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1 Introduction

Research on electrokinetic phenomena in liquid crystal nematics is currently addressing the use of electrostatic fields to induce fluid
flow, and to control the motion of suspended particles. The anisotropic physical properties of the liquid crystal molecules together with
long range orientational order in a nematic phase enable complex streaming flows in the bulk that can be controlled by manipulating
either the nematic director or the applied electric field. Similarly, the motion of suspended self propelling particles (“active matter”) in
a nematic matrix can be controlled and steered by designing appropriate nematic director configurations. In this paper, we advance a
correspondence between the formally reactive (non dissipative) stresses in these two distinct physical systems. Such a correspondence
between the driving stresses allows the extension, within certain limits, of results on transport in electrokinetic systems to those for self
propelled objects. Such a connection may allow the design of electrokinetic experiments that are analogs of particular active matter
configurations of interest, and hence easier to conduct and control in the laboratory.

The term electrokinetic phenomena refers collectively to induced response in fluid electrolytes under imposed electrostatic fields,
and to any resulting fluid flow or suspended particle motion. Microscale manipulation of colloidal particles and fluids by electric fields
is a broad area of active scientific research ranging from fundamental studies of non-equilibrium phenomena1–4 to the development of
practical devices for informational displays, portable diagnostics, sensing, delivery, and cell sorting5–7. Electrokinetic fluid transport is
important in a variety of engineering, soft matter, and biological systems. For example, electrokinetic flows have been used to create “lab
on a chip” micropumps, nanofluidic diodes, microfluidic field effect transistors, and e-ink devices such as book readers8–11. Our specific
focus is on electrokinetic phenomena in the particular case in which the fluid is a liquid crystal in the nematic phase. Although ionic
impurities are always present in liquid crystal media, their effect has been usually considered as parasitic, and thus to be minimized in
applications. However, the recent discovery of electrokinetic phenomena in nematic suspensions12 has opened a variety of avenues for
the creation and control of designer flows that rely on the anisotropy of the medium13.

We explore here the mapping between the electrokinetic problem just outlined, and that of the motion of self propelled particles
in a nematic matrix. In the latter case, the suspended particles are endowed with an assumed speed (of internal origin) along a
preferred direction. When such particles are immersed in a nematic matrix (a “living liquid crystal”), they affect, and are affected by,
the orientational order in the matrix. Particles move preferentially along the nematic direction in the matrix, both because of their
intrinsic velocity, and because of forces of elastic origin imparted by the nematic medium. This motion of active particles drives flow in
living liquid crystals with a body force fff ∼ ∇ · (cnnnnnn), where c is the concentration of active particles and nnn is the nematic director14. We
show that under certain conditions it is possible to map this body force of active origin to the electrokinetic problem discussed above,
and hence to use existing results concerning flow induced by nematic director patterns to the case of living liquid crystals. We develop
this correspondence below, and study specific configurations of interest in which the motion of active particles can be controlled by
imposed nematic director distributions. Although not directly addressed below, we mention that there are other physical systems in
which internal stresses due to configurational changes lead to the same body force fff (e.g., liquid crystal elastomers15). Some of our
results may be pertinent to that case as well.

The living liquid crystal experiments of interest consist of a small concentration of bacteria (such as Bacillus subtilis) suspended in
a thin layer of a lyotropic chromonic liquid crystal16,17. Both living liquid crystal and related electrokinetic experiments18, have been
conducted in thin cells with patterned, fixed, director orientations. We follow the analyses of Refs.16–18, and conduct a two dimensional
study as well19. There is no indication in either case of any flow structure along the thin dimension.

