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Towards wearable fuel cell sensor for transdermal monitoring of 

isoflurane -an anesthetic

Ahmed Hasnain Jalal,a� Yogeswaran Umasankar,b� Md. Ashfaq Ahmed,c Ernesto A. Pretto Jr.d and 

Shekhar Bhansalia* 

A miniaturized wearable platform with a micro-fuel cell sensor has 

been demonstrated for determination of isoflurane vapors from 

sweat. Principal component regression (PCR) was used to separate 

signals generated with changing isoflurane concentrations. The 

sensor was able to detect isoflurane vapor down to 40 ppm with a 

sensitivity of 0.038 nA ppm-1 cm-2 allowing for its use for 

physiological measurements. The results from PCR provided 

significant improvement in sensor calibration with ~81% 

minimization in deviation compared to linear calibration model. 

Our results demonstrate successful integration of a statistical 

technique (PCR model) and an analytical technique (fuel cell sensor) 

for physiologically relevant measurements of isoflurane- a standard 

anesthetic in surgical practices.

1. Introduction

Surgical procedures require 0.5 to 2% of an anesthetic agent with 

oxygen, air or nitrous oxide delivered through inhalation as an 

analgesic and to maintain sedation [1]. Isoflurane is one such 

anesthetic agent used commonly during surgery. An appropriate 

dose of the isoflurane is critical, a small variation in concentration 

can cause either an overdose or inadequate level of anesthesia 

resulting in awareness during surgery [2, 3]. Modern machines 

equipped with vaporizers and infrared spectroscopy (IR) sensors 

deliver the required dose of the isoflurane to maintain anesthesia 

throughout the surgery [4, 5]. In these complex machines, both 

dispersive and nondispersive IR analyzers are being used to monitor 

the inhaled and exhaled isoflurane concentrations [5-8]. Examples of 

IR analyzers include ILCA2 from Drager, MIRAN SapphIRe model 205 

BXL, photoacoustic transducer system from Brüel and Kjær 1302, and 

Capnomac from Dadex. These analyzers generally need a fully 

equipped hospital ambient environment to operate. They are 

expensive and most tend to encounter challenges when used in non-

ideal environments [9]. Such machines find limited deployment for 

critical care in low resource environments due to issues of size, cost 

and complexity [9, 10], resulting in uncontrolled or poorly controlled 

administration of the anesthetic that in some instances results in 

negative health outcomes. An easy to use, low-cost anesthesia 

sensor has the potential to improve patient safety during surgical 

procedures in low-resource settings, improving both patient and 

health outcomes.

       This work introduces a miniature, wearable, micro-fuel cell 

sensor capable of monitoring transdermal isoflurane. These micro-

fuel cell sensors are the simplest form of the device composed of 

proton exchange membrane (PEM) sandwiched between metal 

electrodes. These sensors operate by simply generating current with 

respect to isoflurane concentration. However, existing IR analyzers 

has many optical components along with the sensor needing precise 

optical alignments. Unlike these fragile IR analyzers, micro-fuel cells 

are robust, small and can be deployed for field use at various 

environmental conditions. The data from the micro-fuel cell sensor 

can also be used to regulate vaporizers and ensure a controlled 

administration of an anesthetic like isoflurane for medical 

procedures.

Isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl 

ether) is a non-flammable volatile organic compound that 

undergoes minimal metabolism when ingested by humans and 

is excreted through breath (end-tidal), or through sensible and 

insensible perspiration [11, 12]. With minimal metabolism, the 

excreted concentrations of isoflurane are directly proportional 
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to the blood isoflurane concentrations [13]. Measuring 

transdermal isoflurane vapor emission and establishing its 

correlation with systemic isoflurane concentrations enables 

measurement of anesthesia levels in patients. In this study, the 

feasibility of measuring transdermal isoflurane concentrations 

in physiological range using the micro-fuel cell sensor has been 

investigated.

Under-resourced locations in many instances may have 

poor climate-controlled facilities. These changes in the 

environment negatively impact sophisticated instruments that 

are designed to operate in a controlled environmental range 

leading to significant variations in measured output over time. 

