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Abstract

Sustainable biofuels and bioproducts technologies are being developed by fermentation of 

sugars present and released from pretreated cellulosic biomass to lipids using oleaginous 

yeasts. Detailed analytical characterization of lipid content through cultivation under 

different scenarios not only is a bottleneck that slows down development of improved 

strains and processes, this process also creates significant chemical waste. Since lipids 

exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum, the use of 

multivariate linear regression of respective wave7lengths can be used for the prediction of 

intracellular lipid content present in the yeast biomass. We present data on the multivariate 

quantitative correlation of NIR spectra with measured lipid content in different oleaginous 

yeast strains. We present here the first demonstration of the rapid, non-destructive, lipid 

quantification on as little as 10 mg of yeast biomass in a 96-well format, preventing 

significant chemical pollution by applying a real-time monitoring process. We demonstrate 

a distinct correlation of lipid content with the accumulation of select fatty acids of the lipids 

for 5 different yeast species, among which, for S. cerevisiae and L. starkeyi, in-depth 

calibration curves were developed from 65 and 154 unique samples, respectively.  We 

demonstrate that NIR spectra can be used to accurately predict intracellular lipid content 

using multivariate linear regression analysis in a manner of minutes, avoiding the need for 

lengthy chemical analyses that are resource intensive. 

Keywords: Lipid-based biofuels, yeast, feedstocks, cell biomass, lipids, infrared 

spectroscopy, multivariate calibration, chemometrics
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Introduction

The depletion of fossil resources and concomitant increase in atmospheric CO2 

concentration has stimulated research and development towards the economic feasibility 

of sustainable and carbon neutral biofuels and bioproducts from biological feedstocks. The 

adoption of sustainable biobased fuels and products by society is a growing area of interest. 

Oleaginous yeast fermentation and optimization of single cell lipid accumulation is a 

critical area of research as an alternative to plant-based oils, with potentially much higher 

carbon conversion efficiencies. This growing area will benefit tremendously from the 

technology developed here.

The genetic engineering of oleaginous fungi for the production of lipid feedstocks 

for conversion to “drop-in” ready biofuels is hampered by the currently laborious and 

lengthy (often multiple days) methods for lipid content determination and often with 

considerable uncertainty in the measurements, when different methods are used.1–7 In 

addition, in some cases the traditional lipid analysis methods also require relatively large 

amounts of biomass (~0.5 g) and are thus not applicable for screening large culture 

collections or identifying improved strains out of thousands of potential candidates. In 

some literature, micro-scale lipid analysis methods have been developed to use very small 

quantities (2-10 mg) of biomass,8,9 however, even with those methods, the procedures still 

use lipid-extraction solvents and can make the rapid high-throughput screening of 100’s of 

samples difficult. Alternative methods include fluorescence tagging of lipid bodies in the 

cells with BODIPY, which then lends itself well for in vivo measurements of lipid 

accumulation,10 however, in our experience, fluorescence-based lipid measurements can 
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be difficult to develop as absolute quantification methods, mainly because of species-

specific effects of dye uptake and stability. 

As an alternative to the labor-intensive chemical analyses, infrared spectroscopy, a 

non-destructive and high throughput approach, has been shown to be useful for the 

simultaneous prediction of lipid, protein, and carbohydrate content in algal biomass.11 

Near-Infared (NIR) spectra are made up of dispersive overtones and combinations of 

molecular vibrations that give broad peaks from solid, opaque, and liquid samples requiring 

minimal preparation.12 Quantitative calibration models can be developed to accurately 

predict the concentration of specific biochemical components based on correlations 

between the NIR spectra and the known composition of a select sample set. Thus, with 

appropriate calibration models, rapid measurements can be made on the composition of 

new samples using only the spectra of the new samples.13,14

We have previously demonstrated the feasibility of NIR reflectance spectroscopy 

for quantitative determination of exogenously added and internally accumulated lipids in 