Our focus is on configurations with topological defects in the nematic director and the resulting dependence of the body forces
that arise from active stresses. We present our model equations in Sec. 2. In order to analytically compute specific flows, we assume
a Newtonian fluid viscosity. Although this is a reasonable first approximation in the electrokinetic case, little is known about the
dissipative contribution to the stress tensor in a living liquid crystal. We therefore follow earlier studies of active matter20, and more
specifically of living liquid crystals16,17, and assume simple Newtonian fluid viscosity. Our calculations for the electrokinetic model for
both a disclination dipole and a swirling vortex shown in Sec. 3 correctly capture the structure of the flows observed experimentally
in the living liquid crystal. However, as discussed further in Sec. 4, the assumption of Newtonian viscosity leads to difficulties in the
interpretation of the scale of some of the flows observed experimentally in living liquid crystals which we cannot resolve.

2 Liquid crystal electrokinetics in an oscillatory electric field

2.1 Governing equations for the electrokinetic system

We consider a thin film of a liquid crystalline fluid, electrically neutral, in its nematic phase. The fluid contains two ionic species of
charge ±e, where e is the elementary (positive) charge. It is subjected to an external electrostatic field, spatially uniform but oscillatory
in time, EEE0. The equations governing the evolution of the system include species mass conservation, momentum conservation in the
fluid, electrostatic equilibrium, and torque balance on the liquid crystal molecules21. Species mass conservation reads,

∂ck

∂ t
+∇ · (vvvck) = ∇ · (DDD ·∇ck− ckzkµµµ ·EEE) , (1)
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where ck,k = 1,2 is the concentration of species k, z1 = 1,z2 =−1, vvv is the barycentric velocity, which is equal to that of the liquid crystal
as the masses of the ions are negligible. The quantities DDD and µµµ are the mass diffusivity and ionic mobility tensors respectively, which
will be assumed to be anisotropic and depend on the local orientation of the liquid crystalline molecule. They are also assumed to obey
Einstein’s relation DDD = (kBT/e)µµµ. The mobility tensor µµµ is also assumed to be anisotropic, and to depend on the local orientation of
the nematic22 via µi j = µ⊥δi j +∆µ nin j, where δi j is the Kroenecker delta, and we define ∆µ = µ‖−µ⊥, where µ‖ and µ⊥ are the ionic
mobilities parallel and perpendicular to nnn, respectively. There is a great variety of possible electrokinetic effects in a nematic suspension
depending on physical parameters and frequency of the applied fields. We focus on parameter ranges suitable for experiments in
electroosmotic flow and electrophoretic motion as given, for example, in Peng, et al.18. In particular, we will focus on the limit of small
anisotropy ∆µ/µ⊥� 1 (∆µ/µ⊥ ≈ 0.4 in typical experiments18).

In the low frequency range of interest in electrokinetic experiments, the system is assumed to be in electrostatic equilibrium, so that
the total electrostatic field in the medium satisfies

ε0∇ · (εεε ·EEE) = ρ (2)

with charge density ρ = e(c1 − c2). Although the liquid crystal molecules are not charged, they are polarizable23. The nematic is
assumed to be a linear dielectric medium, with dielectric tensor εi j = ε⊥δi j +∆ε nin j, with ∆ε = ε‖ − ε⊥, where ε‖ and ε⊥ are the
dielectric constants parallel and perpendicular to nnn, respectively.

The liquid crystal is incompressible, ∇ · vvv = 0, and flow is overdamped (typical Reynolds number Re ∼ 10−5− 10−4). Momentum
balance then reduces to the balance between the incompressible viscous stresses and the body forces exerted by the ionic species and
the nematic polarization in a field24,25,

∇ ·TTT +ρEEE +(DDD′′′ ·∇)EEE = 0, (3)

where D′i = ε0εi jE j is the electric displacement field. The stress tensor is Ti j =−pδi j +T e
i j + T̃i j, where p is the hydrostatic pressure and

TTT eee is the elastic stress,

T e
i j =−

∂ f
∂ (∂ jnk)

∂nk

∂xi
(4)

with f denoting the Oseen-Frank elastic free energy density23. The viscous stress, T̃TT , is assumed to be given by the Leslie-Ericksen
model23. The last term on the left hand side of Eq. (3) can be written as,

