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1. Introduction 1 

Solar-powered technologies for the electrochemical production of hydrogen through water 2 

electrolysis are of significant immediate interest. These so-called “solar hydrogen” technologies are able 3 

to capture solar energy and efficiently store it as hydrogen for widespread use when demand is high, 4 

uniquely for stationary applications, as a mobile transportation fuel, and as a reductant for various 5 

chemical transformations. This application space complements others covered by alternative technologies 6 

that capture solar energy and generate electricity (e.g. photovoltaics) or heat (e.g. solar-thermal systems). 7 

Over the past decade, several large research programs around the globe have been implemented with the 8 

aim of accelerating the development of the science and technology of solar-hydrogen devices: The 9 

Swedish Consortium for Artificial Photosynthesis, NSF Center for Chemical Innovation in Solar Fuels, 10 

the Joint Center for Artificial Photosynthesis, The Korean Center for Artificial Photosynthesis, the 11 

Institute for Solar Fuels at the Helmholtz Center in Berlin, the Japan Technological Research Association 12 

of Artificial Photosynthetic Chemical Process, The VILLUM Center for the Science of Sustainable Fuels 13 

and Chemicals in Denmark, the Center for Multiscale Catalytic Energy Conversion and the Towards 14 

BioSolar Cells program in The Netherlands, the PEC House and Solar Hydrogen Integrated 15 

Nanoelectrolysis Project (SHINE) in Switzerland, the UK Solar Fuels Network, among others. These 16 

large-scale programs, in conjunction with the efforts of small teams of researchers worldwide, have 17 

contributed to a clearer understanding of the requirements and challenges of solar-hydrogen 18 

technologies,1-10 placing us in an appropriate position to perform an informed assessment on the 19 

feasibility of their future deployment. On June 13–17, 2016, fifty-two participants from 10 countries and 20 

32 different organizations with expertise in multiple areas of solar hydrogen gathered at the Lorentz 21 

Center in Leiden, The Netherlands (http://www.lorentzcenter.nl/). Participants represented leading 22 

research institutions, the industrial sector, social scientists evaluating the societal impact and perception 23 

of solar-hydrogen technologies, and delegates from several governments. Attendees with this breadth in 24 

expertise and experience in solar hydrogen and broad topic discussions made this workshop unique. Over 25 
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the five days of the workshop multiple topics were discussed and debated, including the state-of-the-art 1 

and limitations of materials, device architectures, early-stage market opportunities, and a roadmap for the 2 

implementation of solar-hydrogen technologies into large-scale energy markets. Several coupled 3 

considerations were examined for successful implementation of solar-hydrogen devices: (1) technical 4 

constraints for the robust and stable long-term operation of the system, (2) economic viability and 5 

environmental sustainability, and (3) societal impacts and political drivers. The most important outcome 6 

from the workshop was a specific technology roadmap for solar hydrogen devices, which had not 7 

previously existed. 8 

The minimum requirement for a practical solar-hydrogen system is that it uses sunlight to convert 9 

water to a hydrogen stream that contains oxygen at a concentration below the flammability limit.11, 12 10 

Here, we only consider devices and systems that generate H2 via proton/electron-transfer redox reactions 11 

driven by gradients in electrochemical potential formed by non-thermal photovoltaic action resulting from 12 

sunlight absorption. While this includes processes such as solar photovoltaic plus electrolyzers, 13 

photoelectrochemistry, photocatalysis, and molecular approaches, we recognize that other processes are 14 

possible as well (e.g., using light to drive thermochemical hydrogen generation). For clarity and 15 

simplicity, we classify device architectures into two broad categories as described in Figure 1 and Table 16 

1: photovoltaic-driven electrolysis (PV–Electrolysis) and photo-electrochemistry (PEC).13-15 17 
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 1 

Figure 1. Scheme representing PEC and PV–Electrolysis device concepts, including current use, projected costs, 2 
amount of raw materials, and current relative level of technology readiness. For more details, see Table 1. 3 

Table 1. PV–Electrolysis versus PEC systems. Overview of general concepts, and comparison of unique 4 
characteristics, technological considerations, economic challenges and political factors for each device type.  5 

 PV–Electrolysis systems PEC systems 

General concept 
Over large areas, sunlight is used to convert water to a stream of hydrogen 

that contains an oxygen concentration below the flammability limit 

Terminology 

Components:  Light absorbers, Electrocatalysts, Ion-exchange membranes, 
Electrolytes, etc. 

Devices:         PV, PEC, Light absorber in electrolyte with co-catalyst, etc. 

Unique aspects 

Light absorption component (PV) 
physically separated macroscopically 

from water splitting (electrolysis) 
component  

Light absorption and water 
splitting components are integrated 

in one region 

Technological 

options 

Distributed 

Hydrogen 
production is 

independent of 
energy generation 
(different sources, 

electricity grid) 

Centralized 

Hydrogen 
production occurs 

at the site of 
energy generation; 
requires hydrogen 

transport 

Centralized  

Design concept exclusively allows 
centralized operation  

 

Technology readiness  
Advanced stage  

 

Early stage, and exploratory for: 
nano-/micro-structured, and 

particulate/molecular components 

Maximum 

demonstrated  
30% for > 48 h16 10% for > 40 h17 
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Solar-to-Hydrogen 

efficiency
†
 

Economic challenges 

Competition with conventional sources of non-renewable energy (fossil fuel, 
nuclear), battery-backed renewable energy, and hydrogen generated by other 

means (methane reforming) in terms of cost, availability, and accessibility 

Socio-political factors 

Investments are not always stable (e.g. elections, political agendas, influential 
special interest groups); events affect public and political perception, 

perceived relevance and public acceptance (e.g., oil spill, nuclear disaster, 
hydrogen explosion, decreasing energy prices, environmental benefits, 

societal push for renewable or more sustainable energy solutions) 
†Based on laboratory-scale device demonstrations capable of producing nearly pure H2.  1 

The first family comprises at least two devices where the light absorption component (PV) is 2 

physically separated from the water-splitting/electrolysis component (Electrolyzer). These types of 3 

devices are the most mature and benefit from modularity, allowing individual devices to be optimized for 4 

the integrated operation. However, this modularity also often necessitates use of two encapsulation and 5 

support structures. For the other category of PEC devices, the light absorption and water splitting 6 

components are co-located or assembled into a single component and the light absorber is directly 7 

influenced by the properties of the electrolyte potentially simplifying the device architecture. In this 8 

context, PEC devices include those based on photoelectrodes where two half reactions can be spatially 9 

separated by a membrane and particles suspended in an electrolyte where they cannot be separated.13, 18 10 

PEC devices are less mature, and therefore less technology readied, than PV–Electrolysis devices, yet we 11 

do not define a quantitative technology readiness level for either technology because of differing global 12 

metrics. In its place, we refer to “Low technology readiness” for technologies that are far from 13 

commercialization, and “High technology readiness” for technologies that are already commercialized or 14 

beyond the large prototype stage, and evaluated in their intended environment. A technology may be 15 

assigned a high technology readiness at the device or system level, while advanced components for 16 

improved performance may still be at a low technology readiness level. 17 
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 1 

Figure 2. Schematic representation of a pathway and timeline for solar H2 technologies and interrelated aspects 2 
discussed in this article. 3 