microalgal biomass.11,15 It was shown that accurate calibration models can be built based 

on NIR spectra solely correlated with increasing concentration of lipids indicating that 

lipids present within algal biomass have a sufficient and unique fingerprint in the NIR 

spectrum. An important additional finding was that NIR and mid-IR were able to 

distinguish between neutral and polar lipids (triglyceride vs phosphatidylcholine 

lipids).11,15,16 Further, the use of near and mid-IR on microalgal and oleaginous yeast 

biomass has demonstrated a relationship between changes in IR spectra with changes in 

the cells’ biochemistry based on calibration curves from either single wavenumbers or 
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multivariate regression of specific spectral ranges.17–19 In the case of microbial biomass, 

often the amount of material is not sufficient to use in existing, more traditional, 

spectroscopy configurations, sometimes requiring over 1 g of material. To allow for 

spectroscopy on much smaller biomass quantities (~10 mg), we developed a 96-well plate 

configuration for NIR spectroscopy for biomass from oleaginous yeasts. 

Of particular importance, the use of NIR for lipid content estimation eliminates the use of 

hazardous substances typically used in the quantification of internal microbial lipids. 

Typical methods for Soxhlet lipid or in-situ fatty acid methyl ester (FAME)3 extraction use 

substantial volumes of chloroform, methanol, hydrochloric acid, and hexane. This NIR 

technique and the reduced sample size necessary for accurate lipid content estimation 

vastly reduces the environmental impacts of microbial lipid-based biofuels research while 

allowing rapid lipid content estimation for immediate production improvements.

We selected the oleaginous yeasts Trichosporon oleaginosus, Lipomyces starkeyi, 

Rhodosporidium toruloides, Saccharomyces cerevisiae D5A20–25 and the oleaginous 

filamentous fungus Mucor circinelloides.26,27  From these 5 different species grown in both 

nitrogen replete and deplete conditions, we expect a sufficiently wide range of lipid 

accumulation from 5% to 65% lipids allowing for the calibration of our predictive lipid 

content model. In addition, the sample sets derived from these diverse species allow us to 

address the following questions arising from previous work and literature; can we discern 

the different yeast species based on the NIR spectra? Is the quality of the spectra and 

resulting prediction models from data collected in a 96-well plate format adequate for high-
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throughput lipid content measurement? How accurately can we predict the composition of 

new, independent samples? To our knowledge, this is the first report of the use of NIR for 

high-throughput quantification of lipid content in yeast biomass using a combined species 

prediction model with the inclusion of an independent validation test set of predicted lipid 

content. 

Materials and Methods

Yeast strains, media, and fermentation conditions

The yeasts T. oleaginosus ATCC 20509, L. starkeyi ATCC 12659 and NRRL Y-

11557, R. toruloides ATCC 17902, and S. cerevisiae D5A 24,25,28–30 were maintained in 

yeast peptone-dextrose (YPD) media (#Y1375, Sigma-Aldrich) at 30 oC and the fungus 

Mucor circinelloides ATCC1216b was maintained on potato dextrose agar (#70139, 

Sigma-Aldrich) at 28 ºC as described. 31 Seed cultures were grown at 30 ºC with shaking 

at 225 rpms in 100 ml of media in a 500 ml baffled flask. For lipid production, cultures 

were grown in 300 ml of yeast nitrogen base (YNB) media (#Y1251, Sigma-Aldrich) 

containing 5% glucose, glycerol, or xylose and 5 mM or 35 mM ammonium provided as 

(NH4)2SO4 in a 1 L baffled flask at 30 oC with shaking at 225 rpms in duplicate. Lipid 

production media was inoculated with washed cells from an overnight culture to an initial 

culture density measured as optical density at 600 nm (OD600) of 1. Due to extended lag 

phase and slow initial growth we typically encountered with L. starkeyi, seed cultures were 

allowed to grow for 2 days in YPD prior to inoculation in lipid accumulation medium. 