(DDD′′′ ·∇)EEE = ∇

(
1
2

ε0ε⊥|EEE|2
)
+ ε0∆ε(nnn ·EEE)(nnn ·∇)EEE. (5)

The first term in Eq. (5) contributes only to a change in pressure and does not affect the flow velocity. Thus with a redefinition of the
pressure, Eq. (3) can be rewritten as,

∇ ·TTT +ρEEE + ε0∆ε(nnn ·EEE)(nnn ·∇)EEE = 0. (6)

Eq. (2) implies the charge density is linear in the electric field21; thus both driving terms in Eq. (6) are quadratic in the electric field25,
leading to persistent flow even in an AC field.

Angular momentum conservation defines the dynamics of the director. A torque balance argument yields23

nnn×hhh0−nnn×hhh′+ ε0∆ε(nnn ·EEE)(nnn×EEE) = 0, (7)

where

h0
i =−

∂ f
∂ni

+
∂

∂x j

∂ f
∂ (∂ jni)

, h′i = γ1Ni + γ2Ai jn j, (8)

with γ1 and γ2 being rotational viscosities, Ni = ṅi−Wi jn j, and Ai j =
1
2

(
∂v j
∂xi

+ ∂vi
∂x j

)
and Wi j =

1
2

(
∂vi
∂x j
− ∂v j

∂xi

)
the symmetric and antisym-

metric parts of the velocity gradient tensor. The first term in Eq. (7) corresponds to the elastic torque on the director field, the second
term corresponds to viscous torque, and the third term is the torque due to the anisotropy of nematic polarization.

2.2 Variable orientation electric field and effective active stress

We consider an imposed electric field that contains two orthogonal components of different frequency and phase, EEE0 = Exx̂xxcos(ωxt)+
Eyŷyycos(ωyt +ψ). This field reduces to a rotating field of constant magnitude when Ex = Ey, ωx = ωy, and ψ = π/2. We introduce
dimensionless variables as follows: We scale the electric field by Ex and time by ω−1

x ; thus in dimensionless units, the applied field
is EEE0 = x̂xxcos t + Aŷyycos(β t + ψ), where A = Ey/Ex and β = ωy/ωx. We scale spatial variables by system size L, and the total ionic
concentration C = c1 + c2 by its average c0. The scale of the charge density is21 ε0ε⊥Ex/L, while the scale of the flow velocity and
pressure are21 ε0ε⊥E2

x L/α4 and ε0ε⊥E2
x . The resulting set of dimensionless equations are,

Ω
∂C
∂ t

+U
∂ (Cvi)

∂xi
= γ

∂

∂xi

[
Di j

D⊥

∂C
∂x j

]
−Y 2 ∂

∂xi

[
ρ

µi j

µ⊥
E j

]
(9)
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Ω
∂ρ

∂ t
+U

∂ (ρvi)

∂xi
= γ

∂

∂xi

[
Di j

D⊥

∂ρ

∂x j

]
− ∂

∂xi

[
C

µi j

µ⊥
E j

]
(10)

∂

∂xi

[
εi j

ε⊥
E j

]
= ρ, (11)

∇ ·TTT +ρEEE +
∆ε

ε⊥
(nnn ·EEE)(nnn ·∇)EEE = 0, TTT =−pI+

1
Er

TTT e + T̃TT , (12)

nnn×hhh0−Er
(

nnn×hhh′′′− ∆ε

ε⊥
(nnn ·EEE)(nnn×EEE)

)
= 0, (13)

where Ω = ωxτρ is the driving frequency relative to the charging time τρ = ε0ε⊥/(ec0µ⊥), U = τρ ε0ε⊥E2
x /α4, γ = τρ D⊥/L2, where D⊥ is

the ionic diffusivity perpendicular to nnn, Y = ε0ε⊥Ex/(Lec0), and Er = ε0ε⊥E2
x L2/K is the Ericksen number, the ratio of viscous to elastic

torques, with K as the average value of the elastic constants in the Oseen-Frank elastic free energy. Note that γ can be also be written
as γ = λ 2

D/L2, where λD =
√

ε0ε⊥kBT/(e2c0) is the Debye length. Also, in the scaled variables Ni = (Ω/U)∂tni +v j∂ jni−Wi jn j. Eqs. (9) -
(13) represent the full set of governing equations in dimensionless form.

