Physical Chemistry Chemical Physics

Two-dimensional pentagonal CrX (X = S, Se or Te) monolayers: Antiferromagnetic semiconductors for spintronics and photocatalysts

Journal:	Physical Chemistry Chemical Physics
Manuscript ID	CP-ART-04-2018-002470.R1
Article Type:	Paper
Date Submitted by the Author:	30-May-2018
Complete List of Authors:	Chen, Wenzhou; Institute of Applied Physics and Materials Engineering, University of Macau, Kawazoe, Yoshiyuki; Tohoku University, New Industry Creation Hatchery Center Shi, Xingqiang; South University of Science and Technology of China, Physics Pan, Hui; University of Macau, Faculty of Science and Technology

SCHOLARONE[™] Manuscripts

1	Two-dimensional pentagonal CrX ($X = S$, Se or Te) monolayers: Antiferromagnetic
2	semiconductors for spintronics and photocatalysts
3	
4	Wenzhou Chen ^a , Yoshiyuki Kawazoe ^{b, c} , Xingqiang Shi ^{*d} and Hui Pan ^{*a}
5	^a Institute of Applied Physics and Materials Engineering, University of Macau, Macao
6	SAR, P. R. China
7	^b New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
8	^c Department of Physics and Nanotechnology, SRM Institute of Science and
9	Technology, Kattankulathur 603203, Tamil Nadu, India
10	^d Department of Physics, Southern University of Science and Technology, Shenzhen
11	518055, China
12	* Corresponding Authors: huipan@umac.mo (H.P.); Tel: (853)88224427; Fax:
13	(853)88222426; <u>shixq@sustc.edu.cn</u> (X. Q. S.)
14	

15 Abstract

16 Two dimensional (2D) materials with *hexagonal* building blocks have received tremendous interests in the past years and show promising as nanoscale devices for 17 18 versatile applications. Herein, we propose a new family of 2D *pentagonal* CrX (X = S, 19 Se or Te) monolayers (penta-CrX) for their applications into electronics, spintronics 20 and photocatalysis. We find that the 2D penta-CrX monolayers are thermally, mechanically stable. The 21 structurally and penta-CrX monolayers are 22 antiferromagnetic and semiconducting. We show that the magnetism is attributed to super-exchange induced by the ionic interactions among the Cr and X atoms and can 23 be enhanced upon applying tension. We further show that the penta-CrS and 24 25 penta-CrSe monolayers show good redox potentials versus normal hydrogen electrode, and their band gaps are comparable to the energy of photon in the visible light region, 26 27 indicating their capable of maximal utilization of solar energy for water splitting. With 28 intrinsic semiconducting and controllable magnetic properties, the proposed

penta-CrX monolayers may hold promising as flexible spintronics and photocatalysts.
 30

31 **1. Introduction**

32 Spintronics have attracted extensive attention because of their unique properties of efficient data storage and transfer, and application in quantum computing.¹ It had 33 been reported that spintronics can be realized in dilute-magnetic semiconductors and 34 Heusler alloy.^{2, 3} Recently, antiferromagnetic materials have been proposed to be more 35 36 robust for spintronic and storage devices because they do not create parasitic magnetic 37 fields, are insensitive to external magnetic field, and have a fast switching between antiferromagnetic states.⁴ These antiferromagnetic materials can be metallic, 38 semiconducting, and insulating.⁴ Antiferromagnetic semiconductors are of particular 39 interesting because of their intrinsic band gaps for applications into electronic 40 devices.⁴ Therefore, searching novel antiferromagnetic semiconductors for ultrafast 41 42 spintronics are necessary.

43 Two-dimensional (2D) materials have been widely studied currently for their 44 applications in various fields, such as nanodevices, optoelectronics, catalysis, and energy storage because of rich electronic, magnetic, and chemical properties.⁵⁻¹¹ 45 Particularly, the applications of 2D nanomaterials in spintronics may lead to further 46 enhancement of information transfer and storage. There are a plenty of magnetic 2D 47 nanostructures, such as $Cr_2Ge_2Te_6$,¹² CrI_3 ,¹³ CrOX (X = Cl or Br),¹⁴ MXenes,¹⁵⁻¹⁸ 48 CrN,¹⁹ defected BC₃,²⁰ VX₂,²¹ Mn₂C,²² MoS₂ nanoribbons,²³ strained MoN₂,²⁴ janus 49 transition metal chalcogenides,²⁵ 1*T*-CrX₂,²⁶ and defected PtSe₂.²⁷ Unfortunately, most 50 51 of them are ferromagnetic (FM) metals, FM semiconductors, and antiferromagnetic (AFM) metals. AFM semiconductors could only be achieved by functionalization and 52 external tension previously,^{16, 17} which made their applications complicated. Until 53 most recently, there were only a few 2D AFM semiconductors reported, such as 54 CrCTe₃ and CrPS₄.²⁸⁻³⁰ Therefore, exploring pure AFM 2D intrinsic semiconductors is 55 important to promote the practical applications. In this work, we designed a new 56 family of monolayers, 2D pentagonal CrX (X = S, Se or Te) (penta-CrX) with 57