Media composition and C:N ratios for each lipid production growth experiments are 

provided as supplementary information (Supplemental Table 1). 
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For NIR to lipid content correlation experiments, at each time point, 40 ml of culture was 

harvested by centrifugation, washed with 50 ml water, and the washed pellet were frozen 

at -80 ºC for in-situ lipid content and NIR spectral analysis.

Fermentations for validation of the lipid content predictions in a corn stover hydrolyzate 

(presented in Figure 8)32,33 were performed in Sartorius BioStat Q-Plus fermentors 

(Bohemia, NY) at a 300 mL working volume using L. starkeyi (NRRL Y-11557). All of 

the fermentations were performed in batch mode using L. starkeyi taken from cell stock 

stored at -70 ºC. For the inoculum, the seed medium consisted of YP media (10 g/l yeast 

extract, 20 g/L peptone) supplemented with 50 g/l glucose at pH 5.2. We inoculated 4 mL 

of L. starkeyi concentrated cell stock into 250 mL of seed medium in a 500 mL shake flask. 

We incubated the culture at 30 ºC and 250 RPM agitation for 3 days. When the culture 

reached an optical density (OD600) of 9.2, the culture was then used to inoculate fermentors 

of 300 mL working volume at an initial OD600 of 0.9. The cells were concentrated and 

washed before inoculation into the fermentors. The fermentors contained filtered biomass 

sugars from either enzymatically hydrolyzed disc-refined low severity pretreated corn 

stover (F1 + F2), washed solids of deacetylated pretreated corn stover (F3 + F4), or 

deacetylated pretreated corn stover (F5 + F6), with the previously  described composition 

32,33,  along with pure sugar controls in YNB media (F7 + F8). All fermentors were 

supplemented with 1 g/L yeast extract and 2 g/L peptone and performed in duplicate.  The 

control fermentors were containing YNB media were also supplemented with 1 g/L yeast 

extract and 2 g/L peptone and contained 108 g/L total sugar (glucose and xylose) to match 

the level of total sugars in the hydrolysates. The fermentations were controlled at 30 ºC, 

pH 5.2 with 4N NaOH, 100 ccm airflow, and 25% partial pressure of oxygen (pO2) 
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controlled by agitation. Hamilton (Reno, NV) OxyFerm FDA 120 O2 sensors were used to 

measure pO2 saturation. Progress of the fermentations was monitored by measuring 

fermentable sugar concentration by HPLC and ammonium utilization by YSI 7100, as 

described before.28,31  The fermentors were run for 90 hours, with time point samples taken 

at different intervals during fermentation for rapid lipid content assessment with NIR 

spectroscopy in addition to whole cell total lipid analysis (FAME method described below).

Lipid analysis

The lipid content and composition in yeast and fungal biomass was determined 

using the current best methods selected. In brief, lipids were determined as total FAME 

content via a direct, whole biomass transesterification reaction as described before.3 The 

procedure consisted of dissolving 10 mg of lyophilized biomass sample in 0.2 mL of 

chloroform:methanol (2:1, v/v), and subsequent transesterification of the lipids in situ with 

0.3 mL of HCl:methanol (5%, w/v) for 1 h at 80 °C in the presence of 250 μg of tridecanoic 

acid (C13) methyl ester as an internal standard. The resulting FAMEs were extracted with 

hexane at room temperature for 1 h and analyzed by gas chromatography flame ionization 

detection (GC-FID) (Agilent 6890N; DB-WAX 30 m 0.25 mm i.d. and 0.25 μm film 

thickness; temperature program 70-300 °C over 23 min at 10 °C min-1). Data were 

normalized to the internal standard (C13) and expressed on a dry cell weight basis (% 

FAME DCW) throughout this work.