Consistent with typical electrokinetic experiments, we assume that fluid anisotropy is small, and we expand the governing equations
in powers of ∆µ/µ⊥ and ∆ε/ε⊥. At zeroth order in these two quantities, the equations correspond to a purely isotropic medium, with
C(0) = 1, ρ(0) = 0, vvv(0) = 0, and EEE(0) = EEE0. Using Eq. (11), Eqs. (9) and (10) at first order can be written as,

Ω
∂C(1)

∂ t
= γ∇

2C(1)−Y 2(EEE0 ·∇)ρ(1) (14)

Ω
∂ρ(1)

∂ t
= γ∇

2
ρ
(1)−ρ

(1)+

(
∆ε

ε⊥
− ∆µ

µ⊥

)
∇ · (nnn(nnn ·EEE0))− (EEE0 ·∇)C(1). (15)

Similarly, we assume a system in which Y 2/(4γ
√

1+Ω2)� 1, which can be shown implies C(1) and ρ(1) decouple21. Furthermore, since
the Debye length in electrokinetic systems is typically on the order of λD ∼ 10−6 m, while cell sizes are L ∼ 10−4 to 10−3 m, we find
γ ∼ 10−6 to 10−4. Thus the diffusion term in Eq. (15) is negligible far from nematic defect cores21. Therefore Eq. (10) can be written
to first order in the anisotropies as,

Ω
∂ρ

∂ t
+ρ =

(
∆ε

ε⊥
− ∆µ

µ⊥

)
∇ · (nnn(nnn ·EEE0)). (16)

The solution to Eq. (16) is given by,

ρ(rrr, t) =
(

∆ε

ε⊥
− ∆µ

µ⊥

)
cos(t−δ )√

1+Ω2
∇ · (nnnnx)+

(
∆ε

ε⊥
− ∆µ

µ⊥

)
cos(β t +ψ−δ2)√

1+(βΩ)2
A∇ · (nnnny), (17)

with tanδ = Ω and tanδ2 = βΩ.

Since the applied field EEE0 is spatially uniform, the body force on the fluid due to nematic polarization (the last term on the left
hand side of Eq. (12)) is second order in the anisotropies. To first order in ∆, the body force on the nematic fluid is therefore
fff ≈ ρEEE0 = ρ(rrr, t)(x̂xxcos t +Aŷyycos(β t +ψ)), or

fff =

(
∆ε

ε⊥
− ∆µ

µ⊥

)[
cos t cos(t−δ )√

1+Ω2
∇ · (nnnnxx̂xx)+

A2 cos(β t +ψ)cos(β t +ψ−δ2)√
1+(βΩ)2

∇ · (nnnnyŷyy)

+
Acos(β t +ψ)cos(t−δ )√

1+Ω2
∇ · (nnnnxŷyy)+

Acos t cos(β t +ψ−δ2)√
1+(βΩ)2

∇ · (nnnnyx̂xx)

]
(18)

We now define a time-averaged force, 〈 fff 〉= lim
T→∞

(1/T )
∫ T

0 fff dt. The time averages are performed using:

lim
T→∞

1
T

∫ T

0
cos(t−δ )cos(β t +ψ)dt =

{
1
2 cos(δ +ψ), |β |= 1

0, otherwise
(19)

lim
T→∞

1
T

∫ T

0
cos t cos(β t +ψ−δ2)dt =

{
1
2 cos(δ −ψ), |β |= 1

0, otherwise
(20)

Assume first that |β | 6= 1. Then the last two terms of Eq. (18) average to zero, and the average force is,