Cr-X-Cr three-atomic layer, for their applications in flexible spintronics based on the first-principles calculations. We demonstrate that penta-CrX are thermally, structurally, and mechanically stable. We find that penta-CrX monolayers hold intrinsic semiconducting and antiferromagnetic properties and show enhanced magnetic moments upon the application of moderate tensions. The band gaps of penta-CrS and penta-CrSe are tunable and comparable to the energy of photon in the visible light spectrum, which also promise them as photocatalysts for water splitting.

65

66 **2. Computational methods**

First-principles calculations were conducted within the density functional theory, 67 as implemented in the Vienna Ab initio Simulation Package (VASP).³¹ The 68 interactions between the valence electrons and ionic cores were described by the 69 projector augmented wave (PAW) method,³² with valence electrons employed as 70 $3d^54s^1$, $3s^23p^4$, $4s^24p^4$, and $5s^25p^4$ for Cr, S, Se, and Te respectively. The generalized 71 72 gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functionals were employed to describe the correlation and exchange interactions.³³ The hybrid 73 functionals (HSE06)³⁴ including the spin polarization were employed to calculate the 74 75 magnetic properties and band structures, wherein a standard mixing fraction of 0.25 was adopted for the exact-exchange interaction. The effect of the spin-orbital 76 coupling³⁵ on the band structure was also considered in our calculations. Gaussian 77 78 smearing method was adopted to describe the electronic occupancies was described by the Gaussian smearing with a value of 0.05 eV. The electronic and ionic relaxations 79 were terminated when the energy and force converge to within 1×10^{-4} eV and 0.01 80 eV/Å, respectively. An energy cutoff of 550 eV and a k-points of 12×12×1 centered 81 on the Gamma-point³⁶ were employed, which give a convergence of the total energy 82 within 1 meV. The 2D monolayer was constructed by inserting a vacuum space of 18 83 Å along the z direction. 84

85 **2.1 Phonon dispersion calculations**

86

The calculations of phonon curves were performed by the finite displacement

approach³⁷ implemented in the PHONOPY code interfaced with VASP code.³⁸ A supercell with 72 atoms ($3 \times 3 \times 1$ unit cells) was employed to create the dynamic matrix and then compute the phonon curves.

90 **3. Results and discussion**

91 **3.1 Crystal structures**

92 Pentagonal 2D monolayers composed of pentagonal building blocks, such as penta-graphene, $^{39, 40}$ penta-B₂C, 41 and penta-TMB/C, 42 have been theoretically 93 94 predicted. The existence of the pentagonal building blocks was recently confirmed experimentally for a 2D PdSe₂ layers.⁴³ In our work, the new 2D pentagonal 95 monolayers, penta-CrX with an atomic ratio of 1:1, constitute three atomic layers in 96 97 the sequence of X-Cr-X along the z direction (figure 1). The monolayers hold 98 tetragonal symmetry and the unit cell contains four Cr atoms and four X atoms. Each 99 Cr atom is five-fold coordinated with four X atoms and one Cr atom, while each X 100 atom is four-fold coordinated with four Cr atoms. As a result, three Cr atoms and two 101 X atoms form a buckled-pentagonal network with a thickness of h_1 (figure 1b). The 102 structural parameters of the optimized penta-CrX, such as lattice constant (a) and 103 effective thickness (h₂) of the unit cell, bond lengths (b₁ and b₂), bond angles (θ_1 , θ_2 , 104 and θ_3), and thickness of the buckled-pentagonal network are summarized in table 1. We see that the structural parameters, such as a, b_2 , θ_3 , h_1 and h_2 , increase from 105 $S \rightarrow Se \rightarrow Te$, while the others, including b_1, θ_1, θ_2 , decrease from $S \rightarrow Se \rightarrow Te$ (table 1). 106