These multivariate environments disrupt chemical or 

biochemical sensor signals due to various intrinsic (e.g. 

hysteresis, fouling effect) and extrinsic ambient parameters 

(e.g. humidity, temperature, and other interferant compounds) 

[14, 15]. Thus, deviations in signals from the standard linear 

regression model tend to provide inaccurate readings over time 

during clinical measurements. Multivariate calibration 

methods, such as principal component regression (PCR) can 

address this limitation through reduction of redundancy of 

acquired data, leading to improved calibration [16]. PCR is a 

three-step calibration method, wherein the first step, 

redundancy is eliminated by principal component analysis 

(PCA), then the measured variable is transformed into latent 

variables, and lastly, a multiple linear regression step is 

performed between the scores of covariates obtained in PCA. 

This establishes an improved relationship between response 

variables and predictor variables. The other multivariate 

analyses such as PCA, discriminant function analysis (DFA) and 

linear discriminant analysis (LDA) can display only the training 

data in the subspace, but PCR can highly correlate larger data 

sets and improves fitting between known and unknown data. In 

this work, PCR was implemented to significantly improve the 

calibration of the micro-fuel cell sensor compared to the linear 

regression method.

2. Experimental

2.1. Materials and methods

The electrodes of a micro-fuel cell were nickel plated 

microperforated stainless-steel sheets (thickness 200 µm, pore 

size 180 µm) [17]. Nafion N424 from Sigma Aldrich was used as 

a proton exchange membrane (PEM). Nickel sulphamate, nickel 

chloride anhydrous, boric acid, 95% sulfuric acid and 37% 

hydrochloric acid were purchased from Sigma-Aldrich. Lead and 

nickel sheets were purchased from McMaster-Carr for 

electroplating. Acetone, ethanol, and propanol (95.27%) were 

purchased from Fisher Scientific Inc. and acetonitrile (99.8%) 

was purchased from J. T. Baker. Isoflurane was purchased from 

Baxter healthcare corporation and Innovative Research. All 

other used chemicals were of analytical grade. Human sweat 

samples were collected following Institutional Ethical 

Guidelines (IRB-17-0300-AM01). Electrodeposition of nickel on 

stainless-steel sheets was achieved by Wood�s Nickel Strike 

along with Watt�s deposition method [18, 19]. A hydraulic hot 

press (model 2100 from PHI), was used to prepare the 

membrane electrolyte assembly (MEA) of the fuel cell sensor. 

Potentiostat CHI 1230B having MC470 was used for standard 

electrochemical testing. MATLAB was used to build a statistical 

model.

2.2 Micro-fuel cell sensor fabrication and calibration setup

The designed dimensions of the working electrode (WE), the 

counter electrode (CE) were 1 cm x 1 cm, and the reference 

electrode (RE) of the fuel cell sensor was 1 cm x 0.02 cm as 

shown in Figure 1a. Nafion (2 cm x 1 cm) was sandwiched 

between electrodes to form the MEA. The overall area of the CE 

was designed to be substantially larger than the WE and RE. The 

area of the RE was designed to contain the smallest surface area 

and it was placed at a specific distance from CE on the same side 

of the membrane. This distance (L= 0.55 cm) was kept three 

times >B.Q > 3) greater than membrane thickness >Q = 0.02 cm) 

to avoid the asymmetrical current distribution and potential 

variation on WE due to edging effect [20]. The sandwiched 

structure of MEA was achieved by hot pressing the MEA at 80 

S� and 2500 psi for 10 min by a hydraulic press.

A chamber was used for sensor calibration, with the cathode 

exposed to atmospheric oxygen through a 1.5 cm x 1 cm 

opening. The WE was exposed to the atmosphere in the 

chamber through a 0.2 cm2 window. During measurements, the 

chamber was filled with desired concentrations of isoflurane 

vapor. Specific vapor concentrations were attained by having 

concentrations of isoflurane solution at the bottom of the 

Figure 1. (a) Schematic of the micro-fuel cell sensor, (b) linear regression model and (c) PCR model of the sensor for isoflurane vapor.
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chamber and allowing vapor to equilibrate to the solution 

concentrations. In this setup, the space between isoflurane 

solution and WE was maintained constant at the height of 0.2 

cm, with total headspace volume of 0.4 cm3. The isoflurane 

vapor concentrations in the headspace were controlled with the 

help of Henry�s formula at constant temperature [21]. At 25 S�! 

the partition coefficient of isoflurane is 1.18 [22]. Various 

concentrations of isoflurane vapor 40 ppm, 80 ppm, 160 ppm, 

320 ppm, and 775 ppm were exposed to WE and the 

corresponding signals were measured at the potential of -0.3V 

for sensor calibration. The same setup was used for isoflurane 

determination in human sweat.