〈 fff 〉=
(

∆ε

ε⊥
− ∆µ

µ⊥

)[
∇ · (nnnnxx̂xx)
2(1+Ω2)

+
A2∇ · (nnnnyŷyy)
2(1+(βΩ)2)

]
(21)
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For the specific choice of A =
√

(1+(βΩ)2)/(1+Ω2), so that with

EEE0 = x̂xxcos t + ŷyy

√
1+(βΩ)2

1+Ω2 cos(β t +ψ), (22)

for arbitrary ψ and β 6= 1, Eq. (21) becomes,

〈 fff 〉=
(

∆ε

ε⊥
− ∆µ

µ⊥

)
∇ · (nnnnnn)

2(1+Ω2)
. (23)

Equation (23) has the same form as the driving force in active nematics when the concentration of swimmers is constant14,26. Thus
our analysis predicts active-like flows on average in electrokinetic systems driven by the field of Eq. (22). If β = 1, the force will not be
active-like unless the director is fixed in specific configurations27.

3 Results
To illustrate features of active-like motion that would take place in the liquid crystal electrokinetic analog, we numerically investigate
electrokinetic flows generated by the electric field of Eq. (22). The experimental configuration that we have in mind involves a thin
film (tens of microns in thickness) of a nematic liquid crystal with tangential anchoring on top and bottom surfaces (director parallel
to the surface). A photosensitive material is coated onto the plates bounding the film, which are then exposed to light that has been
polarized through a mask with nanoslits etched in the desired director pattern18,28. This exposure aligns the primary axes of photo
sensitive molecules with the desired pattern29. For sufficiently thin films, the photopatterned director field is largely constant, uniform
across the film. Lithographic surface patterning offers the opportunity of tailoring flow fields in nematics for specific applications, for
example, to engineer flows in microfluidic channels, or to effect controlled immersed particle motion or species separation. It is also
possible to design on demand director patterns which can be reconfigured dynamically during an experiment28. Such a configuration
has been used recently to control the motion of bacteria in a lyotropic liquid crystal16.

The governing equations are integrated numerically with the commercial software package COMSOL. The solutions were obtained
on a circular domain C0 with radius r0 = 1. Within C0 is a second circular domain C1 with radius r1 = 1/5, in which the mesh is more
finely resolved. C1 contains 109,196 triangular elements of linear size between 6.4× 10−6 and 1.8× 10−3, while C0 contains 12,790
elements with linear size between 1.6× 10−4 and 0.13. Additionally, C0 contains 384 quadrilateral elements to resolve the boundary
layer at r = r1. Equations (9) through (12) are iterated in time, while the director field nnn(rrr) is held fixed. The solution is obtained
with no flux boundary conditions for the concentrations, no slip boundary conditions for the velocity, and Dirichlet boundary conditions
Φ = −xcos(t)− yAcos(2t) for the electric potential, with A satisfying Eq. (22) above. The numerical solutions assume ∆ε/ε⊥ = 0
and ∆µ/µ⊥ = 0.4, consistent with recent electrokinetic experiments18. Further details of the numerical method have been discussed
elsewhere21,27. We present next the results for two director configurations which have been studied in living liquid crystal experiments:
a single fixed point defect, and a pair of point defects with opposite topological charge16.

Figure 1 shows the numerically computed average velocity for the electrokinetic model when the director pattern is given by single
(+1) defect of director field nnn(rrr) = (cosθ(rrr),sinθ(rrr)) with θ(r,φ) = φ −π/4 at the center of the computational domain. The angle φ is
the azimuth in polar coordinates. The constant phase −π/4 creates the vortex with swirling arms studied in experiments of living liquid
crystals16. Interestingly, the velocity field is not parallel to the local nematic, as noted in the experiments. Whereas this is surprising in
the context of a living liquid crystal in which bacteria are known to move parallel to the local director, it is not so for an electrokinetic
system. In the latter case, motion is due to the local body force that originates from charge separation, and does not in general follow
director lines. Instead, charge accumulates in regions in which the director is normal to the imposed electric field.