Figure 1 Top (a) and side (b) views of penta-CrX monolayers (X = S, Se or Te). The unit cell is indicated by black-dash lines in panel a. The blue and yellow spheres denote Cr and X (X = S, Se or Te) atoms, respectively. b_1 (bond length between Cr atoms); b_2 (bond length between Cr and X atoms); θ_1 (angle between Cr-X-Cr); θ_2 (angle between X-Cr-X); θ_3 (angle

- between X-Cr-Cr); h₁ (thickness of the buckled-pentagonal network); h₂ (vertical distance
- 113 between the outermost S atoms plus their van der Waals radius).
- 114 Table 1 Structural parameters of the penta-CrX monolayers (X = S, Se or Te): lattice
- 115 constant a; bond lengths b_1 and b_2 ; bond angles θ_1 , θ_2 , and θ_3 ; thickness of the
- buckled-pentagonal network h_1 ; effective thickness of the unit cell h_2 .

Systems	a (Å)	$b_1(\text{\AA})$	$b_{2}(\text{\AA})$	$\theta_1 (^0)$	$\theta_2 (^0)$	$\theta_3 (^0)$	h_1 (Å)	h ₂ (Å)
Penta-CrS	4.92	2.12	2.40	67.1	93.3	106.9	1.50	6.59
Penta-CrSe	5.03	2.05	2.53	65.7	89.7	107.7	1.62	7.04
Penta-CrTe	5.25	2.03	2.71	64.3	86.5	108.3	1.79	7.69

117 **3.2** Dynamic, thermal, and mechanical stabilities.

Before studying the physical properties of the penta-CrX monolayers, we firstly exam their stabilities. The phonon dispersion was calculated to investigate their dynamic stabilities. We see that there are no negative frequencies in the phonon dispersions of penta-CrS, penta-CrSe, and penta-CrTe monolayers (figure 2), indicating they are dynamically stable.

123

124

125

Figure 2 Calculated phonon dispersions of penta-CrS (a), penta-CrSe (b) and penta-CrTe (c).

The stabilities of the penta-CrX monolayers again thermal fluctuation were explored by the ab initio molecular dynamics (AIMD) simulations employing the canonical ensemble. The AIMD simulations are carried out for a supercell ($3 \times 3 \times 1$ unit cells) at 300 and 800 K for 3 ps with a time step of 1fs. We see that there is no structure reconstruction for the penta-CrX monolayers during the AIMD simulations (figures S1-S6), suggesting that the penta-CrX monolayers can survive up to 800 K.

132 The stabilities of the penta-CrX monolayers against mechanical strains were

- investigated by calculating their elastic constants. For a mechanically stable material,
- the elastic constants should satisfy the following equations: ${}^{39}C_{11}C_{22}-C_{12}{}^2 > 0$ and $C_{44} > 0$
- 135 0. Considering the tetragonal symmetry of penta-CrX, $C_{11} = C_{22}$, the criteria turn out
- to be $C_{11} > |C_{12}|$ and $C_{44} > 0$. The calculated $C_{11} > C_{12}$ and the C_{44} is positive (table 2),
- 137 suggesting that the penta-CrX monolayers are mechanically stable.
- Table 2 Calculated elastic constants for penta-CrX (X = S, Se or Te) monolayers.

Systems	C ₁₁ (GPa)	C ₁₂ (GPa)	C ₄₄ (GPa)
Penta-CrS	132	25	68
Penta-CrSe	119	33	60
Penta-CrTe	85	26	48

139

140 **3.3 Electronic properties**

141 We find that the penta-CrX monolayers are dynamically, thermodynamically, and 142 mechanically stable. Consequently, their ground states are further investigated by 143 considering spin-polarization. For this purpose, the energy differences $\Delta E_{\text{NM-FM}}$ 144 (wherein E_{NM} and E_{FM} denote the energies of nonmagnetic and ferromagnetic states, 145respectively), and ΔE_{AFM-FM} (wherein E_{AFM} is the energy of antiferromagnetic state) 146 are calculated. Negative value of ΔE_{NM-FM} or ΔE_{AFM-FM} indicates the nonmagnetic or 147 antiferromagnetic ground state, while positive value shows favorable ferromagnetic 148 structure. As to the antiferromagnetic state, two configurations of spin-polarization are 149 considered (figure S7). It is noted that the standard DFT usually show poor prediction 150 for materials with localized electrons, which leads to underestimation of the electronic 151 band gap, magnetic coupling and magnetic moments, partially due to inherent 152self-interaction errors. The hybrid-DFT (h-DFT) including the spin-polarization have shown better agreement with experiment, compared to standard DFT, for a wide range 153of materials and magnetic properties,^{44, 45} and thus is employed in our work. 154

Table 3 Calculated energy differences ($\Delta E_{\text{NM-FM}}$, $\Delta E_{\text{AFM1-FM}}$, and $\Delta E_{\text{AFM2-FM}}$) for penta-CrX, and the magnetic moment of the Cr atom for the AFM2 magnetic ground state.

