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A decomposition of the exact exchange-correlation potential of time-dependent density functional
theory into an interaction component and a kinetic component offers a new starting point for non-
adiabatic approximations. The components are expressed in terms of the exchange-correlation hole
and the difference between the one-body density matrix of the interacting and Kohn-Sham systems,
which must be approximated in terms of quantities accessible from the Kohn-Sham evolution. We
explore several preliminary approximations, evaluate their fulfillment of known exact conditions,
and test their performance on simple model systems for which available exact solutions indicate the
significance of going beyond the adiabatic approximation.

I. INTRODUCTION

Much effort has been put into the development
of more accurate and reliable approximations to the
ground state (gs) exchange-correlation (xc) functional of
Density Functional Theory (DFT) [? ? ? ]. In order
to make use of these approximations in the simulation
of dynamical processes one invokes the adiabatic ap-
proximation: one utilizes a gs xc functional in place of
the time-dependent one, and so implicitly assumes the
many-body effects in the system are those of a ground-
state even if the system is itself not near a gs. Mem-
ory effects arising from the dependence of the xc func-
tional on the history of the density, and on the initial
states, are completely absent in these approximations.
Adiabatic Time-dependent Density Functional Theory
(TDDFT) is widely and successfully used to simulate
excitation spectra and response properties in finite sys-
tems and solids that are initially in the gs [? ? ? ? ] and
probe the perturbative regime, where the system is only
slightly disturbed from its gs. The adiabatic approxi-
mation becomes less justified as we move away from
the gs, as is the case when the perturbation is strong
or resonant or when we start the simulation in an ex-
cited or arbitrary superposition state. In such situations,
which have become of increasing interest in the past
decade due to the development of experimental tech-
niques and especially the growing interest in attosecond
physics (e.g. Ref. [? ]), the adiabatic approximation is
at least questionable. How severely the adiabatic prop-
agation deviates from the exact dynamics will depend
on the system and the particular dynamics, and also
on what the observables of interest are. For example,
highly non-perturbative processes such as resonant dy-
namics and long-range charge transfer have been shown
to be particularly challenging for adiabatic TDDFT [? ?
? ? ? ? ? ? ? ? ? ? ? ? ] and even in the case
of field-free evolution of a non-stationary state the ex-

act xc functional develops non-trivial features that in-
fluence the dynamics but that adiabatic functionals can-
not capture [? ? ? ]. On the other hand, for example,
the adiabatic approximations give good predictions for
photo-emission spectra and photo-angular distributions
in clusters [? ]. Given the lack of alternative methods to
simulate electron-dynamics in medium to large systems
and the expanding range of time- and space-resolved ex-
periments involving non-perturbative dynamics it is im-
perative to explore the capability of TDDFT beyond the
adiabatic approximation. There have been only a few
proposals for non-adiabatic xc functionals [? ? ? ], but
they are not commonly used for a variety of reasons in-
cluding that they spuriously damp finite systems. Func-
tionals that are explicit orbital-functionals also incorpo-
rate memory (e.g. time-dependent exact exchange [? ?
]) but the orbital-dependence of these commonly only
involves exchange which is inadequate to capture the
most significant non-adiabatic effects.

In this work we present a new starting point for de-
veloping non-adiabatic approximations based on an ex-
act decomposition of the xc functional. The exact de-
composition, which is reviewed in section II, expresses
the exact xc potential, in terms of an interaction com-
ponent that depends on the xc hole of the interacting
system, and a kinetic component that depends on the
difference between the one-body density matrices of the
interacting and Kohn-Sham systems [? ? ]. The idea
is to approximate these terms in terms of quantities
that are accessible from the evolving Kohn-Sham sys-
tem and/or from the initial many-body wavefunction,
and some preliminary approximations are proposed in
sections II A. In section III we analyze these in terms
of the fulfillment of exact conditions and in section IV
we test their performance against the exact solution for
some model systems. Finally, in Sec. V we conclude.
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II. DECOMPOSITION OF vXC INTO INTERACTION
AND KINETIC POTENTIALS

Equating the equation of motion for the second time-
derivative of the one-body density, n̈(r, t), in the phys-
ical system, with that in the Kohn Sham (KS) system
n̈S(r, t), yields the following equation [? ? ] for vXC(r, t):

∇ · (n∇vXC) = ∇ ·
[

1

4
(∇′ −∇)

(
∇2 −∇′2

)
(ρ1(r′, r, t)− ρ1,S(r′, r, t)) |r′=r + n(r, t)

∫
nXC(r, r′, t)∇w(|r′ − r|)d3r′

]
,

(1)
where ρ1(r′, r, t) = N

∑
σ1..σN

∫
d3r2...d

3rNΨ∗(r′σ1, r2σ2...rNσN ; t)Ψ(rσ1, r2σ2 . . . rNσN ; t) is the spin-summed one-
body density-matrix (1RDM) of the true system of electrons with two-body interaction potential w(|r − r′|),
ρ1,S(r′, r, t) is the 1RDM for the Kohn-Sham system, and nXC(r, r′, t) is the xc hole, defined via the pair density
through P (r, r′, t) = N(N − 1)

∑
σ1..σN

∫
|Ψ(r′σ1, rσ2, r3σ3..rNσN ; t)|2d3r3..d

3rN = n(r, t) (n(r′, t) + nXC(r, r′, t)) .
The notation∇means gradient with respect to r while∇′ means gradient with respect to r′.