NIR spectroscopy and data analysis

NIR spectra were collected on ~10 mg freeze-dried biomass using an ASD LabSpec 

Pro (ASD inc., Boulder, CO, USA) adapted to a 96-well format. Spectra were collected in 

solid white white 96-well plates using an ASD LabSpec Pro spectrometer where empty 
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wells were used for collecting reference spectra (baselining). Spectra were transformed 

from reflectance to absorbance (ln(1/R)) prior to any mathematical and spectral 

transformations. 

All transformed NIR spectra were processed in R version 3.0.134 and statistical 

analyses were carried out using the following packages: “chemometrics” version 1.3.835, 

“signal” version 0.7-1 and “pls” version 2.3-0  along with functions present in base R.36,37 

Principal Component Analyses (PCA) were calculated using the singular value 

decomposition (SVD) algorithm. Partial Least Squares (PLS) regression analysis was used 

for quantitative correlation. For all models, PLS regression was performed using the 

NIPALS algorithm, using full, leave-one-out cross validation on a centered dataset. The 

optimum number of principal components used for the PLS regression is shown in the text 

accompanying the figures and was selected based on an apparent minimum in root mean 

squared error of the prediction (RMSEP) of the cross-validation of the models. In order to 

find the best calibration model, we investigated the effect of mathematical spectral 

pretreatment and spectral derivatives on the quality of the prediction model for NIR spectra 

including or excluding the visible region of the spectra (wavelengths 350 - 1100 nm). The 

algorithms we used were multiplicative scatter correction (MSC), standard normal variate 

(SNV) and Savitsky-Golay smoothing/derivatization of the spectra, as described 

before.11,15 

The data, including spectra, cultivation media and conditions, lipid content (% 

FAME DCW), and fatty acid profile, which shows the relationship between growth 

conditions, lipid content, and fatty acid profile are provided (Supplemental Table 1). 
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Results and Discussion

For the 5 fungal species, S. cerevisiae D5A, C. curvatus, M. circinelloides, L. starkeyi, and 

R. toruloides, we measured the lipid content and fatty acid profile over a range of different 

physiological conditions including those induced from different media types such as corn 

stover hydrolysate and defined media (YNB) containing a high (35 mM NH4) versus low 

(5 mM NH4) nitrogen concentration and those induced from the relatively un-controlled 

environment of shake flasks to that of highly controlled fermentors. A high versus low 

relative nitrogen concentration was required to induce lipid production as oleaginous yeasts 

are well known for accumulating high amounts of lipids during nitrogen stress.20,38 A total 

of 252 cell biomass samples were collected and analyzed for total lipid content (% FAME 

DCW) and lipid profile. The distribution of the lipid content for each species is shown in 

Figure 1. This dataset shows that the lipid concentration of these 289 samples spans a 

range of sufficient breadth (4 – 63% FAME DCW) necessary to build robust predictive 

models. 11,39,40

Profiling of fatty acids in oleaginous yeast species

In addition to the % FAME DCW, the lipid composition profiles (fatty acid 

profiles) were also collected from these 289 samples (Figure 2.A). Highly distinct lipid 

profiles were observed for each species with S. cerevisiae being the most different from 

the others. This is not surprising given that S. cerevisiae is not typically regarded as being 

oleaginous and was only recently found to accumulate greater than 20% lipids.24,30 

Principal component analysis (PCA) of fatty acid profiles was carried out to check for 

distinctions in the fatty acid profile that underpins species-specific lipid profiles (Figure 
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2.B). The distinct grouping observed points to distinct profiles for all 5 species, with the 

biggest differences observed for S. cerevisiae D5A, explaining 75% of the variation seen 

in the data. The compositional and spectral variation that is found in these samples shows 

a highly distinct distribution of lipids between the different organisms. Figure 2.C shows 

impact of individual fatty acids on the distinctions seen in the PCA plot, PC1 (75%) mainly 

driven by C16:1n7 (negative) followed by minor contributions of C16:0, C18:2 and 

C18:1n9 and along PC2 (18.4%) driven by C18:2 and minor negative contributions by 

C16:0.