Systems	$\Delta E_{\text{NM-FM}} \left(eV \right)$	$\Delta E_{AFM1-FM} \left(eV \right)$	$\Delta E_{AFM2-FM} \left(eV \right)$	Moment $\mu_B/(Cr atom)$
---------	---	--	--	--------------------------

Penta-CrS	0.4666	0.0022	-0.6244	±2.913
Penta-CrSe	0.4390	0.0095	-0.6152	±2.924
Penta-CrTe	0.2290	-0.0048	-0.3582	±3.019

We see that $\Delta E_{\text{NM-FM}}$ are positive, indicating FM are lower in energy than NM 157 158 state. On the other hand, $\Delta E_{AFM2-FM}$ are negative, suggesting that AFM are lower in 159 energy than FM state. We also find that the energy of AFM2 state is lower than that of 160 AFM1 for the penta-CrX monolayers (table 3). Therefore, the ground states for the 161 penta-CrX monolayers are antiferromagnetic with AFM2 spin configuration. The 162 magnetic moments of the Cr atoms are ± 2.913 , ± 2.924 and $\pm 3.019 \mu_B$ for penta-CrS, penta-CrSe, and penta-CrTe, respectively, while those of the S, Se or Te are zero, 163 suggesting that the super-exchange is the plausible mechanism for the 164 antiferromagnetic coupling.^{46, 47} To determine the magnetic coupling, the exchange 165 166 coupling parameters J_1 and J_2 (figure S8) were calculated by mapping the total energies of the penta-CrX with different spin-polarized states to the Ising model:^{17, 22} 167

168

$$H= -\sum_{i,i} J_1 M_i \cdot M_i - \sum_{k,l} J_2 M_k \cdot M_l$$

where J_1 and J_2 are the nearest- and next-nearest-neighbors magnetic coupling 169 parameters, and M is the local magnetic moment of the Cr atom. For the penta-CrX, 170 171 each Cr atom is surrounded by one nearest and four next-nearest neighbor Cr atoms 172(figure S8). By mapping the h-DFT energies of the magnetic states to the Ising 173 Hamiltonian, J_1 and J_2 can be expressed as following:

174

174
$$E_{FM} = -(J_1 + 4J_2) \cdot M_i^2$$

175 $E_{AFM1} = -(J_1 - 4J_2) \cdot M_j^2$

 $E_{AFM2} = J_1 \cdot M_k^2$ 176

177 where the values are about 1, ± 1 and $\pm 3 \mu_B$ for M_i , M_j , and M_k , respectively. The 178 magnetic coupling parameters J_1/J_2 are estimated to be -62.6/0.3 meV, -62.0/1.2 meV, 179 and -35.6/-0.6 meV for penta-CrS, penta-CrSe and penta-CrTe, respectively. Negative 180 and positive values of coupling parameters represent the antiparallel and parallel spin 181 coupling, respectively. We see that J_1 are all negative for penta-CrX, indicating that 182 the nearest-neighbor spins favor the antiparallel interactions and suggesting that the

AFM2 state are energetically more favorable than the FM and AFM1 states for all the penta-CrX. On the other hand, J_2 are positive for penta-CrS and penta-CrSe, while negative for penta-CrTe, suggesting that the FM states are lower in energy than the AFM1 states for penta-CrS and penta-CrSe, while the AFM1 state is energetically more favorable than the FM state for penta-CrTe, consisting with the results summarized in table 3.