Eq. (1), with mixed separated boundary conditions (i.e.
involving the potential and its gradient at each bound-
ary point separately) has the form of a nonhomogeneous
Sturm-Liouville problem for vXC(r, t). We can decom-
pose this potential into an interaction (W) and a kinetic
(T) component,

vXC(r, t) = vWXC(r, t) + vTC (r, t) (2)

where the interaction part (W) has an explicit depen-
dence on the xc hole,

∇vWXC =

∫
nXC(r, r′, t)∇w(|r′−r|)d3r′+

1

n(r, t)
∇×a1(r, t),

(3)
and the kinetic (T) component,

∇vTC =
(∇′ −∇)

(
∇2 −∇′2

)
∆ρ1(r′, r, t)|r′=r

4n(r, t)

+
1

n(r, t)
∇× a2(r, t) (4)

has an explicit dependence on spatial gradients of
∆ρ1(r′, r, t) = ρ1(r′, r, t) − ρ1,S(r′, r, t) evaluated at r =
r′. We note that both ai(r, t) (a freedom since ∇ · (∇ ×
ai(r, t)) = 0) are fixed uniquely by the fact that the right
hand sides of Eqs. (3) and (4) must be longitudinal (in
the sense of Helmholtz decomposition) and satisfy the
boundary conditions. Numerically, they can be found
by solving the Sturm-Liouville equation directly for the
potential, and taking the gradient of the potential. In
Appendix VI B, we will show that the corresponding
terms are needed for ∇vXC to satisfy the generalized
translational invariance condition. In one-dimension,
the∇× ai(r, t) terms vanish.

An analogous decomposition of the exact gs xc po-
tential [? ? ? ? ] has provided insight into features
of the gs xc potential, while Ref. [? ] explored how

non-adiabatic features of the time-dependent xc poten-
tial manifest themselves in each of these terms. For ex-
ample, it was found that the dynamical step features
found in Refs. [? ? ? ] predominantly appear in vTC ,
while vWXC appears generally much smoother.

In this work we take the first steps to move the de-
composition beyond being simply a tool to analyze the
exact potential to being a foundation on which to build
non-adiabatic functional approximations. By virtue of
the Runge-Gross theorem [? ] the exact xc potential is
a functional of the density n(r, t), the initial many-body
state Ψ(r1σ1...rNσN ; 0), and the initial Kohn-Sham state
Φ(r1σ1...rNσN ; 0): vXC(r, t) = vXC[n; Ψ(0),Φ(0)](r, t).
But Eqs. (3) and (4) depend explicitly on instanta-
neous many-body quantities such as the xc hole den-
sity nXC(r, r′, t) and the 1RDM ρ1(r′, r, t), as well as the
Kohn-Sham 1RDM ρ1,S(r′, r, t), and we do not know
the functional form of these in terms of the density
and the initial wavefunctions. Operating TDDFT via
the time-dependent Kohn-Sham equations offers a par-
tial simplification: one may search for explicit func-
tionals of the time-evolving Kohn-Sham orbitals, which
are themselves implicit functionals of n(r, t) and Φ(0),
and, by putting more information in the variables that
the functional depends on in this way, one hopes that
the functional form itself can be simpler. For exam-
ple, the Kohn-Sham 1RDM is directly accessible in terms
of the instantaneous Kohn-Sham orbitals, ρ1,S(r′, r, t) =∑
i,occ. φ

∗
i (r
′, t)φi(r, t), and has implicit dependence on

n(r, t′ < t) and Φ(0), including memory. The terms de-
pending on nXC and ρ1 are however still unknown as
functionals of φi(r, t).

In the next section we propose some preliminary ap-
proximations to vWXC and vTC in terms of the instan-
taneous Kohn-Sham orbitals (orbital functionals) and
many-body quantities evaluated at initial time (frozen
approximations), that can be used in practical propaga-

2
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tion schemes 1.

A. Approximations arising from the exact decomposition

1. vS
XC

Here we replace all the quantities from the interacting
wavefunction with Kohn-Sham quantities on the RHS of
Eq. (1), defining a ”single-particle” approximation that
we denote by vS

XC. It is then immediately evident that
the kinetic term goes to zero, and such an approximation
is an approximation of the interaction component vWXC,
making the following replacement in the RHS of Eq. (3):

vS

XC : nXC → nS

XC (5)

where the KS xc hole nS
XC is defined

via the KS pair density P S(r′, r, t) ≡
N(N − 1)

∫
|Φ(r′, r, r3...rN ; t)|2dr3..drN =

n(r, t) (n(r′, t) + nS
XC(r, r′, t)). This approximation

was first presented in Ref. [? ], where the shape and
size of vS

XC was shown to be close to vWXC for a particular
dynamics of a model system. This was field-free dy-
namics of an initial interacting state prepared in a 50:50
superposition of a ground and first excited-state. Ref. [?
] found that for a wide range of choices of the initial
Kohn-Sham state Φ(0), the approximate potential vS

XC

remained very close to vWXC throughout the dynamics.
The approximation was also tested for time-resolved
electron-atom scattering in Refs. [? ? ], where it captured
the approach of the electron to the target far better than
the conventional approximations, although, like them,
also ultimately severely underestimated the scattering
probability. The integral in Eq. (3) tends to smooth
out details of the xc hole somewhat, making vWXC less
sensitive to the approximation for the xc hole than vTC is
to the approximation made for ∆ρ1 in Eq. (4) as we will
see shortly.