 4 

In this perspective paper, we discuss potential pathways for solar-hydrogen technologies, as depicted 5 

in Figure 2. The first section describes general considerations for solar-hydrogen technologies, including 6 

technical approaches for device and system architectures, economic challenges, and societal and political 7 

impacts. The second section describes pathways for implementation of solar-hydrogen technologies, 8 

including specifically, markets for short-term implementation (≤ 10 years) of combined PV–Electrolysis 9 

devices and systems together with technological challenges and research opportunities. For long-term 10 

implementation, potential pathways for both combined PV–Electrolysis devices and systems, as well as 11 

PEC devices, are considered together with other important societal, economic, political drivers and 12 

technological requirements. 13 

 14 

2. General considerations 15 
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2.1. Technical options 1 

When evaluating the device categories (PV–Electrolysis or PEC), it is instructive to classify the 2 

design strategy. One classification is whether a technology is considered distributed or centralized. Within 3 

this article, Distributed approaches are defined as those that rely on the collection of sunlight by discrete 4 

solar-module installations followed by transport of energy to electrolyzer units at a different and possibly 5 

distant location. Centralized approaches are defined as solar installations that directly drive the water-6 

splitting processes. Based on this technology classification, for a given hydrogen production goal, both 7 

Centralized and Distributed approaches could be implemented as either large-scale production facilities 8 

placed in one single location or as a collection of small-scale facilities dispersed geographically. PV–9 

Electrolysis designs can be classified as either distributed or centralized while the inherent integrated 10 

nature of PEC designs necessitates that they are only centralized. Agnostic to the classification of the PEC 11 

or PV–Electrolysis designs is the requirement that they must operate with fluctuating energy inputs, 12 

because of the intermittency of solar irradiation. This challenge is significant and will also affect the 13 

implementation of centralized solar-hydrogen technologies. Section 3.1 presents a more detailed 14 

discussion on possible solutions for the PV–Electrolysis approach using alternative energy sources 15 

present in traditional electricity grids and the research opportunities that may provide solutions to 16 

overcome it in the short-term. 17 

The distributed PV–Electrolysis design strategy can take advantage of electricity grids for the 18 

required electronic transport, and by doing so the electrolyzer can also utilize energy from various sources 19 

(e.g. from wind, fossil fuels), therefore avoiding fluctuations in its operation due to the intermittency of 20 

solar irradiation.19 By having the option to transport charge instead of hydrogen over large distances, 21 

hydrogen transportation from centralized sunny locations to consumer centers is not necessary. 22 

Distributed approaches require implementation of power electronics to enable electricity transmission 23 

from PV installations to the electricity grid (e.g. DC–DC converters, AC–DC inverters) and subsequently 24 

to the electrolyzers.20 Power electronics add to the cost of the system and decrease system efficiency, 25 
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while transmitting electricity through the grid results in additional costs which are defined by the 1 

electricity markets. A specific option for distributed approaches is the implementation of alternative 2 

electricity grids that are exclusively used for PV–Electrolysis (possibly operated under direct current, like 3 

those envisioned in Europe and China and only requiring DC–DC converters).21, 22 If new infrastructure is 4 

needed for these DC grids, this approach requires a large upfront capital investment but saves operational 5 

expenses related with electricity grid transmission costs and management.  6 

In contrast to the distributed PV–Electrolysis design strategy, an advantage of centralized PV–7 

Electrolysis implementation is the ability to optimize the PV array operation for the electrolysis needs. 8 

This also enables the option to operate with minimal power conversion, which can result in cost 9 

reductions and efficiency improvements. Moreover, because larger sizes result in greater economic 10 

benefits, both the PV component and the electrolysis component can be implemented on very large scales; 11 

a similar situation can be seen for the centralized case. The main disadvantage of centralized solar-12 

hydrogen facilities is the need to cover large land mass areas and then transport the generated fuel to its 13 

point of use. In the case of PEC approaches, by definition the light absorption and water splitting 14 

components operate at the same centralized location, and thus PEC has similar benefits and deficiencies 15 

as centralized PV–Electrolysis. 16 

PV–Electrolysis devices have a higher technology readiness level than PEC devices.23, 24 PV panels 17 

and electrolyzers are already established in the market and are continually optimized (as independent 18 

installations). PEC devices are still in the early stage of development and could enter the market in the 19 

medium-to-long-term (> 10 years) (Figure 2). In the medium-term, the technologies most likely to 20 

succeed are those that leverage semiconductor manufacturing techniques to fabricate planar 21 

photoelectrodes. In the long-term, advanced structural designs may be cost-effective where the PEC units 22 

are micro-/nano-structured, inexpensive flexible substrates are used, or particles or molecules are 23 

suspended or dissolved in liquid electrolytes. Complex PEC structures may ultimately enhance 24 

performance of solar-hydrogen devices, including light absorption, catalysis, and mass transport.25, 26 25 
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Suspensions could benefit from economic advantages associated with low-cost plastic reactors that do not 1 

require electrical wiring or framing required to physically support heavy electrically conductive 2 

substrates.27 3 

2.2. Economic challenges 4 

In comparison to the technical options, the economic feasibility requirements are broader and depend 5 

on the ultimate application of the technology. Applications in the energy sector provide opportunity for 6 

the largest and most impactful implementations of solar-hydrogen technologies. The scale of these 7 

markets is massive (> 28,000 Terawatt-hours (TWh) per year in the US alone). In the energy share, solar-8 

hydrogen technologies can be used for direct energy generation, as a fuel for transportation, or for 9 

temporary storage and ultimate electricity production. To date, hydrogen’s direct contribution to energy 10 

markets is almost negligible, with hydrogen being almost exclusively produced from non-renewable 11 

energy sources, and small-scale uses of hydrogen that include demonstrations of grid-level energy 12 

storage, hydrogen fuel cell vehicles, and crude oil refining.28, 29 The multiple orders-of-magnitude 13 

difference between the current scale of the energy markets and the hydrogen market represents a clear 14 

opportunity for solar-hydrogen technologies. For solar-hydrogen devices to be deployable at the energy-15 

market scale, however, the conditions of cost competitiveness and availability must be satisfied; 16 

specifically, solar-hydrogen technologies must be scalable so that collectively they have the potential to 17 

supply a significant fraction of the future global hydrogen needs (likely hundreds of GW) at a competitive 18 

price point on a “per kWh” basis. In terms of the active components of the technology, the scalability 19 

requirement is related to the current and projected ease of accessibility and processability of the 20 

materials.30, 31 While noble-metal catalysts that are currently implemented in state-of-the-art electrolyzers 21 

allow production of systems at a scale approaching GW/year, research on the development of improved 22 

utilization of precious metals and use of non-precious-metal electrocatalysts and low-cost light absorbers 23 

and ancillaries, such as transparent-conductive oxides and protective coatings, could enable production at 24 

larger scales.32 This is a classic trade-off between cost and efficiency; the challenge is to optimize these 25 
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aspects to improve the desired metric ($/kWh or $/kg H2). This cost metric needs to account for not only 1 

the cost of the device and its balance-of-system costs, but also the costs associated with the operation and 2 

maintenance (O&M) of the technology. O&M costs may include, for example, energy costs associated 3 

with feeding water to reaction sites, cleaning of the system, gas collection, compression and 4 

transportation to distribution centers, each which are likely to cost more in integrated systems that operate 5 

at low current densities and therefore occupy large areas. 6 

The bottom line for cost-competitiveness in the hydrogen market (where hydrogen is used not only 7 

for energy purposes, but also for chemical processing such as petroleum refining and ammonia and 8 

methanol production) is that solar hydrogen will need to compete ultimately with hydrogen from fossil 9 

fuels (i.e. usually produced from methane reforming and coal gasification routes, which tend to be 10 

situated in close proximity to points of utilization, such as ammonia production plants, thus reducing 11 

transportation costs). In the broader energy markets scale, the cost of energy produced via solar-hydrogen 12 

routes will need to compete with energy produced from other sources, e.g. fossil, nuclear, hydroelectric, 13 

wind. These non-solar energy sources define the baseline cost that determines the viability of solar-14 

hydrogen technologies. At early stages of technological development, smaller-scale applications may 15 

benefit from use of solar hydrogen when the characteristics of the technology pose an advantage over 16 

other technologies. Below, a series of potentially viable market opportunities where solar hydrogen could 17 

be impactful in the short-term (i.e. within the next 10 years) are presented, and a critical assessment of the 18 

requirements for inclusion in large-scale energy markets in the long-term is made. For completeness, 19 