2.3. Reaction mechanism

Oxidation and reduction reactions in fuel cell take place in 

anode and cathode respectively. Oxidative addition of 

isoflurane occurs in anode instead of direct isoflurane oxidation 

(Eq. 1 to 3), where R-Cl is the isoflurane.

Ni + R-Cl V RNi(II)- + Cl- (1)

Cl2 + H2O V HCl + HClO (2)

4HCl + 2Ni + 12H2O V 2NiCl2.6H2O + 4H+ + 4e- (3)

O2 + 4H+ + 4e- V 2H2O (4)

The byproduct from the oxidative addition reaction (HCl in 

Eq. 3) gets oxidized on the anode and the electrons are 

transferred to the electrode. On cathode, the atmospheric 

oxygen gets reduced (Eq. 4) by getting those electrons from 

anode generating faradic current proportional to the 

concentration of isoflurane. In this process, H+ ions flow from 

anode to cathode (Figure 1a). The generated faradic current 

was detected by the amperometric method.

3. Results and Discussion

3.1. Sensor signal overlaps in linear regression model

The linear response of the micro-fuel cell sensor was 

investigated with isoflurane vapor for five different 

concentrations, as mentioned earlier. The resulting data set had 

amperometric signals of these isoflurane vapor concentrations 

(Sec 2.2) at ambient temperature and humidity resulting in 8032 

data points. Fitting the data in the linear regression model 

showed an increase in sensor signal with increasing isoflurane 

vapor concentration (Figure 1b) and had the sensitivity and 

coefficient of determination (R2) value of 38 pA ppm-1 cm-2 and 

86.05%, respectively. This relationship between the current 

response of the sensor with concentration as a variable had 

significant signal overlap between concentrations at 

nanoamperes. As an example, there was an overlap of 2.05 nA 

between 80 and 160 ppm, and 2.24 nA between 160 and 320 

ppm. These signal overlaps lead to unreliable readings and poor 

selectivity between narrow ppm ranges especially as the 

sensitivity of the sensor is lower than the overlapping 

magnitude. The relative standard deviation (RSD) values for 

each concentration of 5.84, 5.77, 6.09, 6.76, and 10.62% also 

reveal significant deviations. The plausible causes of this signal 

overlap include (i) deviation of baseline over time, due to 

change in H+ ion counts in PEM, (ii) change in reaction rate of 

the electrodes due to transient fouling, (iii) slight variation in the 

ambient environment, such as humidity interference [23]. It 

would be impossible to control each variable of the 

measurement environment, so a linear regression model is not 

suitable for accurate isoflurane measurements. PCR model was 

investigated for the same dataset to improve the sensor 

calibration.

3.2. Sensor calibration for isoflurane vapor determination

PCR considers regressing outcomes of a set of covariates, which 

improves the accuracy compared to the linear regression 

model. PCR was executed by considering all the data points 

from the matrix of D8032x5, where the number of sample 

concentrations were 5 and the data points were 8032. In these 

calculations, the matrix was expressed in the form given in Eq. 

5 [24].

    (5)�=��

where R and C are the scores and loading matrix, 

respectively. The eigenvalues (d), eigenvectors (V) and 

covariance matrix (Z) were directly related with the data matrix, 

D. To minimize the residual error, the eigenvectors were 

derived by subtracting d and V from Z. This iteration process was 

continued for eigenvectors till the eigenvalue reached below 

0.001 of the maximum one. Eq. 7 was modified by employing a 

transformation matrix as R and C matrices, which do not exhibit 

any chemical and physical connotation. This transformation was 

executed as follows [24],

  (6)�= (��)(�
1�)

T is a square matrix having with a dimension n and n is the 

number of significant factors which determined by PCR. This 

transformation matrix can be expressed as below,

   (7)�=  |xcos (�) 
ysin (�)
zsin (�) wcos (�) |

Values of the coefficient x, y, z, and w were unity when this 

matrix was orthogonal, else it was determined considering the 

information of the real factors. In this work, x = -2.5, y = 2, z = 5, 

w = 1, and Q = 351°. For regression fitting, loading fractions C1 

and 1-C1 were determined empirically from PCR and fitted with 

respect to concentration of isoflurane as shown in Figure 1c.