From its definition, vS
XC is an orbital functional, and

thus generally is non-adiabatic in that it depends im-
plicitly on the history of the density and on the Kohn-
Sham initial state. When a Slater determinant is cho-
sen for the Kohn-Sham initial state, it is highly plausi-
ble that vS

XC reduces to time-dependent exact-exchange
(TDEXX). For two electrons this follows directly from
the formulae, but for more electrons, it is not as straight-
forward to show 2. For a more general Φ(0), vS

XC goes

1 The initial many-body quantities are obtained from an interacting
many-body computation at the initial time, consistent with the exact
functionals being dependent on the initial many-body wavefunc-
tion

2 The reasoning goes as follows. TDEXX is defined via the time-
dependent optimized effective potential [? ], which is derived from
a stationary principle based on an action obtained from evaluating
H − i∂/∂t on a Slater determinant state, with H being the full in-

beyond exact-exchange, and contains a portion of cor-
relation [? ]. In either case, it has spatial- and time-
non-local dependence on the density, and dependence
on the KS initial state, through the dependence on the
KS orbitals.

Note that in performing Eq. (5) and in all following
approximations, the terms ai are adjusted to maintain
that the right-hand-side of Eq. (3) and (4) are purely lon-
gitudinal.

2. vS
XC + vTC (0)

We now address approximations for the kinetic term
to be used in conjunction with vS

XC. Our first approxi-
mation that has a non-zero contribution from the kinetic
part of the correlation potential is very simple: we freeze
it to its initial value, that is, on the right-hand-side of
Eq. (4)

vTC (0) : ∆ρ1(t)→ ∆ρ1(0); n(t)→ n(0). (6)

This is of a somewhat similar spirit to the frozen ap-
proximations that are popular in strong-field atomic and
molecular physics, such as the single-active electron ap-
proximation [? ] where it is assumed that only one elec-
tron is responsible for the dynamics while all the rest
are frozen, such that if the approximation was 1-electron
self-interaction free, the potential that the dynamic elec-
tron sees would be static. It is also similar to the ”instan-
taneous ground-state” approximation of Ref. [? ] when
any externally applied field is static. In addition to the
non-adiabatic effects contained in vS

XC this approxima-
tion also is dependent on the initial interacting and KS
states through its dependence on ∆ρ1(0).

3. vS
XC + v

T,∆ρ1(0)
C

To ”thaw” the frozen kinetic component somewhat,
we consider now the next simplest approximation,
which is to freeze only the 1RDM-difference in vTC , i.e.

v
T,∆ρ1(0)
C : ∆ρ1(t)→ ∆ρ1(0) (7)

teracting Hamiltonian [? ? ? ]. If instead the exact interacting wave-
function was used, the procedure would yield the exact xc poten-
tial (and in general needs to be done on the Keldysh contour [? ]);
TDEXX can be thought of as assuming Φ = Ψ is a Slater deter-
minant in such a procedure. Now the force-balance equation for
n̈ which gives rise to Eq. (1) also yields the exact xc potential, and
vS
XC results if we make the exact same approximation, Φ = Ψ =

Slater determinant in this equation. The latter corresponds to vLocX

in Ref.[? ], which the authors compare against exchange-only-KLI
for some particular dynamics and find the two yield similar results.
It is extremely difficult to show directly from the formulae that the
two expressions are equal [? ], but the argument above suggests it is
likely that they are.

3
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while self-consistently updating the density in the de-
nominator on the RHS of Eq. (4). Like vS

XC + vTC (0), the
approximation vS

XC + v
T,∆ρ1(0)
C inherits a degree of non-

adiabatic density-dependence and Kohn-Sham initial-
state dependence through the instantaneous orbital-
dependence in vS

XC, and a degree of both Kohn-Sham
and interacting initial-state dependence through the ki-
netic component.

4. vS
XC + v

T,ρ1(0)
C

Noting that ρ1,S is accessible during the Kohn-Sham
evolution, we define a further frozen approximation
where only the interacting 1RDM is fixed to its initial
value, while both the Kohn-Sham 1RDM and the density
are self-consistently updated during the time-evolution:

v
T,ρ1(0)
C : ∆ρ1(t)→ (ρ1(0)− ρ1,S(t)) . (8)

This approximation freezes the interacting 1RDM while
the Kohn-Sham 1RDM may vary greatly.

In the next sections we will discuss the fulfillment of
exact conditions and the performance in reproducing
some model dynamics for each of the proposed approx-
imations.

III. EXACT CONDITIONS

Exact conditions have been a key instrument guiding
the development of physically-inspired and robust gs
density functionals that work reliably over a wide range
of systems [? ? ]. Except for the ones arising from the
energy-minimization principle which cannot be extrap-
olated to the time-dependent case, many of the gs con-
ditions should be also fulfilled by the exact td density
functional [? ] and pose a stringent test for approxima-
tions. In addition to these, are conditions that are partic-
ular to the time-dependent case, and involve aspects of
memory-dependence [? ]. In this section we analyze the
approximations proposed in the previous section in the
light of the fulfillment of the exact conditions enumer-
ated below.