“cost” includes not only the monetary value of energy, but also any other value that society assigns to the 20 

externalities associated with different energy production mechanisms (e.g. CO2 emissions, nuclear 21 

disasters, ecological damage).33 In anticipation of the future global energy markets, the costs of 22 

externalities are incompletely internalized by either energy producers or energy consumers, and instead 23 

the monetary value of their impact is shared over many entities that may not have been involved in the 24 

energy-generation process or have not derived any benefit from the energy use. Although new successful 25 
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applications of solar-hydrogen technologies will need to stand alone without heavily relying on 1 

regulation, advanced energy policies could incorporate the costs of externalities via various market 2 

mechanisms (e.g. carbon taxes, emission limits, incentives).34 In practice, this could render polluting or 3 

risky technologies costlier on a monetary basis than safe renewable energy technologies, such as solar 4 

hydrogen. 5 

2.3. Societal and political impacts 6 

In addition to technical and economic challenges, other unknown or emerging societal and political 7 

events will influence the deployment of solar-hydrogen technologies. Building an adequate physical 8 

infrastructure (e.g., pipelines, fuel stations, two-way electricity grids) could favor the deployment of 9 

particular new technologies, including solar hydrogen. On the other hand, events such as oil spills, 10 

nuclear disasters, or hydrogen explosions can change public perception and the political agenda of 11 

specific governments, and therefore the funding scheme. The Fukushima nuclear accident in 2011, for 12 

example, received intense media coverage and led to demonstrations against nuclear power in Germany.35 13 

The growing public concern and resistance resulted in requests for more transparency and into a drastic 14 

change of the German national policy toward more renewable energy.36, 37 The awareness and perception 15 

of risks and advantages of a new technology can thus influence the acceptance of the public for new 16 

technological or infrastructural changes which are crucial for its deployment. As social studies show, 17 

safety and price are the main concerns for public acceptance of hydrogen technologies.38 However, the 18 

general attitude of people towards technology and the types of information they are given also greatly 19 

influences their opinion about hydrogen technology.39, 40 In addition to public acceptance, political 20 

decisions can have an impact on technological development. In 1990 for example, the California Air 21 

Resources Board obliged major car manufacturers to bring zero emission vehicles to the market by 2003, 22 

which led to an increase in funding for research and development activities and pushed the development 23 

of new technologies in this field.41 The political agenda in several countries support emerging 24 

technologies via funding schemes, e.g. in large programs on renewable energy. For example, Norway will 25 
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ban the sale of fossil fuel cars by 2025.42 Political and public attention around a particular topic thus help 1 

to mobilize research funding and relevant actors, while unfulfilled research promises can lead to a shift to 2 

other technological options. Hydrogen-based technologies for example have already seen major ups and 3 

downs in political and public attention in the past.43, 44 Specific to solar-hydrogen technologies is that they 4 

must also compete with other research activities not only in the field of renewable energy but also with 5 

technologies that promise to reduce energy consumption or net CO2 emissions. The scientific community 6 

will likely have more influence on the opinion of policy-makers if applied research goals are focused on 7 

realistic research targets that can be delivered in a timely fashion and that satisfy society’s evolving 8 

expectations. Of course, realistic research targets are mostly based on pre-existing long-term fundamental 9 

research products.45 Understanding how to continue to fund fundamental research, while yielding tangible 10 

deliverables that have social impact, constitutes a challenge for all stakeholders in the hydrogen 11 

technology sector.  12 

 13 

3. Identifying pathways for implementation of solar-hydrogen technologies 14 

A pathway for inclusion of solar-hydrogen technologies in energy markets likely requires successful 15 

incorporation in early-stage markets. In this section, we describe and critically assess short-term 16 

opportunities (≤ 10 years) for solar-hydrogen technologies and identify criteria for penetration of solar-17 

hydrogen systems into large-scale energy markets in the long term, where it becomes critical for the 18 

technology to be socio-economically, politically, and technically beneficial. 19 

3.1. Short-term implementation (10-year timeframe) 20 

This subsection describes short-term markets and technological opportunities that could lead to 21 

favorable economic conditions for entry-scale implementation of solar-hydrogen technologies, 22 

specifically focusing on the more mature PV–Electrolysis devices. 23 
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3.1.1.  Market opportunities 1 

Although solar-hydrogen technologies use sunlight and water to generate hydrogen directly, under 2 

current market conditions they must compete with hydrogen generated from methane reforming or from 3 

grid-powered electrolysis. As long as fossil fuels remain as the predominant source of grid-level 4 

electricity, hydrogen produced by either of these non-solar routes has a substantial CO2 footprint, and 5 

therefore, has clear environmental costs. Moreover, while hydrogen can be obtained inexpensively from 6 

methane reforming at large-scale plants, its use in the transportation sector could be hampered by the 7 

additional costs and added emissions from delivery to consumer locations. In addition, reformer-produced 8 

H2 must have carbon species (e.g., CO, CO2, CH4), as well as trace sulfur in natural gas, removed from 9 

the reaction products at an additional cost. 10 

 While generating H2 from a pure water feedstock does not require removal of carbonaceous reaction 11 

products, residual water must be removed in both cases. Given these product differentiators, application 12 

areas where solar-hydrogen technologies could potentially succeed in the near-term should aim at 13 

exploiting a) environmental aspects of the production processes, b) generation of hydrogen close to the 14 

point of utilization, and c) purity of the produced hydrogen. This would aid in the competitiveness of the 15 

technology in cost-inelastic markets that require high-purity hydrogen, production (decentralized) near the 16 

point of application, and with low environmental impacts that solar-based technologies can provide. 17 

Broadly speaking, plausible early-stage application fields can be divided in to seven distinct areas that are 18 

depicted in Figure 3: (i) grid-level energy storage, (ii) local or isolated permanent energy systems, (iii) 19 

transportation, (iv) as a precursor for the production of high-margin products, (v) the military industry, 20 

(vi) the space industry, and (vii) the agricultural sector. 21 
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 1 

Figure 3. Short-term (10-year timeframe) application fields that are likely to provide the most promising utilization 2 
routes. The chronological ordering of these application fields is based on projected timelines for practical 3 
implementation. 4 

 5 

i. Grid-level energy storage: While more challenging to break into, large markets are also of interest 6 

for solar-hydrogen technologies because even small impacts would result in large installations. 7 