Using the results of Sec. 2, we compute the body force driving flow in a nematic with a director field comprising a single (+1) defect
θ(r,φ) = φ +α, where α is an arbitrary constant phase. Equation (23) becomes,

〈 fff 〉=
(

∆ε

ε⊥
− ∆µ

µ⊥

)
cos(2α)

2r(1+Ω2)
r̂rr+
(

∆ε

ε⊥
− ∆µ

µ⊥

)
sin(2α)

2r(1+Ω2)
φ̂φφ . (24)

The first term in Eq. (24) may be written as ∇g, where

g =

(
∆ε

ε⊥
− ∆µ

µ⊥

)
logr cos(2α)

2(1+Ω2)
,

and therefore this term can be included in the pressure field of the incompressible fluid. The second term in Eq. (24) also has a nonzero
curl and can be rewritten as, (

∆ε

ε⊥
− ∆µ

µ⊥

)
sin(2α)

2r(1+Ω2)
φ̂φφ = ∇

[(
∆ε

ε⊥
− ∆µ

µ⊥

)
φ sin(2α)

2(1+Ω2)

]
. (25)

However, if this term were included in the pressure, we would find that the pressure is not single valued, p(φ) 6= p(φ + 2π), which
is unphysical. Therefore the body force given by the second term Eq. (24), though irrotational, cannot be included in the pressure,
and must ultimately be balanced by a viscous force instead (this is in contrast with the criterion of Ref.26 according to which only the
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Fig. 1 Left: Average electrokinetic velocity corresponding to an imposed director field θ = φ −π/4, and a two frequency applied field with β = 2,ψ = 0,
obtained by numerically integrating Eqs. (9) through (12). Right: radial velocity profile from the figure compared with the analytic solution, Eq. (30).

irrotational component of the body force fff is responsible for any induced flow).
Equation (25) is the body force driving fluid flow in this vortex configuration, and is our main result. Its functional form determines

the symmetry, and radial and angular dependencies of the force exerted on the fluid. An analytic expression for the resulting velocity
field can be obtained by considering momentum balance in the fluid (in the Stokes flow approximation), and by assuming that the
viscous stress is Newtonian, T̃i j = ∂ jvi. Further, and in order to make contact with the analysis of Ref.17, we also include a linear
damping term into the balance equation,

−∇p′+∇
2vvv−ζ

2vvv+
(

∆ε

ε⊥
− ∆µ

µ⊥

)
sin(2α)

2r(1+Ω2)
φ̂φφ = 0, ∇ · vvv = 0, (26)

where

p′ = p−
(

∆ε

ε⊥
− ∆µ

µ⊥

)
logr cos(2α)

2(1+Ω2)
.

The damping term −ζ 2vvv, ζ = 2
√

3L/h, can be thought of as arising from depth-averaging the velocity profile, assuming a Poiseuille flow
in the z direction17,30. Here h is the cell thickness. While this is a reasonable approximation in the electrokinetic fluid in the confined
geometry, its validity is difficult to assess for the living liquid crystal case.

The solution to Eq. (26) in a disc of dimensionless radius 1, with no-slip boundary conditions is constant p′ and

vvv =
(

∆ε

ε⊥
− ∆µ

µ⊥

)
φ̂φφ sin(2α)

2ζ (1+Ω2)

[
1

rζ
−K1(rζ )+

[ζ K1(ζ )−1]
ζ I1(ζ )

I1(rζ )

]
, (27)

where I1,K1 are modified Bessel functions of the first and second kind, respectively. When rζ � 1 the flow is exponentially damped. In
the opposite limit,

vvv(rζ � 1)≈−1
4

(
∆ε

ε⊥
− ∆µ

µ⊥

)
φ̂φφ sin(2α)

