in the effective system but the stacks are

smaller than in the monomer-resolved case. Finally, figure

21 shows the probability distribution P(nc) for the asymmet-

ric mixtures in the monomer-resolved and effective soft-disk

models. We find the same qualitative features as in figure 17

for the symmetric mixtures.

9 Conclusions

We have presented extensive simulations of concentrated so-

lutions of semiflexible ring polymers. These systems form

phases containing columnar, tube-like structures of quasi-

parallel rings (stacks). This feature, which cannot be captured

by the standard isotropic effective interactions, is qualitatively

reproduced by an anisotropic effective model. In this model

the effective interactions do not only depend on the distance

between macromolecular centers-of-mass, but also on the rel-

ative orientations. We have introduced a simple algorithm to

identify and characterize the stacks. Though, for the same

density, the stacks are longer in the monomer-resolved sys-

tem than in the effective anisotropic model, long stacks can

be formed in both models at sufficiently high concentrations.

The anisotropic model is, in general, clearly superior to the

isotropic model. However, in ref.62 it was shown that, for

semiflexible rings with a significant degree of deformability,

the isotropic effective model provided a better description of

the real system than the anisotropic model in the range of den-

sity investigated there. This was attributed to the overesti-

mation of the orientational effects in the interactions between

such deformable rings. However, by further increasing the
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(a)

(b)

Fig. 20 Snapshots of a simulation of effective soft disks,

representing the 1:4 mixture at density ρ∗ = 18.6. The effective

particles are visualized by perfect circles with centers-of-mass and

directors identical to those of the corresponding effective particles.

The snapshot in (a) displays all particles simulated. The small rings

(turquoise), as well as the large rings that are not part of a stack with

at least 5 members (pink), are not shown in (b).
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Fig. 21 Probability distribution, P(nc), for a large ring to be part of

a stack with nc members in simulations of the 1:4 mixture.

density, we have found that such rings expand themselves to

optimize packing, stacks are formed and the anisotropic model

provides again a superior description over the isotropic model.

We have extended the effective model to the case of binary

mixtures of ring polymers, and compared it with simulations

of the corresponding monomer-resolved mixtures. The sim-

ulations reveal stack formation in both models for a broad

range of mixture compositions, demonstrating that stacking

is highly resilient to polydispersity. As expected, the stacks

in asymmetric mixtures are mostly constituted by columns of

large rings. The small rings tend to be located inside of such

columns. However, they do not fill them homogeneously but

form agglomerates within the columns.
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Fig. 22 TOC figure: Binary mixtures of semiflexible ring polymers form stacks at high densities.
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