(i) Zero Force Theorem (ZFT)
The zero force theorem [? ? ? ? ] ensures that the xc

potential does not exert a net force,∫
n(r, t)∇vXC[n](r, t)d3r = 0. (9)

Since the net force exerted by the Hartree potential van-
ishes, Eq. (9) ensures that the inter-electron Coulomb in-
teraction doesn’t exert any force on the system 3. Linear

3 In current-density functional theory there is also a zero-torque ver-
sion of this equation, but it does not hold generally in TDDFT where
the Kohn-Sham current might differ from the exact by a rotational
component).

response (around the gs) applied on Eq. (9) yields a link
between the xc kernel fXC(r, r′, ω) and the gs xc poten-
tial v0

XC(r) [? ] that shows that frequency-dependence in
a memory-dependent kernel is incompatible with a con-
current local-in-space density-dependence. (The Gross-
Kohn functional [? ] thus violates ZFT). Violation of
ZFT has been shown to lead to numerical instabilities [?
] due to the system self-exciting.

(ii) Generalized Translational Invariance (GTI)
Translational invariance requires the wavefunction in

an accelerated frame (boost) to transform as,

|Ψb(r1...rN , t)〉 =
N∏
j=1

e−irj ·ḃ(t)|Ψ(r1+b(t)...rN+b(t), t)〉

(10)
where b(t) is the position of the accelerated observer
and b(0) = ḃ(0) = 0 such that the accelerated and in-
ertial systems coincide at the initial time. The boosted
density transports ’rigidly’,

nb(r, t) = n(r + b(t), t). (11)

Vignale proved in Ref. [? ] that in order to fulfill GTI the
xc potential must transform according to,

vbXC[n; Ψ(0),Φ(0)](r, t) = vXC[n; Ψ(0),Φ(0)](r + b(t), t)
(12)

A vXC that fulfills Eq. (12) automatically fulfills the ZFT
Eq. (9) [? ]. A special case of GTI is the harmonic po-
tential theorem (HPT), which states that for a system
confined by a harmonic potential and subject to a uni-
form time-dependent electric field, the density trans-
forms rigidly following Eq.(11) where b(t) is the posi-
tion of the center of mass [? ? ? ? ]. (It was shown that
Gross-Kohn functional also violates GTI [? ]).

(iii) Memory Condition
The memory condition states that any instant in time

can be regarded as the ”initial” moment if the wavefunc-
tion is known at that time, and the xc potential should
be invariant as to which previous time is used in its
functional-dependence [? ], i.e.

vXC[nt′ ; Ψ(t′),Φ(t′)](~r, t) is independent of t′for t > t′,
(13)

where nt′(r, t) = n(r, t) for t > t′ and is undefined
for t < t′. This is a very strict condition on the xc po-
tential, tying together initial-state and history depen-
dences, and has implications also when the initial-state
is a ground-state.

(iv) 1-electron Self-interaction Free (1e-SI-free)
As in the ground-state case, the realization that an

electron does not interact with itself yields the condition
that for any one-electron system the correlation poten-
tial is zero and exchange cancels the Hartree potential,

v1e
X (r, t) = −

∫
dr′n(r′, t)w(|r− r′|), v1e

C (r, t) = 0.

(14)

4

Page 4 of 19Physical Chemistry Chemical Physics



(v) Constant Resonances Condition (CRC)
If a system in an arbitrary superposition state, Ψ(t) =∑
n CnΨne

−iEnt, evolving in a static Hamiltonian, is
probed to determine the excitation frequencies, ωi, then
the frequency predicted for a given transition should be
independent of the state, i.e. of the Cn. Within TDDFT
this condition requires a subtle cancellation between
time-dependence of the xc kernel and the KS response
function in a generalized non-equilibrium response for-
malism [? ? ]: the exact (non-equilibrium) Hartree-xc
kernel must compensate time-dependence in the poles
of the KS response function in order to maintain con-
stant ωi. Given an approximation, this condition is dif-
ficult to test analytically; numerically it can be tested by
turning off the external field at a given time T and kick-
ing the system. The frequencies of the ensuing dipole
moment should be independent of T if they satisfy this
condition. Further, the fact that different choices of KS
initial state give different peak positions is also an indi-
cation of CRC violation [? ].
Apart from the exact conditions examined here there are
a number of other known exact conditions [? ] that we
have not yet studied in the context of these approxia-
tions. For example, the behavior of the xc potential un-
der uniform coordinate scaling [? ], which, most gener-
ally is connected with behavior under coupling-constant
scaling, as in the ground-state. It is interesting to note
that if the KS state was chosen as a Slater determinant,
the exchange component scales simply in a linear fash-
ion, however for more general KS states, the separation
into exchange and correlation is no longer straightfor-
ward [? ]. In any case, we leave to future work to reveal
the behavior of the components vWXC and vTC under uni-
form coordinate scaling, and coupling-constant depen-
dence.