1+Ω2 [r logr− rη(ζ )], (28)

where

η(ζ ) =
ζ K1(ζ )−1

ζ I1(ζ )
+ log

(
2
ζ

)
+

1
2
− γ,

with γ being Euler’s constant. In the special case in which ζ � 1, η(ζ )→ 0 and Eq. (28) reduces to,

vvv =−1
4

(
∆ε

ε⊥
− ∆µ

µ⊥

)
φ̂φφ sin(2α)r logr

1+Ω2 . (29)

In the specific case of α =−π/4, one finds,

vvv =
1
4

(
∆ε

ε⊥
− ∆µ

µ⊥

)
r logr
1+Ω2 φ̂φφ , (30)

Equation (30) is compared in Fig. 1 to a fully numerical solution of the governing equations (computed using the full Leslie-Ericksen
stress tensor). There is a noticeable difference in magnitude between the two solutions that is due to the approximations involved in the
analytic solution, Eq. (30). However, both solutions clearly exhibit an r logr dependence along φ̂φφ . This result is in agreement with the
velocity profile reported by Peng, et al16 for a living liquid crystal under the same fixed director configuration (Fig. 2D of that reference
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Fig. 2 Left: imposed director pattern comprising a (+1/2,-1/2) defect pair, as in the experiments of Ref. 16. Center: Numerically determined fluid velocity,
averaged over time. As is the case in the experiments, fluid flows from the (−1/2) defect (high splay) towards the (+1/2) defect (high bend) The velocity
is very small near the top and bottom of the domain, leading to numerical noise in the plotting of the directional arrows. Right: central region of the
velocity map magnified.

shows the experimentally determined azimuthal velocity profile).
We examine next a dipolar configuration comprising a (+1/2) and a (-1/2) defect pair. In the electrokinetic analog, the dipolar

nature of the configuration is expected to lead to nonzero average flow, and directed from the (-1/2) defect towards the (+1/2) defect.
Figure 2 shows our results for the average numerical electrokinetic velocity. This flow is also in agreement with is the experiments in
living liquid crystals16. In that case, it is interpreted as flow originating in regions of mixed splay-bend distortion from regions of high
splay to high bend.

4 Discussion and conclusions
Despite different underlying physical mechanisms, we find that the functional form of body forces in liquid crystal electrokinetic systems
correspond, on average, to those of living liquid crystals when the applied field has the form of Eq. (22). The driving force on an
element of volume in the active system is due to the self-propulsion of bacteria along ±nnn and the corresponding motion of the nematic
in the opposite direction due to Newton’s Third Law14. On the other hand, an element of volume in liquid crystal electrokinetics is
driven by the electrostatic force on that element of volume. The amount and sign of charge in an element of volume is given by the
anisotropy of the nematic medium. By applying a two component electric field with unequal frequencies and averaging over time, the
net electrostatic force is along ±nnn as well. The calculations shown for the electrokinetic system involve ranges of physical parameters
and field amplitudes and frequencies that correspond to existing experiments18. It remains to be verified whether considering ranges
of physical parameters that would more closely correspond to a living liquid crystal would require additional effects that have been
neglected here (higher order corrections in the liquid crystal anisotropic mobilities and permittivities, or frequency dependent terms21,
or inner solutions of the flow equations near the director singularities27,31).

An open question arises regarding the nature of the viscous forces in thin film living liquid crystals. The velocity profile reported by
Peng et al.16,32 assumes Newtonian viscosity in a two dimensional domain. This corresponds to the limit ζ � 1 as given in Eq. (30).
However, viscous damping due to velocity gradients along the thin direction would strongly suppress any flow when h� L (Eq. (27)).
Cell thicknesses in electrokinetic experiments are relatively large, on the order of 50-100 µm18. However, the cell thickness in living
liquid crystal experiments is on the order of 5µm, yet the swirling bacteria ensemble has its largest velocity around 35 µm16. This
seems inconsistent with the notion of no slip boundary conditions on the top and bottom cell boundaries and the resulting scaling of
damping forces on ζ . Further experiments seem necessary to elucidate this point.