As all the experimental parameters are constant, the sum of the 

loading fractions was unity (1). Therefore, the regression plot 

was obtained from the plot of loading fraction (1-C1) vs. 

concentration (y), where the R2 value was obtained 99.77%. A 

polynomial function was fitted with the regression curve using 

MATLAB following the equation below.

       (8)� =  �(1
 �1)2 + �(1
 �1) + �

The values of coefficient +, ,, and - were 1.789x104, -

2.329x104, and 7.626x103, respectively. An unknown 
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concentration can be determined by fitting the loading fraction 

(1-C1) in this regression model.

3.3. Miniaturized potentiostat for data collection

A wearable platform integrated with miniaturized potentiostat 

and micro-fuel cell sensor was built to measure transdermal 

isoflurane. A customized printed circuit board (PCB in Figure 2a) 

was designed to accommodate the low-cost potentiostat 

(LMP91000) with a low power data processing microcontroller 

nRF51822. This nRF5 series has a 32-bit ARM® Cortex� M0 

central processing unit (CPU) with 256kB/128kB flash + 

32kB/16kB random access memory (RAM). The embedded 

2.4GHz transceiver with nRF5 series support BLE for wireless 

data transmission and smartphone readout. Amperometry, an 

electrochemical measurement technique, was packaged in the 

wearable form factor for isoflurane determination (Figure 2b 

and c). The steady-state amperometric current generated 

across WE and CE was measured by programming the 

potentiostat to bias -0.3 V across WE and RE. In this process, the 

signal from LMP91000 was converted into potential before 

feeding it to the internal analog-to-digital converter (ADC) and 

then to the microcontroller, where the data was processed in 

PCR model prior to data storage and display.

 The power consumption of this device depended on: i. run 

time current drawn from the CPU, ii. BLE transmission and 

communication, and iii. amperometric operation. Since most of 

these operations only occur for a short period, the modules that 

run them were pushed to a lower power state, thereby reducing 

its consumption. The remaining time was utilized by the CPU to 

run other peripheral operations consuming ~ 2.6 µA at lower 

power. LMP91000, while in amperometric mode, consumed 

~10 µA. It consumed an average current of ~7.95 µA over time 

with a total uptime of 39%. Including ~5 µA for cell conditioning, 

the current for this sensor was calculated as 9.75 µA with the 

LMP in �stand mode� for 60% of the time. While the nRF51822 

ran for ~5 seconds at a lower power from the CPU, the total 

power consumption was ~56 µW. Using a 3.7 V and 365 mAh Li-

ion battery the operational lifetime of the system was ~ 5 days.

3.4. Measurement of isoflurane vapor from perspiration

In humans, a minimal percentage of isoflurane excretes through 

the skin by sensible and insensible perspiration [8]. This study 

was designed to determine the feasibility of the fuel cell sensor 

to measure the isoflurane vapor released from the sweat. The 

headspace of human sweat samples with various isoflurane 

concentrations was measured and compared with theoretical 

values to validate the sensor readings. Four different sweat 

solutions with isoflurane concentrations v/v%: 0.01%, 0.013%, 

0.02%, and 0.038% respectively were tested. The theoretical 

isoflurane vapor concentrations were derived through Henry�s 

formula [18]. The readings from the sensor were fitted with 

both linear regression and PCR models (Figure 3) to identify 

deviations from the theoretical values. Due to overlapping 

signals in the linear regression model, there was a significant 

deviation from theoretical values (~67.72%) resulting in low 

resolution and inaccuracy (Table 1). The data from the PCR 

model improved compared to linear regression with a minimal 

deviation of about 12.74%. This ~81% improvement can be 

attributed to the consideration of covariates in the PCR model 

compared to linear regression. A student t-test was performed 

to validate the isoflurane results from the above two different 

calibration methods. The theoretical concentrations were used 

as reference values for the test. The results showed p (T<=t) 

values for linear regression and PCR as 0.0002 (< 0.05) and 0.65 

(> 0.05), respectively. These p-values showed the null 

Figure 2. (a) Integrated PCB board and its components, (b) components of wearable 

watch and (c) wearable watch-prototype for isoflurane detection.
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Figure 3. Isoflurane vapor signal from sweat samples fitted in regression models (a) linear regression and (b) PCR.
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hypothesis was rejected in the case of linear regression and was 

not rejected in the case of PCR. This indicated that the 

difference in results between linear regression and theoretical 

calculation was statistically significant, and for PCR, the 

difference was not statistically significant. Hence, the PCR 

results correlate with theoretical concentrations of isoflurane. 