A. Table of results

First, let us make some observations regarding the ex-
act components of the xc potential; these are summa-
rized in Table I. All the proofs may be found in Ap-
pendix VI. The exact interaction and kinetic compo-
nents, Eqs. (3) and (4) independently fulfill ZFT, GTI,
memory and are 1e-SI-free. We can further break down
the kinetic component vTC into a part vTint that depends
on the interacting 1RDM and another vTS that depends
on the KS 1RDM: vTint corresponds to replacing ∆ρ1 →
ρ1 and vTS corresponds to replacing ∆ρ1 → ρ1,S in Eq. (4).
So vTC [n,∆ρ1] = vTint[n, ρ1]− vTS [n, ρ1,S]. The two compo-
nents vTint and vTS fulfill ZFT independently. GTI is only
fulfilled by the difference of the two terms. We there-
fore expect a strong violation of GTI when the kinetic
component is approximated by a term that asymmetri-
cally approximates the interacting and KS 1RDMs (as in
the case of vS

XC + v
T,ρ1(0)
C ). None of the individual com-

ponents of the exact vXC satisfy independently the CRC
in general; the full sum of these terms is generally re-

quired.

In Table II we summarize the results for the approx-
imations presented in section II A; the proofs can be
found in Appendix VI for all conditions except the CRC.
The latter is difficult to prove analytically, so we rely
on numerical examples, and in all cases we found one
example which explicitly showed peak shifting indica-
tive of the violation of this condition. We separate the
analysis of the vS

XC component from the kinetic compo-
nents, considering their satisfaction or violation of the
exact conditions independently, although in practise we
always evolve a kinetic component in conjunction with
vS
XC. The potential vS

XC fulfills all exact conditions consid-
ered here, except for the CRC, and presents the more ro-
bust performance as we shall see in section IV, although
it does not always give results that are the ones closest to
the exact. On the other hand, vTC (0) violates all of them
except 1e-SI-free. Freezing the difference in the 1RDMs,
v
T,∆ρ1(0)
C fulfills ZFT and is 1e-SI-free; it turns out to per-

form quite well for some of the dynamics when used in
combination with vS

XC as we will see in section IV. How-
ever GTI is violated since the system does not trans-
form properly under a boost, but the violation is likely
weaker than that for vT,ρ1(0)

C : there are large cancella-
tions between vTint and vTS that cannot occur when freez-
ing ρ1 while evolving ρS

1 (see discussion later). vT,∆ρ1(0)
C

also violates the memory condition and the CRC. On the
other hand vT,ρ1(0)

C fulfills ZFT but, as mentioned before,
violates GTI strongly due to the asymmetric treatment
of the interacting and Kohn-Sham 1RDMs. Further, this
approximation violates the memory condition and is not
1e-SI-free. In table II we also include the adiabatic local
approximation (ALDA) and the adiabatically-exact (AE)
approximation vAEXC , the later corresponds to propagat-
ing with the exact ground-state xc potential evaluated
on the instantaneous density, vAEXC = vgsXC[n(t)]. vAEXC ful-
fills GTI and therefore also ZFT and so does ALDA [? ?
? ], but ALDA is not 1e-SI-free. Because of the lack of
dependence on the initial interacting and KS wavefunc-
tions and on the history of the density, both adiabatic
approximations trivially fulfill the memory condition [?
]. But both ALDA and AE violate the CRC as was shown
in Refs. [? ? ] respectively.

Exact components ZFT GTI Memory cond 1e-SI-free CRC
vWXC yes yes yes yes no

vTC = vTint − vTS yes yes yes yes no
vTint yes no yes no no
vTS yes no yes no no

TABLE I: Fulfillment of exact conditions by the exact
components of the xc potential.

5
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Approximations ZFT GTI Memory cond 1e-SI-free CRC
vS
XC yes yes yes yes no

vTC (0) no no no yes no
v
T,∆ρ1(0)
C yes no no yes no
v
T,ρ1(0)
C yes no no no no
vAEXC yes yes yes yes no

vALDAXC yes yes yes no no

TABLE II: Fulfillment of exact conditions by the
proposed approximations to the interaction and kinetic
components. Also included are the adiabatically-exact

(AE) and ALDA approximations.

IV. ANALYSIS FOR NON-EQUILIBRIUM DYNAMICS

In this section we analyze the performance of the non-
adiabatic approximations introduced in section II A to
simulate electron dynamics. We focus on systems driven
well beyond linear response from their gs, i.e. non-
equilibrium situations, where we expect memory (non-
adiabaticity) to be quite relevant. In general, the per-
formance of an xc functional approximation will likely
depend on the system, the particular dynamics under
study, and the observables of interest; as evident from
the literature, even the simplest approximation, ALDA,
has a performance range of abysmal to accurate enough
to be very useful [? ]. This should be borne in mind
when a limited range of studies is done, as here, how-
ever at the same time, these studies could be carefully
used to indicate expected behavior of the functionals in
more general situations.

We choose a numerically exactly-solvable model sys-
tem for which we can compute the exact evolution of
the many-body wavefunction. We compare not only the
performance of the approximation to simulate the den-
sity evolution but also the features of the potential as
the dynamics evolves. The system is a one-dimensional
model of the Helium atom: Two soft-Coulomb interact-
ing electrons in a soft-Coulomb well (atomic units are
used throughout),

Ĥ =
∑
i=1,2

(
−1

2

d2

dx2
i

− 2√
x2
i + 1

+ vapp(xi, t)

)

+
1√

|x1 − x2|2 + 1
.