Grid-level energy storage applications are advantageous because distributed solar-hydrogen 8 

technologies benefit from backing by the electricity grid. Therefore, challenges due to 9 

intermittency can be mitigated, at the expense of requiring some level of AC-DC and DC-AC 10 

conversion. For this proposed application field, both photovoltaic installations and electrolyzers 11 

that are coupled to a fuel cell or are regenerative (i.e. they serve the dual role of electrolyzer and 12 

fuel cell) would be connected to the electricity grid. The most cost-effective use strategy would 13 

be to generate hydrogen during periods of high solar insolation, when electricity prices are low 14 

due to a large supply of electricity generated from sunlight, and in certain locations with very 15 

high penetration of photovoltaics or other renewables, so low that the electricity is nearly free. 16 

The hydrogen would then be temporarily stored until solar insolation is poor and other sources of 17 

renewable electricity are scarce. The low supply of clean electricity would mean that electricity 18 

prices would be dictated by baseload power and would be high. Solar hydrogen could capitalize 19 

on these electricity prices by generating electricity through reacting hydrogen and oxygen (from 20 

the air) electrochemically in a fuel cell or by combustion in a turbine. Given the current relative 21 
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high prices of electrolysis units and large energy losses incurred during both generation of 1 

hydrogen from water and recombination of hydrogen and oxygen, grid-level energy storage 2 

would be a difficult market to access and build a profitable business case.46, 47 Under current 3 

market conditions, batteries are economically more viable for short-term energy storage due to 4 

their high round-trip efficiencies. Despite their own challenges, batteries would serve in the same 5 

role as hydrogen in grid-level energy storage, where, in general, most storage requirements are on 6 

the scale of days.48-50 Additionally, gas peaker plants that operate on methane combustion are able 7 

to rapidly adapt to different electricity production levels, and can be used to smooth intermittent 8 

energy produced by solar or wind power installations both for short- and long-term energy 9 

storage needs.51 In summary, the current alternatives (i.e. battery energy storage and natural gas 10 

fired power generation) tend to be more cost effective than solar-hydrogen technologies and 11 

therefore, it is unlikely that grid-level energy-storage solutions based on solar-hydrogen 12 

technologies will be economically viable in the short-term, although even small impacts represent 13 

large opportunities. 14 

ii. Local or isolated permanent energy systems: Communities without grid access, including those 15 

on small islands, could benefit from localized, independent energy systems where the 16 

implementation of renewable energy sources may be advantageous. As such, solar-hydrogen 17 

technologies could play a key role in these energy solutions, especially when these communities 18 

or military bases receive high solar insolation. These implementations would also likely benefit 19 

from a local electricity microgrid that contains photovoltaics and energy-storage systems. As 20 

described above, battery economics favor short-term energy storage while electrolyzers coupled 21 

to use as a fuel cell compare favorably to batteries for larger periods of storage.52 Unlike grid-22 

level energy storage, which is backed by enormous baseload power that can adjust to seasonal 23 

variability, isolated permanent electrolysis units would serve the purpose of buffering long-term 24 

fluctuations in photovoltaic output (i.e. weeks to seasons). This time frame and scale are not 25 
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practical for battery energy storage due to slow self-discharge that becomes significant over long 1 

timescales and unit size because battery mass scales proportionally with energy needs.53 The 2 

distribution of batteries and hydrogen storage units would depend on seasonal fluctuations in 3 

local-specific resources. For example, desert locations would require fewer electrolysis units due 4 

to small seasonal fluctuations in solar insolation, while temperate regions would require larger 5 

and/or more electrolysis units due to more seasonal variability in the solar resource.  6 

iii. Transportation: In the short-term, solar-hydrogen technologies can directly impact the 7 

transportation sector. Hydrogen can be mixed into natural gas pipelines to provide some of the 8 

available energy during combustion, even in internal combustion engines.54 In addition, small 9 

fleets of hydrogen fuel-cell vehicles (HFCVs) recently entered the market, and they have been 10 

allocated in local communities with hydrogen fueling capabilities. Early adopters of HFCVs are 11 

predominantly environmentally conscious and technologically knowledgeable individuals with 12 

the appropriate economical means. Currently, the vast majority of hydrogen available for fueling 13 

is produced via CO2-emitting methane reforming. This method is implemented because the cost 14 

of hydrogen production from a centralized methane reforming plant, while variable, is lower than 15 

via electrolysis methods. Also, large capital investments are required for compression, storage, 16 

and dispensing in hydrogen fueling stations which deters the additional investment required to 17 

produce renewable hydrogen locally. Nonetheless, given the low supply of hydrogen fuel, the 18 

price charged at hydrogen fueling stations must be significantly higher than the cost to produce 19 

and distribute hydrogen. A non-negligible subset of the population would be willing to pay a 20 

premium for hydrogen from clean sources, just as a subset of the population is willing to pay for a 21 

HFCV. 22 

Public transportation represents a logical opportunity for implementation of HFCVs and use 23 

of solar-hydrogen technologies to generate hydrogen fuel. Already some example demonstration 24 

projects have been implemented in the US, Germany, Switzerland, Japan among others.55-59 These 25 
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projects are easier to implement than infrastructure changes required for personal HFCVs, 1 

because vehicles for public transportation have predetermined and limited routes, and require 2 

access to fueling stations in close proximity to their service route. Depots for public 3 

transportation vehicles can even be co-located with solar-hydrogen technologies so that the solar-4 

hydrogen light absorbers can shade the vehicles from sunlight, thus keeping the vehicles cooler 5 

when not in use and ultimately saving on air conditioning needs. Furthermore, public 6 

transportation is often government regulated, and therefore a direct and rapid pathway to 7 

implementation may exist due to pressures from clean-energy policy. For similar reasons, long-8 

distance shipping and transportation may benefit from HFCVs and solar-hydrogen technologies. 9 

Nations in the process of developing their energy infrastructure represent opportunities for 10 

implementation of solar-hydrogen technologies, notably for HFCV car rentals in cities of the 11 

future. In these planned cities, it may make sense to locate fueling stations along the outer edge of 12 

each city, where there is more space available for large area photovoltaic installations and 13 

electrolyzers. In this scenario, people could use predominantly public transportation or battery-14 

electric vehicles within the confines of the city, and rental cars for longer-distance travel to places 15 

outside the city, including for transportation to other cities. Car rental agencies would be located 16 

on the outer edge of the city and near the fueling stations. The ability to design a city with 17 

collocation of solar-hydrogen technologies (e.g. photovoltaic farms and electrolyzer plants), 18 

hydrogen fueling stations, and HFCV car rental agencies at the nexus of the city and open land, 19 

provides a unique opportunity for the design of synergistic infrastructure that optimizes the 20 

benefits of each technology. This is common practice in chemical plant design, where collocation 21 

of multiple plants that utilize equipment and use products from one plant in another process is 22 

often economical. Moreover, as in the case of personal HFCVs, consumers could drive this 23 

opportunity of synergistic infrastructures for solar-hydrogen technologies if tourism is a big 24 

market.  25 
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iv. High-margin products: Hydrogen is a chemical feedstock widely used in the electronics, food, 1 

pharmaceutical, cosmetics, lubricants, and chemical industries. For example, hydrogen is used to 2 

change the rheological and sensory properties of foods through hydrogenation of unsaturated fatty 3 

acids and many lipids. For many of these applications high purity hydrogen is required, with no 4 

trace of the typical contaminants found in hydrogen produced by methane reforming, which is a 5 

niche filled by solar hydrogen generated by electrolysis. Additionally, the cost of hydrogen in the 6 

final product is often negligible, in part due to the small volumes that are required, and small 7 

differences in the price of hydrogen do not affect the cost structure of these industries. Because 8 