Spectroscopy in 96-well plate configuration

In addition to the in-situ % FAME DCW data, we collected 4 replicate spectra from 

each sample in a 96-well plate with each well having ~ 10 mg of biomass. We found that 

high-quality spectra could be obtained in the 96-well plate format with a fiberoptic probe; 

however, a reduction of the absorbance of the 2300-2500 nm region (and concomitant 

increase in the spectral noise levels) was observed due to light absorption by the fiber-

optics. Visual differences in the biomass from the different strains are reflected in large 

spectral variation in the visible region as shown in Figure 3, where typical spectra of a 

high and low lipid content biomass sample for each of the 5 species are shown. The spectra 

illustrate significant inter-species differences in the visible region of the spectrum (350-

800 nm). When comparing the respective high and low-lipid spectra, it is clear that the 

same regions of the NIR spectrum are increasing with increased lipid content for all five 

species, with the largest changes found at 1215, 1725 and 2305 nm respectively. These 

observations are consistent with the spectral absorption bands associated with lipids found 

in the literature 41 and is supported by the major absorbance from a triglyceride standard.11 
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The characteristic absorption bands of lipids in the NIR spectrum are i) the first overtones 

of C-H stretching vibrations (1,600-1,900 nm), ii) the region of second overtones of C-H 

stretching vibrations (1,100-1,250 nm) and iii) two regions (2,000-2,350 nm and 1,350-

1,500 nm) which contain bands due to combinations of C-H stretching vibrations and other 

vibrational modes 41. These regions are shown to vary the most in the L. starkeyi samples, 

in particular the relative changes observed around 1215 nm, 1725 nm, and 2305 nm 

between the spectra corresponding to the low and high lipid content biomass (ranging from 

18.4 to 62.6% FAME DCW, Figure 3). The spectra from M. circinelloides appears to be 

distinct between the high and low lipid samples, however, the difference is mostly related 

to the offset in absolute absorbance between the spectra, rather than wavelength-specific 

variation and this difference would mostly be normalized after spectral pretreatment as 

described above.

 Principal component analysis of spectra

To investigate structure in the data set and identify the major variation contributions, we 

performed PCA on the spectra. Figure 4 shows the major spectral variation for the species 

investigated for both raw spectra and scatter-corrected spectra (standard normal variate, 

SNV). No distinct grouping by species was observed either in the raw or the pretreated 

spectra, supporting the potential for combining all spectra into one dataset for the potential 

cross-species prediction of lipid content. This indicates that the highly distinct fatty acid 

profiles do not necessarily translate into large spectral variation. It is likely that the similar 

chain lengths of the fatty acids measured (predominantly C16 and C18 fatty acids) also 

dominate the spectral absorbances.
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The contribution of the spectral variation after normalization (SNV) follows a different 

pattern, with PC2 indicating a higher contribution from L. starkeyi biomass, which, as the 

highest lipid content species, could indicate the influence of composition impacting the 

spectral fingerprints (by at least 23%, as measured by the variability explained by PC2). 

This may indicate an advantage of performing mathematical pretreatment prior to 

multivariate analysis of spectra, in particular when large spectral variation is present and 

could interfere with a species-agnostic prediction model. The effect of the visible region 

was not noticeable in that the principal component-based groupings observed were 

conserved with or without the visible region, indicating that the interspecies differences in 

the visible region of the spectra may not significantly influence the IR region.