The correspondence as derived above assumes uniform ionic and bacterial concentrations in electrokinetic and active systems,
respectively. While some active nematic systems exhibit near-uniform concentration26, there are other cases in which variations in
concentration are not negligible. In particular, the experiments of interest16 show significant variations in bacterial concentration; the
bacteria form an annulus in the swirling vortex configuration, while in the defect dipole the bacteria cluster at the (+1/2) defect and
avoid the (-1/2) defect. In the electrokinetic system, one must account for the nonlinear coupling between ρ and C in Eqs. (9) and (10)
in order to determine whether the average body force 〈ρEEE〉 is active-like when variations in C are not negligible.

Additionally, charge separation induces an electric field of first order in the anisotropies, which may lead to unique flows when
anisotropy is not small. Furthermore, the bacteria suspended in the nematic are typically several microns long, and thus cannot be
assumed to be point particles as the ions in electrokinetic systems are. Thus, unlike ions, the bacteria in living liquid crystals are
expected to distort the nematic orientation – an effect which is not captured by the electrokinetic analogy.
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Finally we note a few similar features between the evolution of ionic and bacterial concentrations in the two systems. We follow the
analysis of Genkin, et al.17 that introduced two concentrations c± that denote separate bacterial populations that swim with velocity vvv0

along the two possible directions parallel to the local director nnn. Each bacterial population satisfies the equation of diffusion-advection,
but can switch orientation over a reversal time scale τ,

∂c±
∂ t

+∇ · (±v0nnnc±+ vvvc±) = D∇
2c±−

c±− c∓
τ

. (31)

On the other hand, using Poisson’s equation and assuming ∆ε = 0, the conservation of ions in an electrokinetic system, Eq. (1), may be
written as,

∂ck

∂ t
+∇ · (zk∆µ(nnn ·EEE)nnnck + vvvck) = ∇ · (DDD ·∇ck)−

(
µ⊥eck

ε⊥ε0

)
zk(c1− c2)− zkµ⊥(EEE ·∇)ck (32)

The most significant physical difference between the bacterial concentrations c± and ionic concentrations ck is that the ionic species
ck are physically distinct and must be conserved, while only the total bacterial concentration c++ c− must be conserved. Nevertheless,
we find a number of similarities between Eqs. (31) and (32). The anisotropy of ionic mobility leads to ionic drift along nnn with velocity
∆µ(nnn ·EEE), similar to bacterial self-propulsion. The ionic charging time ε⊥ε0/(µ⊥eck) is analogous to the bacterial reversal time τ, though
the charging time is a function of local concentration ck. The last term on the right hand side of Eq. (32) is the only term without an
analogous term in Eq. (31). Thus we find that the equations of bacterial concentration have a similar form to the equations of ionic
concentration, though the ionic flux terms contain higher order nonlinearities than their bacterial analogs.

To summarize, we propose a connection between active stresses in living liquid crystals and average stresses in electrokinetic
configurations involving a nematic phase when driven by a two component oscillating field. While the physical mechanisms responsible
for local stresses are different, both cases result in a body force fff ∼ ∇ · (nnnnnn). We have analyzed two configurations in which topological
defects in the director configuration give rise to stresses, and have used them to illustrate the structure of the induced flow. We find
good agreement in flow symmetry and general dependence for both systems. We have also shown that irrotational components of the
body force fff can lead to flow. The connection proposed could prove useful in that experiments involving conventional nematics are
free of some of the complications inherent in handling active matter, including controlling the activity during the experiments. In this
respect, the study of electrokinetic flows may become a useful tool in studying synthetic configurations involving designer flows, later to
be verified directly on a living liquid crystal. Questions remain, however, about the nature of lateral damping in thin cells of living liquid
crystals. Experimental verification of the correspondence proposed here would shed light on the different contributions to observed
flows arising from either active or dissipative stresses.
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