purity is the dominant factor, these high-margin products are produced most economically via 9 

electrolysis. Moreover, implementing solar-hydrogen technologies in these industries will allow 10 

them to market their products to environmentally conscious consumers, especially for food and 11 

cosmetics. All of these characteristics of high-margin products make the short-term 12 

implementation of solar-hydrogen technologies potentially viable. Other high-margin chemicals 13 

include those produced on large scales in chemical plants, many of which can be made 14 

electrochemically, and several of which constitute rather large markets. If instead of electrolyzing 15 

water, solar-hydrogen generation could be coupled to another oxidation reaction, such as chloride 16 

oxidation to chlorine gas or perchlorate salts that would increase the economic incentive to 17 

produce solar hydrogen.61
 18 

v. Military industry: Military applications provide another specialized market entry point for solar-19 

hydrogen technologies. Small-scale, easily deployable, portable, and robust microgrid energy 20 

systems are of interest to deployed troops in isolated locations. Larger installations could supply 21 

power for grid-independent bases, which are therefore less vulnerable to cybersecurity hacks or 22 

attacks on the electrical grid. Again, for remote and isolated applications, reliability, mass, and 23 

volume are often more important than the cost of the technology. In addition, remote generation 24 

of hydrogen is useful for powering fuel cells for aeromedical evacuations, which enable longer 25 
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flight times compared to those powered by batteries. Similar to use for respiration during space 1 

exploration, the generation of medical grade oxygen from water splitting is also of importance for 2 

military hospital installations and any people who are involved in remote projects and 3 

expeditions. 4 

vi. Space industry: Specialized applications in the space industry might also be a viable entry point 5 

for solar-hydrogen technologies. The cost of devices to generate hydrogen and oxygen are of 6 

minor importance, while the most important factors are reliability and the mass and volume of the 7 

systems, including feedstocks. For space applications, this is because enormous amounts of fuel 8 

are required to transport payloads and therefore the mass of the fuel, and oxidant for return 9 

missions, dominate the cost of space missions. Onboard generation of fuel (by reaction of H2 with 10 

CO2) and for prolonged and distant space missions (e.g. between Earth and Mars), generation of 11 

an oxidant (O2) to release the energy stored in the fuel in space and create thrust, would result in a 12 

much lighter payload and therefore, a lower mission cost. For this reason, lightweight and flexible 13 

designs for on-demand energy production and storage are extremely beneficial strategies. 14 

Moreover, recycling water and electrolyzing it for direct onboard oxygen generation for 15 

respiration is a common approach used in space applications, and driving the process with 16 

sunlight affords a reliable, low-mass option for energy generation and storage. Lightweight solar 17 

panels consisting of thin films of III-V materials deposited on Kapton supports are already used 18 

in space applications, and lightweight designs for solar-hydrogen technologies have also recently 19 

been proposed.16, 60 For these applications, it is even more critical that devices operate at the 20 

highest possible efficiency, and that is why the highest-performing photovoltaics are preferred 21 

over low-cost alternatives. In addition, the solar spectrum differs between space and earth, and 22 

terrestrial size constraints for deployed devices are often relaxed for implementations in space 23 

where vast regions are unoccupied, as long as the devices can be effectively bundled for delivery. 24 
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vii. Agriculture sector: More than half of the 50 million tons of hydrogen produced annually is used 1 

for the production of ammonia using the Haber-Bosch process, and more than half of the 2 

ammonia is used for the production of nitrogen-based fertilizers. Without these, we would not be 3 

able to grow enough food to sustain a population of 7 billion people. While the massive scale of 4 

the Haber-Bosch and fertilizer production processes make early-stage implementation of solar-5 

hydrogen technologies unlikely, the sheer size of this market means that even small contributions 6 

from solar-hydrogen technologies will constitute substantial implementations that will further aid 7 

near-term deployment. 8 

While the seven sectors mentioned above represent possible entry points for implementation of solar-9 

hydrogen technologies, advances in the component technologies themselves could impact other industries 10 

involved in the electrochemical production of alternative commodity chemicals to hydrogen (e.g. 11 

chloralkali, zinc production, aluminum production)61 or on electrochemical wastewater treatment.62 These 12 

industries enjoy higher margins than the energy industry and already use electrochemical methods for 13 

large-scale production,63 which could facilitate early-stage implementation of solar-hydrogen 14 

technologies. 15 

3.1.2. Technological implementation  16 

The technology readiness of solar-hydrogen technologies is low; the readiness of the specific subset 17 

of PEC solar-hydrogen technologies is even lower. Generally, for applications where cost is a significant 18 

market driver, the cost of the PV–Electrolysis device would be the most important factor. Because > 90% 19 

of the PV market consists of solar cells made from silicon (either mono-crystalline or multi-crystalline),64 20 

they are likely to be the most appropriate light absorbers to implement, although other commercially 21 

available light absorbers could compete with silicon based on the application. CdTe and CIGS 22 

photovoltaics represent a viable option which is likely to result in solar-hydrogen costs in a similar range 23 

to those achievable using silicon photovoltaics.65 In most cases, PV modules based on III-V 24 
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semiconductors are currently not economically viable for terrestrial applications, but are predominant in 1 

space applications where their efficiency and thin lightweight designs offset their capital cost. There are 2 

also active research programs aimed at lowering the cost of III-V solar cells and PEC devices while 3 

maintaining their conversion efficiency, thus enabling their use in conventional flat-plate and low-4 

concentration applications.66-68 5 

In terms of electrolysis technologies likely to be implemented in the short-term there are two 6 

prominent commercial options: alkaline electrolyzers and proton-exchange membrane (PEM) 7 

electrolyzers. Despite the fact that solid oxide electrolyzers are not discussed in this article, the 8 

conclusions and discussion also generally apply to this class of water-splitting devices. 9 

Liquid electrolyte alkaline electrolyzers have been deployed commercially for more than 100 years.69, 10 

70 Because of this, they have already been developed and implemented on larger scales than PEM 11 

electrolyzers, but they require additional attention and safety considerations due to the use of a strongly 12 

corrosive liquid alkaline electrolyte and the need for tightly balanced pressures of H2 and O2. Alkaline 13 

electrolyzers also tend to be less efficient than the acidic PEM electrolyzers at a given current density. 14 

This is due to the larger overpotential required for the alkaline-stable Ni-based electrocatalysts for 15 

hydrogen evolution and the larger ohmic losses caused by the lower conductivity of the electrolyte and 16 

the larger inter-electrode gap. Alkaline electrolyzers are also less amenable to changes in their operation 17 

conditions, because they usually implement porous separators between the electrodes with higher gas 18 

permeability and hence high crossover rates. Contrarily, PEM electrolyzers implement highly selective 19 

gas-separating ion-exchange membranes. 20 

PEM electrolyzers are the state-of-the-art for most small-scale hydrogen generation applications. 21 

They implement ion-conducting polymer membranes as solid acid electrolytes that are selective for 22 

cations, allowing proton transport from the site of water oxidation to the site of hydrogen generation. Use 23 

of a solid electrolyte and liquid deionized water as a feedstock is much less of a safety concern than the 24 