(15)

where vapp(x, t) is an applied potential, mimicking a
laser field.

All computations were performed using an in-house
code. The spatial length of the simulation box is 40 a.u.
with spacing 0.1 a.u. and has absorbing boundaries; the
time-step used was ≤ 0.02 a.u.

A. Field-free evolution of a superposition state

Our first case study is a superposition state evolving
freely, i.e. vapp(x, t) = 0. We prepare the He atom in a
50:50 superposition of the ground and first-excited sin-
glet state and we let it evolve freely,

Ψ(0) =
1√
2

(Ψ0 + Ψ1) , (16)

where Ψi = Ψi(x1, x2) denote the many-body eigen-
states of Hamiltonian Eq. (15) with vapp(x, t) = 0. The
frequency of the dynamics corresponds to the energy
difference between ground and first excited state, ω0 =
E1 − E0 = 0.534 a.u. (period T0 = 2π/ω0 = 11.788 a.u).

Our proposed approximate functionals depend on the
choice for the KS initial state Φ(0). Note that this is a
separate statement than simply the fact that different ini-
tial states yield different dynamics under the same po-
tential: here the potential itself depends on the initial
state. The theorems of TDDFT state that any KS ini-
tial state may be chosen provided it has the same ini-
tial density and initial first time-derivative of the den-
sity as the true interacting state. The exact xc potential
is different for each choice, but yields the same density-
dynamics for each choice. The potentials in an adiabatic
approximation are invariant to the choice and yield dif-
ferent density-dynamics for each (and some investiga-
tions have been made whether one can judiciously pick
an initial Kohn-Sham state for a given physical state in
which an adiabatic approximations performs best [? ? ?
]). Like the exact xc potential, our approximate poten-
tials are sensitive to the choice of initial KS state, but un-
like the exact xc potential, the dynamics differs greatly
depending on this choice.

We explore the following choices:
1. single Slater Determinant (SSD):

Φ(x1, x2, 0) = ϕ(x1)ϕ(x2) (17)

where ϕ(x) =
√
n(x, 0)/2, with n(x, 0) the initial density

of the interacting system,
2. non-interacting 50:50 superposition:

Φ50:50(0) =
1√
2

(Φ0(x1, x2) + Φ1(x1, x2)) , (18)

where Φ0 is the ground state and Φ1 is the first non-
interacting singlet single excitation

Φ1(x1, x2) =
1√
2

(ϕ0(x1)ϕ1(x2) + ϕ1(x1)ϕ0(x2)) , (19)

with ϕ0 and ϕ1 the ground and first excited orbitals of
a non-interacting potential such that the one-body den-
sity of Φ50:50(0), nΦ50:50(0) = 1

2

(
3|ϕ0(x)|2 + |ϕ1(x)|2

)
+√

2Re[ϕ∗0(x)ϕ1(x)] = n(x, 0).
To obtain ϕ0(x) and ϕ1(x) we use an iterative proce-

dure that targets the initial density. The procedure is
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close to the ones found in Ref. [? ? ]. At every itera-
tion the eigenstates ϕi(x) are found for a guess of the
potential vS(x) and a density n(x) is obtained from Φ0

or Φ50:50(0). Then a correction in the potential is added,
proportional to n(x) − ntarget(x). Here we actually use
λ(n(x) − ntarget(x))/(n(x) + ε) where λ and ε are small
numerical parameters. The convergence criterium is the
difference between the two densities.

We compare the densities and potentials resulting
from propagating these initial KS states under our ap-
proximations, with the exact ones.

To find the exact time-dependent potential, a variant
of the global fixed point iteration method of [? ? ]
was used. While the method of Ref. [? ] has been de-
signed to also have a high accuracy even in the low den-
sity regions, which requires a careful treatment of the
boundary conditions and low density regions, we are
not so much focused on low densities and tail regions
in this work. We therefore adopted a more pragmatic
approach, introducing a cut-off that flattens the poten-
tial in the small-density regions. The cut-off takes the
form g(x) = 1

2 + 1
2 tanh[α(n(x) − c)] where c is the cut-

off and α is a large constant. For a potential of the form
v(y) =

∫ y
f(x)dx applying the cut-off corresponds to

v(y) =
∫ y

g(x)f(x)dx. Since the method of [? ] in each
time-step tries to get the right density, and thus within
each time-step to compensate the error in the density
caused by for example the cut-off, it causes an overly os-
cillatory potential in the low density regions. We there-
fore further limited the number of iterations to three to
avoid this issue. As initial guess we used the analytic
formulas, Eqs. (3) and (4), since we also propagate the
correlated wave function. (Though analytically exact,
these formulas alone do usually not lead to a stable nu-
merical propagation: the numerical error created by the
multiple derivatives and integrations lead to a density
that drifts away from the reference density).