189 Based on the ground states, their electronic structures were further investigated. 190 The band structures of penta-CrX are calculated with and without SOC effects. We 191 see that the SOC have no effects on the band structures of penta-CrS (figure 3a, blue 192 lines) and penta-CrSe (figure 3b, blue lines). On the other hand, though the band 193 structure of penta-CrTe show a small splitting along the Gamma-X and X-M paths 194 (figure 3c, blue lines), the effect of SOC are found to be negligible on band-edge and 195 thus the band gap of the penta-CrTe. Our calculations show that the penta-CrX 196 systems are semiconductors with indirect band gaps, as indicated by the calculated 197 band structures (figure 3) and densities of states (figure 4). Specifically, penta-CrS 198 holds a band gap of 2.378 eV with the valence band maximum (VBM) at the k-point 199 of (0.158, 0.158, 0) and the conduction band minimum (CBM) at (0.132, 0.132, 0). 200 Penta-CrSe shows a band gap of 2.522 eV with its VBM at (0.158, 0.158, 0) and 201 CBM at (0, 0, 0). Penta-CrTe presents a band gap of 1.298 eV with VBM at (0.447, 0.447). 202 0.447, 0 and CBM at (0, 0, 0). The partial densities of states (PDOSs) show that the 203 VBM and CBM of the penta-CrX are mainly attributed by the Cr-d states (figure 4). 204 To confirm this, the band-decomposed partial densities were calculated for penta-CrS. 205 We see that the band-decomposed charge densities for the highest valence band 206 (figure 5a) and lowest conduction band (figure 5b) are accumulated on the Cr atoms, 207 consistent with the calculated PDOSs (Figure 4a).

208

209 Figure 3 Calculated band structures of penta-CrS (a), penta-CrSe (b) and penta-CrTe (c)

210 without SOC (black lines) and with SOC effects (blue lines).

Figure 4 Calculated partial densities of states of penta-CrS (a), penta-CrSe (b) and penta-CrTe

213 (c).

211

Figure 5 Calculated band-decomposed partial charge densities for the highest valence band (a) and lowest conduction band (b) for penta-CrS. The green color indicates the electron accumulation.

218 **3.4 Effects of tensions on magnetism and band gap**

219 We have shown that the penta-CrX monolayers are semiconducting with 220 antiferromagnetic properties. To find their application in flexible devices, the effects 221 of in-plane biaxial strains on their magnetism and band gap were investigated. The 222 in-plane strain is defined as: $\varepsilon = (a-a_0)/a_0 \times 100\%$, where a and a_0 are the lattice 223 constants of the strained and strain-free penta-CrX monolayers, respectively. Positive 224 value of ε represents tension, while negative value is compression. The values of ε 225 ranging from -3% to 3% were considered in our calculations. Upon the application of 226 the strain, the ground states of the penta-CrX monolayers may differ from the 227 strain-free condition. Therefore, we firstly studied the ground states of the penta-CrX 228 monolayers under strain by calculating $\Delta E_{\text{NM-FM}}$ and $\Delta E_{\text{AFM-FM}}$ (figure 6). We see that 229 ΔE_{AFM-FM} are negative (blue line-points in figure 6), while ΔE_{NM-FM} are positive 230 (black line-points in figure 6) for penta-CrS, penta-CrSe and penta-CrTe in the whole 231 considered ε , indicating that AFM states are lower in energies than the FM and NM states, and therefore are the ground states. Specifically, the ΔE_{AFM-FM} (negative) 232 233 decreases upon tension, while increases with compression, which indicate the 234 enhanced and reduced magnetism upon tension and compression, respectively.

Figure 6 The $\Delta E_{\text{NM-FM}}$ and $\Delta E_{\text{NM-FM}}$ for the penta-CrX (X = S, Se, or Te) as a function of biaxial strains.

238 Our calculations show that the anti-ferromagnetism of the penta-CrX monolayer 239 is robust against strain and enhanced as tension. The Bader charge calculations were 240 performed to reveal the origin of the enhancement. We find that M_{CrX} (the magnetic 241 moment of the Cr atom) correlates strongly with CT (charge transfer from the Cr to X 242 atoms) (figure 7). For example, M_{CrS} increases from ± 2.913 to ± 3.254 µ_B/atom as ϵ 243 increases from 0% to 3%, and CT enhances accordingly from 0.851 to 0.895 electrons 244 (figure 7a). On the other hand, M_{CrS} decreases to ± 2.689 at $\epsilon = -3\%$, while CT is 245 reduced to 0.827 electrons. Similar trends are found for the penta-CrSe and 246 penta-CrTe monolayers (figures 7b&c). Therefore, the enhancement is contributed to 247 the improved super-exchanged due to increased charge transfer and increased 248 magnetic moment.