Page 26 of 44Energy & Environmental Science



26 
 

corrosive liquid electrolytes needed in alkaline electrolyzers. Yet, because PEM electrocatalysts are in 1 

direct contact with the solid electrolyte membrane, which is acidic and corrosive, the only efficient 2 

catalyst materials that remain bound and stable are those based on noble metals (e.g. Pt and IrOx are the 3 

state-of-the-art). While the terrestrial scarcity of noble metals could preclude the implementation of PEM 4 

electrolyzers on large TW scales, their implementation at early stages on GW scales is not expected to be 5 

limited by the availability of specific raw materials. In comparison to alkaline electrolyzers, PEM 6 

electrolyzers are in many ways more amenable to PV–Electrolysis devices. The use of state-of-the-art 7 

electrocatalysts in PEM electrolyzers allow for more efficient operation. Moreover, PEM electrolyzers 8 

operate more effectively under conditions of fluctuating power input, particularly when intermittent solar 9 

insolation drives electrolysis consistently outputting a pressurized hydrogen product (up to 30 bar).71 10 

While PEM electrolyzers do have significant technical advantages over alkaline electrolyzers, they still 11 

tend to be more costly (currently costing ~1.2 USD/W)72 partly because of lower production volumes and 12 

limited system sizes, with the largest planned systems being on the order of several MW.73, 74 As their 13 

production volumes increase, it is likely that their costs will continue to decrease due to economies of 14 

scale and technological advances. 15 

3.1.3. Science and technology opportunities 16 

There are significant challenges for the implementation of PV–Electrolysis devices, mainly arising 17 

from complications caused by the PV-driven intermittent use of electrolyzers. These challenges can at 18 

least in part be mitigated using today’s electrolyzer technologies if electronic buffering mechanisms are in 19 

place to maintain operation above a threshold and therefore avoid large amounts of gas crossover and 20 

formation of explosive gas mixtures.12 Buffering approaches include incorporation of an array of batteries 21 

or capacitors, or utilization of grid electricity, where available. An alternative to buffering is removal of 22 

the hydrogen and oxygen reaction products from the reaction chambers during periods of slow operation, 23 

for example, by flushing the system with water, or to implement other engineering approaches to avoid 24 

the formation of explosive gas mixtures.75 Additionally, electrical circuits of photovoltaic arrays and AC-25 

Page 27 of 44 Energy & Environmental Science



27 
 

driven peripheral components (e.g. pumps, fans and control systems) could be re-designed to directly 1 

drive water electrolyzers without the need for power electronics (i.e. maximum power trackers or DC–DC 2 

converters).16, 76 If electricity buffers, product removal, and power electronics could be avoided, a 3 

scenario that seems reasonable within the next decade, solar-hydrogen technologies will be simplified, 4 

therefore ensuring smooth operation and ultimately driving down their cost. 5 

3.2. Long-term deployment in energy markets 6 

The opportunities identified in the short term could help solar-hydrogen technologies enter energy 7 

markets and build the foundation for more widespread implementation in the long term. This subsection 8 

first describes societal and policy changes, as well as technological opportunities that could lead to 9 

favorable economic conditions for larger-scale implementation of solar-hydrogen technologies. Long-10 

term pathways for both PV–Electrolysis and PEC devices are discussed.  11 

3.2.1. Societal, economic, and policy changes and drivers 12 

Environmental challenges associated with burning large quantities of fossil fuels to generate energy 13 

have triggered a strong interest in implementation of renewable-energy systems.77, 78 As a testimony to 14 

this, the number of energy-conversion installations driven by sunlight or wind has experienced 15 

exponential growth over the past decade. In the case of solar energy, this growth is directly apparent from 16 

the enormous increase in the production capacity of photovoltaics, which has resulted in significant 17 

reductions in their cost.79 On the production side, government incentives facilitated this market increase 18 

by providing strong investment that led to the rapid increase in production. An increase in demand was 19 

propelled by policy drivers that aimed to curtail use of non-renewable energy sources. For example, 20 

China, India, and even smaller size countries all have policies to promote renewable energy technologies. 21 

Further policy drivers such as controls on CO2 emission as well as incentives for clean-energy 22 

technologies will help increase penetration of renewables into the energy markets and raise awareness for 23 

the need to realize accessible, reliable and affordable supply of energy. The Paris Climate Agreement 24 
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helped set the stage for this development.80 The Dutch government, for example, targets 40% renewable 1 

energy by 2030 and a > 80% reduction in CO2 emissions by 2050.81 Societal aspects can also trigger the 2 

large-scale adoption of clean energy technologies. Changes to the environment, violent and more frequent 3 

natural disasters, and local pollution can favor the adoption of clean technologies on the basis of world 4 

energy and global transportation scenarios created by the World Energy Council.82 Additionally, 5 

investment in education and in accessible and accurate information regarding environmental effects of 6 

various energy sources can help shape society’s perceptions of the energy markets. Ultimately, these 7 

changes in public perception can decisively lead to the enactment of long-lasting clean energy policies. 83, 8 

84 9 

Changes in energy markets can also favor clean technologies. Market failures in the gas and oil sector 10 

(e.g. drop in demand, decrease in production, curtailments) can lead to spikes in energy prices, therefore 11 

indirectly improving the economic viability of alternative renewable-energy sources. Additionally, market 12 

and ecological factors could lead to the collapse of large-scale fossil fuel suppliers, therefore necessitating 13 

the development and broad deployment of clean-energy technologies.85, 86 To date, the growth of the 14 

photovoltaic sector has been facilitated by the ability to integrate solar-energy-conversion devices into our 15 

current electricity transmission and distribution infrastructure. A larger penetration of photovoltaics into 16 

the energy markets will result in changes in the operation of the electricity grid. Energy storage 17 

mechanisms will have to be implemented to bridge the time gap between production periods and 18 

consumer demands. Under conditions of direct storage and use, an electricity grid may not even be 19 

required. This will further motivate the decoupling of photovoltaic installations from the grid, favoring 20 

options like centralized solar-hydrogen facilities for the production of transportation fuels and for long-21 

term energy storage needs. Similarly, as outdated and unreliable grid structures continue to age, new 22 

energy-efficient systems such as microgrids emerge, which are in general more compatible with 23 

renewable technologies over traditional large-scale power plants.87, 88 Moreover, as government incentives 24 
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for PV phase out, soft costs must continue to decrease to keep PV competitive with fossil sources of 1 

electricity. 2 

3.2.2. Science and technology opportunities 3 

In the long-term, solar hydrogen generated by both PV–Electrolysis and PEC routes could play a 4 

significant role in the energy market. The socio-economic and policy drivers mentioned above would 5 

facilitate the use of solar-hydrogen technologies as a competitive energy-storage option. At the same time, 6 

significant scientific and technological barriers need to be overcome in order for the technologies to 7 

succeed in a highly competitive market. Despite some demonstrations of functioning devices, the long-8 

term stable operation of efficient and cost-effective devices has not yet been proven for PEC routes. 9 