Partial Least Square Regression

We used PLS multivariate regression analysis to develop quantitative predictive 

models of lipid content. For the purpose of demonstrating the quality of the predictions, we 

built general multiple-species models, as well as strain-specific prediction models. The 

quality of each of the three models is shown in Figure 5 showing predicted-versus-

measured plots, root mean squared error of the prediction (RMSEP) and the regression 

coefficients of the calibration and validation data for the lipid content of the combined 5-

species model (total of 252 unique samples, 489 spectra). These models in general needed 

three principal components to achieve the high quality (R2 >0.9) of model validation shown 

as the predicted versus measured plot of the leave-one-out full cross-validation (Figures 

5.A, 6.A, and 7.A).
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For the development of the prediction model presented here we have removed the 

visible region from the spectra specifically for building the prediction models (i.e. only 

using 1100 to 2500 nm) to avoid competing interference from pigments present in some 

yeasts 42. We left the noisy 2400-2500 nm region in the spectra to reduce the risk of cutting 

out any lipid-specific information from this region, since 2300 nm is one of the major lipid-

responsive wavelengths. In addition to spectral wavelength selection, we also explored 

mathematical transformation of NIR spectra prior to building partial least squares 

multivariate calibration models to help improve the predictions and subtract scatter and 

other spectral variations not related to the composition of the biomass. A prerequisite for 

the robustness of NIR models for predicting composition is that the range in compositional 

variability of the component of interest needs to be sufficiently large to allow for 

predictions across species and for regression algorithms to subtract the orthogonal variation 

from the spectra. With a limited concentration range of predicted components, the data set 

will likely not be equally distributed, the quality of the models will be reduced, and it will 

become more difficult to find a linear correlation in component concentrations. 18 A 

sufficient range for building calibration models depends on both the absolute range of 

values for a given constituent and on the precision of the primary measurements with the 

ratio of the constituent concentration range to the precision of the primary measurement 

being a better metric then either of these parameters alone.

Plots of the RMSEP relative to the number of components or latent variables used 

in the models are shown in Figures 5.B, 6.B, and 7.B and does not show a clear minimum, 

but a change in slope can be observed at around 3 components, which is what was used for 

the quantitative linear regressions. The effect of different spectral pretreatments, such as 
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trimming the spectra to only include the NIR region or mathematical pretreatment, standard 

normal variate (SNV), spectral smoothing, and Savitzky-Golay derivatization 43 to remove 

scatter due to different particle sizes and species-specific features is typically scored based 

on the RMSEP and R2 values 39 and the number of principal components needed to build 

the regression model. The use of fewer principal components typically gives more robust 

models since less noise is being included in the fitting algorithm. We performed multiple 

mathematical spectral pretreatments and found that an SNV correction where the sum 

squared deviation over the spectrum equals unity gives the best models thanks to the 

removal of the species specific spectral fingerprints. 

The quality of the models when selecting individual species improved significantly 

relative to the mixed species model, as indicated by the correlation coefficient of the 

predicted versus measured agreement; R2 = 0.904 for the mixed model, whereas the 

individual models for L. starkeyi and S. cerevisiae (D5a) have correlation coefficients of 

0.970 and 0.928 respectively (Figures 5-7). We observed the same lipid-specific spectral 

regions are driving the quantitative predictions as those shown in Figure 2 (1215 nm, 1725 

nm, and 2305 nm) (Figurse 5-7.C). The precision of the predictions with the combined 

model suffers relative to a single species prediction model with the addition of variable 

species (reflected in Figure 5.A) but can still achieve a prediction accuracy of ± 6% FAME 

DCW content for the validation model (root mean square error of prediction, RMSEP, 

Figure 5.B). For most applications of rapid high-throughput screening, this precision is 

adequate. For a more detailed screen for promising candidate organisms, a species-specific 

model may need to be developed. For the work presented here, for the species other than 

S. cerevisiae and L. starkeyi, the available samples and quantitative lipid data was not 
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sufficient to develop respective single-species prediction models. We did not include the 

preliminary models for the additional species because they do not represent the potential 

accuracy of models that could be built with more samples and a larger range of lipid 

content. 