249

Figure 7 The M_{CrX} (magnetic moment of the Cr atom) and CT (charge transfer from the Cr atoms to the X atoms) as a function of strain for penta-CrS (a), penta-CrSe (b) and penta-CrTe (c), respectively.

Figure 8 The evolution of the band gaps as a function of applying strains for the penta-CrX (X

Besides the magnetic moments, the band gaps of the penta-CrX monolayers are also modulated by the applied strains (figure 8). We see the band gap of penta-CrS increases with compression, while decreases upon tension, with a minimum value of 0.894 eV at $\varepsilon = 3\%$ and a maximum value of 2.508 eV at $\varepsilon = -3\%$. On the other hand, the band gap of penta-CrSe increases as ε increases from -3% to -1%, while decreases as ε further increases, with a maximum of 2.587 eV at $\varepsilon = -1\%$ and a minimum of 1.974 eV at $\varepsilon =$ 3%. Penta-CrTe monolayer shows the same trend as penta-CrSe.

263 **3.5 Photocatalysts**

The semiconducting characteristic of the 2D penta-CrX monolayers with suitable band gaps to the energy of visible light may also suggest their applications in photocatalysis. To investigate their photocatalytic properties, we evaluated the redox ability of the penta-CrX by aligning their VBM and CBM with respect to the water oxidation/reduction potentials. The band-edge alignment with respect to the normal hydrogen electrode (NHE) are obtained by following equations:⁴⁸

270
$$E_{\rm CBM} = X - E_{\rm e} - (1/2)E_{\rm g}$$

$$271 E_{\rm VBM} = E_{\rm CBM} + E_{\rm g}$$

272 where X represents the Mulliken electronegativity of the material, which is the geometric mean of the electronegativities of the constituent elements.^{48,49} X is 4.81, 273 274 4.68 and 4.52 eV for penta-CrS, penta-CrSe and penta-CrTe, respectively. $E_{\rm e}$ denotes 275 the energy of free electrons on the hydrogen scale (4.5 eV), and E_{g} represents the band 276 gap. For a suitable photocatalyst, its E_{CBM} should be more negative than the reduction 277 potential of H^+/H_2 (0 eV), while E_{VBM} should be more positive than the oxidation 278 potential of O_2/H_2O (1.23 eV). We see that E_{CBM} of penta-CrS, penta-CrSe and 279 penta-CrTe monolayers within the considered ε , are more negative versus the 280 reduction potential of H^{+}/H_{2} (0 eV) (figure 9), suggesting their abilities to produce H₂ 281 from water reduction. On the other hand, penta-CrS and penta-CrSe monolayers 282 within most of the considered ε values are suitable for the production of O_2 from 283 water because their E_{CBM} values are more positive than the oxidation potential of 284 O_2/H_2O (1.23 eV), except penta-CrS when $\varepsilon > 1\%$ and penta-CrSe at $\varepsilon = 3\%$.

Unfortunately, 2D penta-CrTe in the whole considered ε shows no ability to produce O₂ from water due to its less positive E_{VBM} than the oxidation potential of O₂/H₂O (1.23 eV).

288

Figure 9 The calculated E_{CBM} and E_{VBM} of penta-CrS, penta-CrSe, and penta-CrTe monolayers with respect to normal hydrogen electrode (NHE) as a function of strains.

291 **4. Conclusions**

292 In summary, we present a new family of penta-CrX (X = S, Se or Te) monolayers 293 based on the first-principles calculations. Their stability is confirmed by carrying out 294 dynamic, thermal and mechanical calculations. The penta-CrX monolayers are 295 antiferromagnetic and semiconducting. Importantly, the magnetism can be enhanced 296 upon moderate tension due to the improved ionic interaction between Cr and X atoms. 297 We further find that penta-CrS and penta-CrSe monolayers show excellent 298 photocatalytic properties of maximal utilization of solar energy for water splitting, 299 due to their optimal band gaps and suitable band alignment with the reduction 300 potential of H^+/H_2 and more positive value of E_{VBM} than the oxidation potential of 301 O_2/H_2O . We expect that penta-CrX are promising for flexible spintronics and 302 photocatalysts.