Possible technology development pathways are presented below for the two families of devices that, if 10 

successful, could lead to viable solar-hydrogen systems. 11 

3.3. Pathways for PV–Electrolysis 12 

To a large extent, PV–Electrolysis advances can be commercialized by independently optimizing 13 

each of the constituent components,10 i.e. the PV module, the cell stack materials, and the electrolyzer 14 

design. However, the ultimate goal of a practical system coupling the two components must be kept in 15 

mind while performing this independent optimization. Although at a first glance this statement might 16 

seem obvious and non-constraining, there is a significant number of peripheral components (mainly 17 

power electronics) that are incorporated into PV installations and electrolysis units to couple their 18 

operation with the electrical grid. These components account for a non-trivial fraction of the overall 19 

capital costs of the equipment, and furthermore poor integration will result in efficiency decreases on the 20 

order of at least 10%, with ~5% losses on each of the two AC/DC conversion steps, and even larger losses 21 

at low power output. While under some circumstances PV–Electrolysis will operate in conjunction with 22 

the grid to maximize the utilization of the electrolyzer unit, lean alternatives with fewer peripheral 23 

components and a more integrated operation will likely be preferred as the technology progresses and 24 
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electrolyzers become more capable of operating with fluctuating loads. This integrated PV–Electrolysis 1 

approach would not require that power electronics be incorporated in current electrolyzers systems, as PV 2 

arrays may be designed to directly power electrolyzers units with the appropriate DC characteristics. The 3 

reduced balance-of-system costs of integrated PV–Electrolysis devices and the higher efficiencies 4 

achievable due to short transmission distances could favor their implementation in the long term, 5 

assuming that no new durability challenges emerge during intermittent or fluctuating operation.5, 7, 8 In the 6 

short term the value proposition of on-site or wastewater-derived solar-hydrogen generation can be 7 

realized in niche markets. Those gains would need to compensate for the economic losses from the low 8 

utilization of the electrolyzer units if powered exclusively with solar energy. 9 

In the photovoltaic space, it is likely that silicon will continue to be the most promising technology in 10 

the short to medium term (< 30 years). Laboratory-based examples of silicon PVs directly coupled to 11 

electrolyzers have demonstrated efficiencies for hydrogen production in excess of 14%.76 Following a 12 

pathway of reasonable improvements, silicon PVs could be implemented in solar-hydrogen devices to 13 

attain efficiencies of up to 18%. These advances involve improvements in surface passivation of Si, 14 

introduction of back contacting techniques in the cell fabrication, and small improvements in the quality 15 

of the crystalline silicon solar cells. Achieving even higher efficiencies using single silicon PVs would be 16 

difficult. On the cost side, only small reductions are expected from silicon manufacturing, as the prices 17 

have already decreased significantly (currently at < USD 0.5/W) and gains from economies of scale will 18 

saturate. Alternative materials for PVs including cadmium telluride, copper indium gallium selenide 19 

(CIGS), hybrid organic–inorganic halide perovskites, III-V semiconductors, or tandem architectures could 20 

be disruptive to the PV space.16, 89 However, currently they are significantly disadvantaged with respect to 21 

Si PVs.65, 90 There are many factors that limit the practicality of each alternative PV material, such as 22 

stability, toxicity, efficiency, durability, but ultimately each of these technologies suffers from the same 23 

limiting factor for large-scale viability: economic competitiveness. Advances that improve PV scalability, 24 

cost, stability, and performance for these materials classes will be needed before they have a significant 25 
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impact on solar-hydrogen devices. Lastly, inexpensive optical concentration or light management 1 

schemes and heat and mass transfer optimizations that enhance efficiency and materials utilization of PV–2 

Electrolysis over PV or electrolyzers alone, could improve the viability of PV–Electrolysis. 3 

Although the contribution of the electrolyzer to the projected costs of a PV–Electrolysis system is 4 

minor, an improved efficiency of this component means that less PV cells are needed to produce the same 5 

amount of hydrogen, so that the hydrogen can become significantly cheaper. While the PV industry has 6 

grown aggressively in the recent past, and current yearly installation levels approach a 85 GW capacity,91 7 

the electrolyzer industry lags behind in terms of installations by more than two orders-of-magnitude. The 8 

production scale of the electrolysis industry will need to approach levels comparable to the PV sector, and 9 

as this happens, significant cost gains for both technologies are expected. Porous transport layers and 10 

bipolar plates are important from cost, stability, and efficiency perspectives. Their optimization enables 11 

higher current densities and lower catalyst loadings. Active component improvements in performance and 12 

stability (catalysts layers and membranes) are also needed. In particular, as the scale of production 13 

increases, it will be important to develop earth-abundant electrocatalysts with comparable performance to 14 

the noble-metal electrocatalysts used in current PEM electrolyzers. In addition to standard cation-15 

exchange-membrane-based electrolyzers, membrane-free systems have seen significant advances due to 16 

their tolerance for impurities in water feedstock and potentially lower upfront capital costs.92-95 Moreover, 17 

the development of anion-exchange membranes can enable implementation of alkaline polymer–18 

electrolyte–membrane electrolyzers that use high-performing and earth-abundant Ni-based catalysts.96, 97 19 

These membranes must exhibit long-term stability and avoid excessive gas crossover even at lower 20 

sunlight-driven rates.  21 

In addition to economies of scale, cost reductions in electrolyzers may arise from lowering the capital 22 

cost requirements of the system (currently at ~1/3 of the total cost), or by reducing costs associated with 23 

the electricity feedstock required for their operation. Solar-to-hydrogen efficiency improvements will 24 

directly affect electricity feedstock expenses, as less electricity will be needed for a given rate of solar-25 
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hydrogen production. Important sources of efficiency improvements in current PEM electrolyzers may 1 

come from reduction of ionic resistances in membranes, improvement in electrocatalyst activity, and 2 

mitigation of mass transport limitations in catalyst and porous transport layers.98 If the efficiency 3 

improvements lead to larger operating current densities, electrolyzer units could be designed with smaller 4 

footprints for a given production level, thus reducing their capital costs. Additionally, the feedstock costs 5 

could be reduced if the electrical grid is circumvented in a direct PV–Electrolysis configuration. In this 6 

configuration, the costs associated with electricity transmission and distribution through the grid would be 7 

eliminated. Opportunities exist for defining application-specific guidelines for membranes used for direct 8 

PV–Electrolysis. Research and development of membranes for direct PV–Electrolysis configurations 9 

include identifying those with lower gas permeability and optimal ion-transport and mechanical 10 

properties, information on the molecular and morphological characteristics of membranes during mass 11 

transport processes, and ion-conducting membranes that can operate under intermittent electrolysis 12 

conditions. These fundamental science developments can lead to advances in the long term that ultimately 13 

may brighten the economic prospects of PV–Electrolysis technologies. 14 

3.4. Pathways for PEC 15 

Even if all the advancements in component performance and cost of coupled PV–Electrolysis systems 16 

are achieved, the nature of their design will require significant cost reduction of the auxiliary components 17 

in order for them to be cost-competitive with other hydrogen production pathways. This is similar to the 18 

case of current PV plants where the cost of the PV does not dominate system cost. Such cost reductions 19 

might not even be possible given the inherent system architecture of coupled PV–Electrolysis systems. 20 

For this reason, PEC systems could provide an opportunity for this necessary cost reduction, given that 21 

their design can be completely different than PV–Electrolysis systems and therefore could lead to 22 

disruptive and significant cost reduction. Opening up the design space to a broader set of architectures can 23 

only have a positive impact on the potential to identify a cost-optimal option. One example is systems 24 

based on photocatalyst particles.4, 99, 100 However, to date, large-scale deployment of PEC-based solar-25 
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hydrogen technologies appears to be disadvantaged with respect to PV–Electrolysis approaches. PEC 1 

devices are significantly less developed, and their efficiencies are generally worse than for coupled PV–2 

Electrolysis devices.101 Moreover, they suffer from poor stability due to the requirement of light 3 

absorbing materials to be in contact or close proximity with often caustic electrolytes. Despite great 4 

efforts to develop protection strategies, this challenge remains largely unsolved and precludes deployment 5 

of PEC technologies.101 One important development challenge is the scale: for PEC devices to reach the 6 

same rate of H2 output as PV–Electrolysis technologies the projected electrochemically active H2 7 

production area would have to be at least ~50 times larger.5, 14 These large electrochemical areas would 8 

lead to significant challenges in product handling due to the low current density at the photoelectrode 9 

surface, but could result in higher operating efficiencies and less stringent catalytic requirements. 10 