Being able to rapidly assess the lipid content present in the biomass during an 

experiment or fermentation allows for the timely adjustment of conditions to further 

increase lipid content and can greatly help with developing improvements in fermentation 

technology or rapidly screen different substrates used for yeast fermentations. In a test of 

the accuracy and precision of the quantitative prediction models, we validated the 

individual L. starkeyi model by sampling during a controlled fermentation experiment. For 

this experiment, yeast biomass was grown in filtered liquors from different pretreatments 

of corn stover  and the lipid content of the yeast biomass was measured both directly as % 

FAME DCW and predicted using the L. starkeyi species-specific model Figure 6). The 

lipid content data illustrates small differences between the measured and predicted values 

(Figure 8). Of the 32 predicted values, 7 predicted measurements exceeded 10% relative 

percent difference with a maximum deviation from the measured values of 15% supporting 

the use of NIR screening as a rapid tool to track lipid accumulation in ongoing experiments. 

In addition, by testing our species-specific NIR lipid prediction model on a different strain 

of the same species grown on substrates other than substrates the model was based on, 

validates the use of NIR lipid prediction modeling for use as a strain and growth substrate 

agnostic method for rapidly measuring lipid content. 

Conclusions
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We demonstrated for the first time a fully quantitative correlation between NIR spectra and 

measured lipid content in fungal biomass. There are large influences of inter-species 

differences in the visible and NIR portions of the spectrum; however, spectral 

transformation functions could partly reduce this effect and aid with further multivariate 

analyses. Our work suggests that regression models can be used based on the measured 

lipid content found in fungal biomass. The 96-well, high-throughput, NIR approach 

presented here shows that we can obtain accurate independent predictions from a dataset 

consisting of 252 biomass samples and, together with the application of multiple linear 

regression analysis, allows for a much improved and increased throughput of lipid content 

analysis. A fully integrated high-throughput approach could involve cultivation of yeast in 

a 96-well plate format followed by quantitative NIR spectroscopic prediction of the 

composition. This technology was applied to the near real time monitoring of lipid-

producing yeast fermentations and shows a prediction accuracy that is adequate for rapid, 

non-destructive screening useful in fermentation optimization.

In conclusion, the methodology reported here will likely have wide general appeal across 

biofuels and biochemical research as a solvent-free, rapid, sustainable, green methodology 

for the accurate estimation of microbial lipids. Our approach is an innovative application 

of a currently well-developed technology to establish an environmentally friendly 

methodology applicable to research and development as well as having industrial 

applications for near real time monitoring of industrial microbial lipid production. In future 

development, an in situ measurement during cultivation could be adapted, while optimizing 

the spectroscopy to be applicable in high-moisture environments, and the feasibility 
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demonstration reported in this manuscript can become a great starting point for future 

work. 

Abbreviations

YPD, yeast peptone dextrose; YNB, yeast nitrogen base; OD, optical density; NIR, near-

infrared; PLS, partial least squares regression; RMSEP, root mean squared error of 

prediction; MSC, multiplicative scatter correction; SNV, standard normal variate; PCA, 

principal component analysis; FAME, fatty acid methyl ester; DCW, dry cell weight; GC-

FID, gas chromatography flame ionization detection
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Figure 1: Range and distribution of lipid content data (% FAME DCW) obtained for 5 species of yeast used 
for multivariate model calibration shown as a box-and-whisker plot. The median value of the data sets are 
shown as a solid horizontal black line, the interquartile range (IQR) is shown as a box around the median 

value, with the ‘whiskers’ indicating the values that fall within 1.5 IQREach point (open blue circles) 
represents individual measurements for S. cerevisiae (D5a); C. curvatus (ATCC 20509); M. circinelloides 