Selectivity of the micro-fuel cell sensor for isoflurane has been 

investigated by the amperometric method in presence of major 

organic volatile compounds (VOC) generated from the skin. The 

VOCs include ethanol, acetone, propanol, and acetonitrile. Each 

of these compounds was exposed to the sensor during 

isoflurane measurements after the sensor reached steady-

state. The VOC concentrations tested were the highest 

concentrations found in healthy subjects. The results show that 

there was a change in isoflurane signal with about 4.65%, 

4.59%, 0.22% and 0.66% deviation in presence of ethanol, 

acetone, propanol, and acetonitrile respectively (Figure 4). The 

interference from the mixture of all four VOCs showed only 

about 2.4% of deviation in the signal. All these above results 

show the micro-fuel cell sensor along with PCR fitting can be 

used to determine the isoflurane vapor concentrations from the 

sweat. The advantages of micro-fuel cell sensor compared to 

the existing devices for isoflurane measurements have been 

discussed in Table 2. Even though the spectroscopic methods 

can detect lower concentrations and wider range, there is no 

known wearable transdermal sensor available for isoflurane 

measurements which is small enough and can detect isoflurane 

from skin perspiration. 

Table 1. Comparison of linear regression with PCR model for isoflurane detection from sweat.

Sample Theoretical (ppm) Linear regression (ppm) Deviation (%) PCR (ppm) Deviation 

(%)

S1 112.00 216.91 93.67 141.59 26.42

S2 144.00 258.24 79.33 147.36 02.33

S3 216.00 338.4 56.66 192.63 10.82

S4 350.00 480.24 37.21 310.08 11.41

Table 2. Comparison of different sensing techniques for isoflurane detection.

Methods Source Lowest concentration Advantage Limitations Reference

Gas chromatography 

with flame-ionization 

detector (FID)

Blood < 0.1 ppm Accurate, real-time 

and continuous 

monitoring

Not portable 25

Photoacoustic IR 

spectrometer 

Breath 0.01 ppm with an 

accuracy of ~2% 

Accurate, real-time 

and continuous 

monitoring

Not portable 7

Infrared 

spectrophotometer 

(MIRAN 205B Series 

SapphIRe-XL)

Breath 0.05 ppm (with an 

accuracy of U.^ 10%)

Portable, Moderate 

accuracy, real-time 

and continuous 

monitoring

Not wearable 26

Isoflurane 

monitoring badge

Air < 2 ppm Wearable Used for occupational 

exposure. Accuracy 

requirements at both 

8-hour TWA,a required 

additional time and 

data analyst

27

Micro-fuel cell 

sensor

Skin 

perspiration

40 ppm Wearable, real-time, 

continuous 

monitoring, covers 

physiological range

Moderate accuracy, 5% 

interference from 

other VOCs

This work

aTime-Weighted Average (TWA)

Figure 4. Amperometric signal of the micro-fuel cell sensor for isoflurane (100 

ppm) in presence of interfering compounds ethanol (1.5 ppm), acetone (0.8 ppm), 

propanol (0.15 ppm) and acetonitrile (0.1 ppm).
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4. Conclusions

A micro-fuel cell sensor device was successfully implemented 

for the determination of transdermal isoflurane. The isoflurane 

vapor concentrations derived from PCR correlated with 

theoretical values compared to the linear regression model. PCR 

enabled isolation of signals in the nanoampere range and 

improved resolution of the signal on an average of five times 

compared to the linear regression. PCR accurately classified and 

discriminated different concentrations of isoflurane within the 

physiological range [28]. The low powered electronics of this 

was operational for 5 days after a single charge. This work 

demonstrates a potential system for determining isoflurane 

levels.
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The wearable anesthesia sensor combines with principal component regression as a new approach in the analytical field for 
improving accuracy.
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