Enabling large-scale efficient PEC devices requires advances in materials durability and the ability to 11 

control at the atomic-level reproducible material engineering across macroscopic areas.102 From a 12 

topological viewpoint, PEC devices are a subset of PV–Electrolysis devices where the electrocatalytic 13 

components are collocated with the light absorbers, and in fact can then be the same material. However, 14 

viable implementation pathways for PEC architectures will require the discovery of a PEC system that 15 

can perform solar water-splitting at a cost per kg of H2 that is equal to or lower than available PV–16 

Electrolysis systems, and as a consequence, PEC devices cannot be based on components that could also 17 

be used to fabricate a PV–Electrolysis device with equivalent or higher economic benefits. If this goal is 18 

not achieved, long-term solar-hydrogen technologies will tend toward PV–Electrolysis architectures. In a 19 

PV–Electrolysis configuration, each of the device components (e.g. light-absorber and water-splitting 20 

units) can be independently engineered so that the overall device is optimized, often with the aid of power 21 

electronics. Furthermore, there are significant fundamental advantages of decoupling the light-absorption 22 

and water-splitting functions in solar-hydrogen devices, which arise from increased flexibility in device 23 

design, optimization, and operation. For example, in a PEC configuration, the light absorbers will require 24 

innovative electrode designs to minimize shading due to optical absorption and scattering by the catalysts 25 
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and to facilitate gas evolution and mitigate occlusion of electrocatalytic sites, for example, due to evolved 1 

bubbles that can block mass transfer and light incidence.103 2 

It has been argued that economic benefits for PEC devices arise from the component integration 3 

aspects of light absorbers with electrolysis technologies, no peripheral electronics, the possibility of 4 

achieving higher efficiencies when the reactions take place at semiconductor–liquid junctions due to 5 

fewer ohmic losses, and the ease of forming a high-quality junction.101 While the first two potential 6 

advantages have not been demonstrated, there are several additional advances that could facilitate 7 

realizing them. Understanding at a fundamental level the interfacial interactions between light absorbers, 8 

electrocatalysts, and electrolytes might lead to improved solar-to-hydrogen efficiencies and better 9 

stability. Also, continuing to use chemical engineering principles to develop design rules and 10 

demonstrations of integrated devices and solar-hydrogen production plants would provide realistic 11 

prospects on the economic and environmental viability of PEC approaches.8, 26, 104-112 Furthermore, 12 

developing engineering solutions for the mass-production of promising PEC materials will be needed to 13 

achieve large-scale hydrogen production.113 Specifically, to the case of so-called photocatalyst particle-14 

based PEC devices, selective catalysis approaches will need to be developed to preferentially drive the 15 

water-splitting reaction,114, 115 while avoiding undesirable recombination reactions of the products.100, 116 16 

In addition, avoiding the formation of explosive hydrogen streams will require development of new 17 

separation materials and engineering schemes, including flow-cell designs that introduce improved 18 

mechanisms of gas separation and collection,104, 117 especially over large areas. 19 

 20 

4. Conclusions and perspectives 21 

 This article presented a broad perspective on pathways for the implementation of solar-hydrogen 22 

technologies. Several niche market opportunities were identified for solar hydrogen implementation on 23 

the short-term (≤ 10 years). In this time frame, it is anticipated that PV–Electrolysis systems will be the 24 
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only approach that could be implemented for such applications and still be economical. In the long term, 1 

solar-hydrogen technologies could be deployed more broadly in the energy markets. For that to happen, 2 

hydrogen produced via solar routes might need to be competitive against other energy carriers, such as 3 

fossil fuels. This is a daunting challenge, as the cost of energy from fossil sources has been historically 4 

low, even though extremely volatile, and it suggests that hydrogen production costs today would need to 5 

sum to less than $2/kg hydrogen.118 Despite the scale of the challenge, solar-hydrogen technologies 6 

provide a promising path to clean alternative fuels, and if externalities from fossil fuel utilization were 7 

internalized, the prospects for hydrogen fuel implementation would be greatly enhanced. Implementing 8 

PV–Electrolysis units manufactured using currently available commercial devices would lead to costs of 9 

hydrogen that exceed this value by at least a factor of three.7 Therefore, achieving that cost target with 10 

PV–electrolysis devices would require significant technology advances, cost reductions, and possibly also 11 

political/policy measures, such as a CO2 tax. Currently, one high-impact research focus is to advance 12 

electrolysis that is directly driven by PV installations. Under this mode of operation, electrolyzers will 13 

need to accommodate the natural intermittency of solar irradiation, in a stable way over lifetimes 14 

comparable to current PV technologies. This approach would result in significant capital cost reductions 15 

due to elimination of power electronics required in existing systems, and would increase overall 16 

efficiency; at the expense of a reduced capacity factor of the electrolyzer. Important long-term goals 17 

include the ability to operate PV–Electrolysis devices using inexpensive and efficient electrocatalysts. 18 

This will require the development of new catalytic materials that are stable under acidic electrolytes or 19 

anion-exchange membranes with significantly improved stability. PEC routes present even more 20 

significant challenges but have a significantly more disruptive potential. For a PEC system to be 21 

implemented, it would have to perform at least equally as well as available PV–Electrolysis alternative 22 

systems on economic grounds. Additionally, if the components used for the fabrication of such a PEC 23 

device could be utilized in a PV–Electrolysis arrangement, the integrated PEC architecture would need to 24 

be economically preferable to an alternative PV–Electrolysis arrangement and also show advantages in 25 

terms of sustainability even while it is less flexible in design, optimization, and operation. Understanding 26 

Page 36 of 44Energy & Environmental Science



36 
 

fundamental science aspects and developing reactor engineering design guidelines can help to achieve 1 

these goals.  2 

Even if the scientific community achieves all of the advances in PV–Electrolysis or PEC devices 3 

outlined in this report, it is uncertain whether solar-hydrogen technologies will be competitive in large-4 

scale energy markets in the long term. This will depend on a variety of factors that include, but are not 5 

limited to, system efficiencies, materials cost, balance-of-system costs, lifetime, externalities, social 6 

acceptance, and price of energy or hydrogen from alternative sources. The possible impact of some of 7 

these factors have been described in more detail in recent DOE reports.119 Economic policy mechanisms 8 

to account for the environmental effects of CO2 emissions can help facilitate this prospect. As a 9 

worldwide community, we should emphasize the development of CO2-free, sustainable energy 10 

technologies at comparable cost than today’s CO2-heavy alternatives. While scientific curiosity should 11 

never be hindered by economic considerations, cost can and should be considered at a stage when more 12 

applied research programs or policy decisions need to be designed. There has been tremendous progress 13 

in the fundamental understanding of solar-hydrogen systems in the past decades and the interdisciplinary 14 

knowledge accumulated can be implemented in new electrochemical processes, wastewater treatment, or 15 

applications for which the purity or sustainability of the hydrogen is more important than the price, with 16 

greater prospects for profitability, sustainability, and societal impact. The creativity of the scientific 17 

community and its ability to pivot into new promising application areas will have a decisive effect on the 18 

future societal and environmental impacts of solar-hydrogen technologies. 19 

  20 
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