303

304 **5. Acknowledgements**

H. Pan acknowledges the University of Macau for financial support and the
 Science and Technology Development Fund from Macau SAR (FDCT-132/2014/A3)

307	an	d Multi-Year	Research	Grants	(MYRG2015-00157-FST	and
308	M	YRG2017-00027-FS	ST) from Res	search & D	evelopment Office at University	v of
309	M	acau. X.Q. Shi ackr	lowledges the	financial su	upport from the NSF of China (G	rant
310	No	os. 11474145, 11334	4003), the She	enzhen Fund	lamental Research Foundation (G	rant
311	No	b. JCYJ2017081710	5007999) and	the specia	l Program for Applied Research	on
312	Su	per Computation of	f the NSFC-C	Guangdong	Joint Fund (the second phase) un	nder
313	Gr	ant No. U1501501.	One of the a	uthors (YK) is thankful to the support by J	SPS
314	KA	AKENHI Grant Nur	mber 17H033	84, HPCI S	System Research project (Project	ID:
315	hp	170190), and ONR	G Grant (Aw	vard Numb	er of N62909-16-1-2036). The I	OFT
316	ca	lculations were per	formed at Hi	gh Perform	ance Computing Cluster (HPCC)) of
317	Int	formation and Comm	nunication Tec	chnology Of	fice (ICTO) at University of Maca	u.
318						
319	6.	References				
320	1.	T. Dietl and H. Ohno,	Rev. Mod. Phy	/s., 2014, 86 ,	187-251.	
321	2.	V. Alijani, J. Winterlik	, G. H. Fecher,	S. S. Nagha	avi and C. Felser, <i>Phys. Rev. B</i> , 2011	, 83 ,
322		184428-184434.				
323	3.	H. Pan, J. B. Yi, L. S	hen, R. Q. Wu,	J. H. Yang, J	. Y. Lin, Y. P. Feng, J. Ding, L. H. Van	and
324		J. H. Yin, Phys. Rev.	<i>Lett.</i> , 2007, 99	, 127201-127	204.	
325	4.	V. Baltz, A. Manchor	i, M. Tsoi, T. Mo	oriyama, T. O	no and Y. Tserkovnyak, <i>Rev. Mod. Pl</i>	iys.,
326		2018, 90 , 015005-01	5060.			
327	5.	C. Tan, X. Cao, XJ.	Wu, Q. He, J.	rang, X. Zhai	ng, J. Chen, W. Zhao, S. Han, GH. N	lam,
328		M. Sindoro and H. Zł	nang, <i>Chem. R</i> e	ev., 2017, 11	7, 6225-6331.	
329	6.	C. Si, Z. Sun and F. I	_iu, <i>Nanoscale</i> ,	2016, 8 , 320	17-3217.	
330	7.	Y. Shao, F. Zhang, X	. Shi and H. Pa	n, <i>Phys. Che</i>	m. Chem. Phys., 2017, 19 , 28710-28	717.
331	8.	D. L. Duong, S. J. Yu	in and Y. H. Lee	e, ACS Nano	, 2017, 11 , 11803-11830.	
332	9.	Y. Qu, H. Pan, C.	T. Kwok and	Z. Wang,	Phys. Chem. Chem. Phys., 2015,	17 ,
333		24820-24825.				
334	10	. Y. P. Feng, L. Shen,	M. Yang, A. Wa	ing, M. Zeng,	Q. Wu, S. Chintalapati and CR. Ch	ang,
335		Compu. Mol. Sci., 20	17, 7 , e1313-e	1390.		
336	11.	. T. T. Song, M. Yang,	J. W. Chai, M.	Callsen, J. 2	Zhou, T. Yang, Z. Zhang, J. S. Pan, I). Z .