(ATCC 1216b); L. starkeyi (ATCC 12659); R. toruloides (ATCC 17902). 
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Figure 2: Summary of fatty acid profiles for 5  fungal species 5 species  (A-E) Illustration of fatty acid 
profiles for each species; (A) S. cerevisiae (D5a); (B) C. curvatus (ATCC 20509); (C) M. circinelloides (ATCC 
1216b); (D) R. toruloides (ATCC 17902); (E) L. starkeyi (ATCC 12659); at two lipid accumulation levels (low 

and high, black and grey respectively, shown as % FAME DCW) illustrating fatty acid chain length 
rearrangement with lipid content increases. (F) Distribution and grouping of sample sets in a principal 

component analysis (PCA) based on each species fatty acid profile illustrating dominant features in the fatty 
acid profile specific for each species. Grouping along component 1 and component 2 driven by the fatty 

acids profile as shown in the loadings plot (G-H). 
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Figure 3: Overlay of spectra of high (solid line) and low (dashed line) lipid containing samples for 5 species 
(A-E); S. cerevisiae (D5a); L. starkeyi (ATCC 12659), M. circinelloides (ATCC 1216b); R. toruloides (ATCC 

17902); C. curvatus (ATCC 20509), collected in a 96-well plate format. The spectra were normalized prior to 
plotting using the multiplicative scatter correction (MSC) algorithm. Selected lipid-responsive wavelengths in 

the spectra are highlighted that correspond to the main lipid overtones at, 1215 nm, 1725 nm, and 2305 
nm. 
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Figure 4: Analysis of variability of the spectra relating to the different species and impact of spectral 
normalization algorithms. Principal component analysis of 96-well plate collected full Vis-NIR spectra, 

colored by species, before (A-C) and after (B-D) spectral normalization and using the full (Vis-NIR) (A-B) or 
truncated (only NIR region, 1100-2500 nm) spectra (C-D) 
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Figure 5: Quantitative prediction of lipid content using combined species model. Partial least squares 
modeling results using 3 principal components of lipid content for the entire complete data set (489 spectra 

from 5 species). Results are shown as; (A), predicted vs. measured  plot showing the cross validation 
correlation for lipid content; (B), root mean squared error of the prediction (RMEP) plot, (C) regression 

coefficients plot. Spectra were smoothed and normalized using a standard normal variate correction (SNV) 
prior to modeling. Model quality: 3 principal components, R2 = 0.904 and RMECV = 5.23 % FAME DCW. 
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Figure 6: Quantitative prediction of lipid content using only L. starkeyi (ATCC 12659)  model. Partial least 
squares modeling results using 3 principal components for lipid content of L. starkeyi samples (289 spectra 

on 154 samples). Results are shown as; (A), predicted vs. measured  showing the cross validation 
correlation for lipid content; (B), root mean squared error of the prediction (RMEP, calculated as 2.63%; (C), 
regression coefficients. Spectra were smoothed and normalized using a standard normal variate correction 

(SNV) prior to modeling. 
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Figure 7: Quantitative prediction of lipid content using only S. cerevisiae model. Partial least squares 
 modeling results using 3 principal components of lipid content for only S. cerevisiae (D5a) samples (134 

spectra). Results are shown as; (A), predicted vs. measured showing the cross validation correlation for lipid 
content; (B), root mean squared error of the prediction (RMEP); (C), regression coefficients. Spectra were 

smoothed and normalized using a standard normal variate correction (SNV) prior to modeling. 
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Figure 8: Validation of NIR lipid content prediction model for L. starkeyi fermentation. Pretreated corn stover 
liquors were fermented with L. starkeyi NRRL Y-11557 and lipid content was measured directly as % FAME 

DCW or predicted with the L. starkeyi species-specific NIR model (black and grey symbols respectively) over 
80 hr of fermentation. The designation F1-F8 represent different media formulations; filtered liquor from 
enzymatically hydrolyzed material from either disc-refined low severity pretreated corn stover (F1 + F2), 

washed solids of deacetylated pretreated corn stover (F3 + F4), or deacetylated pretreated corn stover (F5 
+ F6), pure sugar controls (F7 + F8). 
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