1. SSD choice for Φ(0)

In Fig. 1 we show the dipole d(t) =
∫
xn(x, t)dx and

norm N(t) =
∫
n(x, t)dx for the field-free evolution of

the superposition state of Eq. (16) with first KS initial
state choice of the previous subsection, the SSD Eq. (17).
The exact dynamics is shown in black line. Propagat-
ing using vS

XC (in green dashed) which, for two elec-
trons and SSD choice, corresponds to adiabatic exact-
exchange (AEXX) yields a dipole that appears to oscil-
late with more than one frequency, giving an envelope
to the oscillations, and neither the dominant frequency
nor the amplitude of oscillations are captured well. The
ALDA propagation (blue dotted) is also shown, and
it approximates the frequency of the oscillation a lit-
tle better than AEXX, but the amplitude is poor and
again there is a beating over long time. The propaga-
tions that include the various approximate vTC improve
over the traditional approximations for only a very short
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FIG. 1: Field-free dynamics of the 50:50 superposition
state Eq. (16) where the approximate TDDFT

calculations propagate the SSD choice for initial KS
state Φ(0), Eq. (17). Norm (upper panel) and dipole

moment (lower panel) for exact (black line),
vS
XC =AEXX (green dashed), vS

XC + vTC (0) (magenta
triangles), vS

XC + v
T,∆ρ1(0)
C (red crosses), vS

XC + v
T,ρ1(0)
C

(light blue squares) and vALDA
XC (blue dotted). Time is

given in a.u. here and in all following graphs.

time but soon deviate dramatically with qualitatively
wrong behavior even before half a cycle of the evolu-
tion. We will now discuss what goes wrong with each
of these, with the help of the density and potential time-
snapshots within the first optical cycle shown in Fig. 2.

We first note that when a SSD is chosen for the KS
system, with one doubly-occupied orbital, the features
of the exact vXC (in black line) have the periodicity of
the density dynamics: initially the density has a mini-
mum on the left side coincident with a large dynamical
step and peak in vTC , which decreases and disappears as
the density becomes symmetric around t = 3a.u., before
building up again on the other side, such that at half-
cycle (t ≈ 6 a.u.) vXC and the density are a mirror images
of their initial values.

Consider now the potentials of the traditional approx-
imations, vS

XC =AEXX and ALDA (in green dashed and
blue dotted in Figs. 1-2). Although both the AEXX and
ALDA dipoles are close to the exact for t < 3a.u. the
shape of the density at this time has already started to
deviate. The vS

XC potential is generally a very good ap-
proximation to the exact interaction part vWXC of the xc
potential [? ] but it completely misses the step and
peak features present in the exact vTC , simply smoothly
cradling the density as it evolves, and ALDA also does
not capture these structures. These missing structures
are important to get the details of the dynamics right,
including the period, as evident in the plots.

Consider now propagation with vS
XC +vTC (0) (magenta

7
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FIG. 2: Density (upper panel) and vXC potential (lower
panel) for the same dynamics as Fig.1 shown at initial
time, and at three other times indicated within the first
cycle. Left panel: exact (black line), vS

XC =AEXX (green
dashed), vS

XC + vTC (0) (magenta triangles) and vALDA
XC

(blue dotted). Right panel: exact (black line),
vS
XC + v

T,∆ρ1(0)
C (red crosses) and vS

XC + v
T,ρ1(0)
C (light

blue squares). The vS
XC + v

T,ρ1(0)
C potential is scaled by a

factor of 10−5 at t = 6a.u. and t = 9a.u..

triangles curves in Figs. 1-2). As vTC (0) is static, the large
initial step in the kinetic correlation part of the poten-
tial remains for all time, and as a consequence the den-
sity leaks to the left and is unable to slosh back to the
right (see magenta triangles density in left panel Fig. 2).
The density eventually gets absorbed by the boundary
around t ≈ 30a.u. as can be seen in the evolution of the
norm in the upper panel of Fig. 1.

We turn now to propagation under vS
XC + v

T,∆ρ1(0)
C ,

where again the dipole swings far too much to the left
(Fig. 1), resulting in a large unphysical absorption evi-
dent in the norm in the top panel. The reason for this
becomes evident from the right panel of Fig. 2: Freez-
ing ∆ρ1 in vTC results in a step that, although varying
in size, is always on the left, pulling the density consis-
tently over to the left.
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FIG. 3: Exact components vTint (red dashed) and −vTS
(blue dotted) of the exact kinetic component

vTC = vTint − vTS (black thick line) for field-free dynamics
evolution of superposition state Eq. (16) at initial time

and at about 1/4 cycle (t = 3 a.u.). Top panel: SSD
choice Eq. (17) for KS initial state. Lower panel:

Superposition choice Eq. (18) for the KS initial state.

On the other hand, propagation under vS
XC + v

T,ρ1(0)
C

yields a dipole that displays a most peculiar flattening
after half a cycle (light blue squares in Figs. 1 and 2).
The freezing of the interacting 1RDM while keeping the
KS 1RDM dynamical has drastic consequences, as can
be seen from first recalling the exact vTC : Both the exact
vTint and vTS display large dynamical steps that tend to
counteract each other, yielding a smaller step in the ex-
act vTC , at times even canceling each other (see Fig. 3 and
movie 1 in supplementary material). Freezing only the
interacting 1RDM as in vT,ρ1(0)

C leads to the development
of a disproportionately large step at times, resulting in
instabilities and the poor dynamics as shown here.