- 337 Chi, Y. P. Feng and S. J. Wang, *Sci. Rep.*, 2016, **6**, 29221-29229.
- 338 12. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R.
- 339 J. Cava, S. G. Louie, J. Xia and X. Zhang, *Nature*, 2017, 546, 265-269.
- 13. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E.
- Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero and X. Xu, *Nature*, 2017, **546**, 270-273.
- 343 14. N. Miao, B. Xu, L. Zhu, J. Zhou and Z. Sun, J. Am. Chem. Soc., 2018, 140, 2417-2420.
- 344 15. H. Kumar, N. C. Frey, L. Dong, B. Anasori, Y. Gogotsi and V. B. Shenoy, ACS Nano, 2017,
 345 11, 7648-7655.
- 346 16. G. Gao, G. Ding, J. Li, K. Yao, M. Wu and M. Qian, *Nanoscale*, 2016, **8**, 8986-8994.
- 347 17. J. He, P. Lyu, L. Z. Sun, Á. Morales García and P. Nachtigall, *J. Mater. Chem. C*, 2016, 4,
 6500-6509.
- 349 18. G. Wang, J. Phys. Chem. C, 2016, **120**, 18850-18857.
- 19. A. V. Kuklin, A. A. Kuzubov, E. A. Kovaleva, N. S. Mikhaleva, F. N. Tomilin, H. Lee and P. V.
 Avramov, *Nanoscale*, 2017, 9, 621-630.
- 352 20. Y. Ding, Y. Wang and J. Ni, *J. Phys. Chem. C*, 2010, **114**, 12416–12421.
- 353 **21**. H. Pan, *Sci. Rep.*, 2014, **4**, 7524-7531.
- 354 22. L. Hu, X. Wu and J. Yang, *Nanoscale*, 2016, 8, 12939–12945
- 355 23. H. Pan and Y.-W. Zhang, J. Phys. Chem. C, 2012, 116, 11752-11757.
- 356 24. Y. Wang, S. S. Wang, Y. Lu, J. Jiang and S. A. Yang, *Nano Lett.*, 2016, 16, 4576-4582.
- 25.W. Chen, Y. Qu, L. Yao, X. Hou, X. Shi and H. Pan, *Journal of Materials Chemistry A*, 2018,
 DOI: 10.1039/C8TA01202D.
- 359 26. H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu and Y. P. Sun, *Phys. Rev. B*, **92**, 214419-214426.
- 360 27. M. Zulfiqar, Y. Zhao, G. Li, S. Nazir and J. Ni, *J. Phys. Chem. C*, 2016, **120**, 25030-25036.
- 361 28. S. Chabungbam and P. Sen, *Phys. Rev. B*, 2017, **96**, 045404-045413.
- 362 29.J. Lee, T. Y. Ko, J. H. Kim, H. Bark, B. Kang, S. G. Jung, T. Park, Z. Lee, S. Ryu and C. Lee,
- 363 ACS Nano, 2017, **11**, 10935-10944.
- 364 30. Z. Z. Lin, *Phys. Chem. Chem. Phys.*, 2017, **19**, 3394-3404.
- 365 31. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 366 32. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.

- 367 33. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 368 34. J. Heyd, G. E. Scuseria and M. Ernzerhof, *J. Chem. Phys.*, 2003, **118**, 8207-8215.
- 369 35. D. Hobbs, G. Kresse and J. Hafner, *Phys. Rev. B*, 2000, **62**, 11556-11570.
- 370 36. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- 371 37. K. Parlinski, Z. Q. Li and Y. Kawazoe, *Phys. Rev. Lett.*, 1997, 78, 4063-4066.
- 372 **38**. A. Togo and I. Tanaka, *Scripta Mater.*, 2015, **108**, 1-5.
- 373 39. Shunhong Zhang, Jian Zhou, Qian Wang, Xiaoshuang Chen, Yoshiyuki Kawazoe and P.
- 374 Jena, *PNAS*, 2015, **112**, 2372–2377.
- 40. H. Sun, S. Mukherjee and C. V. Singh, *Phys. Chem. Chem. Phys.*, 2016, **18**, 26736-26742.
- 376 41. F. Li, K. Tu, H. Zhang and Z. Chen, *Phys. Chem. Chem. Phys.*, 2015, **17**, 24151-24156.
- 42. Y. Shao, M. Shao, Y. Kawazoe, X. Shi and H. Pan, *Journal of Materials Chemistry A*, 2018,
 DOI: 10.1039/C8TA00635K.
- 43. A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini,
- A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D.
- B. Geohegan and K. Xiao, *J. Am. Chem. Soc.*, 2017, **139**, 14090-14097.
- 44. C. Franchini, V. Bayer, R. Podloucky, J. Paier and G. Kresse, *Phys. Rev. B*, 2005, 72,
 045132-045137.
- 45. C. Franchini, R. Podloucky, J. Paier, M. Marsman and G. Kresse, *Phys. Rev. B*, 2007, **75**,
 195128-195138.
- 386 46. P. W. Anderson, *Phys. Rev.*, 1950, **79**, 350-356.
- 387 47. W. Chen, H.-F. Li, X. Shi and H. Pan, *J. Phys. Chem. C*, 2017, **121**, 25729-25735.
- 48. Y. K. Lim, E. W. Keong Koh, Y.-W. Zhang and H. Pan, *J. Power Sources*, 2013, 232,
 323-331.
- 390 49. R. G. Parr and R. G. Pearson, *J. Am. Chem. Soc.*, 1983, **105**, 7512-7516.