Satisfaction of the ZFT is demonstrated in Fig. 4 which
plots the left-hand-side of Eq. (9) for the different ap-
proximations. From Table II, all approximations except
for vS

XC + vTC (0) are expected to satisfy the ZFT, and give
zero. The deviation of vS

XC + v
T,ρ1(0)
C (light blue squares)

is a numerical error related to the very large steps that
appear in this approximation as just discussed. The
spike in vS

XC + v
T,∆ρ1(0)
C (red crosses) at around 25 a.u.

is a numerical artifact caused by the step in the potential
at that time being very large and sharp. Notice the rela-
tively large violation of the ZFT for vS

XC+vTC (0) (magenta
triangles) in this dynamics.

We conclude that except for quite short times, the new
approximations do not improve the dynamics of a field-
free superposition state when the initial KS state is cho-
sen to be a SSD; in fact the traditional approximations
ALDA and AEXX (coinciding with vS

XC in this case) are
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FIG. 4: Violation of ZFT: The left-hand-side of Eq. (9) in
field-free evolution of superposition state Eq. (16), in
propagation under vS

XC (green dashed), vS
XC + vTC (0)

(magenta triangles), vS
XC + v

T,∆ρ1(0)
C (red crosses),

vS
XC + v

T,ρ1(0)
C (light blue squares) and vALDA

XC (blue
dotted). Upper panel: SSD choice Eq. (17) for KS initial

state. Lower panel: Superposition choice Eq. (18) for
the KS initial state.

more reliable, although inaccurate.
One might be tempted to argue that these results have

limited relevance, since starting the KS system in an SSD
when the interacting state is a 50:50 superposition state
would be a bad choice, making a challenging job for ap-
proximate functionals to do well. However, this could
well be the situation reached when the system began in
the ground-state, with some field applied that brought
the interacting state to a 50:50 superposition state, at
which point the field is turned off. Then the natural
choice for the initial KS state is the KS ground-state, and
we are stuck with a SSD for the whole evolution.

2. Superposition choice for Φ(0)

Fig. 5 shows the field-free superposition state dynam-
ics for the different approximations when the KS initial
state is chosen to be Eq. (18). Considering first the tra-
ditional approximations ALDA and AEXX = −vH/2, we
observe a great improvement in their performance with
this choice of KS initial state, compared to the Slater de-
terminant choice. In fact ALDA is remarkably good:
choosing a KS initial state structure that is close to that
of the true system seems to override the errors from the
ground-state xc assumption inherent in the adiabatic na-
ture of ALDA, its self-interaction error, and its locality in
space. It is the configuration of the initial KS state that is
key: if instead we used LDA orbitals but still within the
first-excited Slater determinant configuration of Eq. (18),
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FIG. 5: Time-dependent dipole moment (lower panel)
and norm (top panel) for field-free dynamics of 50:50

superposition state Eq. (16). Initial KS state Φ(0) is
chosen as in Eq. (18). Shown are results of propagation

under the exact (black line), vS
XC (green dashed),

vS
XC + vTC (0) (magenta triangles), vS

XC + v
T,∆ρ1(0)
C (red

crosses), vS
XC + v

T,ρ1(0)
C (light blue squares), AEXX= −vH2

(yellow doubled dot dashed) and ALDA (blue dotted).

the dynamics is similar although not as accurate (see
shortly). In fact ALDA outperforms the spatially non-
local AEXX, suggesting the importance of an adequate
accounting of correlation for this example, with even
the local-density ground-state correlation approxima-
tion doing a good job here. We will see that freezing the
kinetic component of the correlation in various ways in
our new approximations, together with the correlation
contained in vS

XC, do not provide a sufficiently good cor-
relation component to compete with the simple ALDA
for more than short to intermediate times.

Turning then to the new approximations, we first
note that, unlike the SSD choice, none of the approxi-
mations lead to the unphysical situation of the density
reaching the boundaries and being absorbed, at least
until much later (for vS

XC + vTC (0), magenta triangles),
as shown by the norm. Two of the approximations,
namely vS

XC (which gives dynamics close to AEXX) and
vS
XC + v

T,∆ρ1(0)
C do a reasonable job however none of

them beats the remarkable performance of ALDA for the
dipole dynamics as noted above. Inclusion of vT,∆ρ1(0)

C

tends to yield a worse amplitude but a better dominant
frequency than vS

XC. Performing a Fourier transform of
the dipole yields the frequencies, ω = 0.515 ± 0.006 a.u.
for vS

XC + v
T,∆ρ1(0)
C as compared with ω = 0.584 ± 0.006

a.u. for vS
XC while the exact frequency is ω0 = 0.534

a.u, best approximated by ALDA’s frequency of ω =
0.527± 0.006a.u.

These two new approximations, vS
XC and vS

XC +
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v
T,∆ρ1(0)
C yield a good density evolution, as can be seen

in Fig. 6 in green dashed and red crosses respectively,
where they can be compared with the exact density and
potential (black line). The exact vTC for this choice of KS
initial state is initially much smaller than for the SSD
choice (c.f. Fig. 2), and vS

XC, which, as we noted before
is a very good approximation to vWXC, then plays a rela-
tively more important role than in the SSD case. We note
that vS

XC in this case is not equivalent to TDEXX: it con-
tains some correlation due to the KS state configuration,
and has memory-dependence in that it is an implicit
functional of the density at earlier times and of the KS
initial state. Including v

T,∆ρ1(0)
C now partially captures

the step and peak features of the exact potential and the
step ”switches sides” unlike for the SSD case. Notice
that from approximately t = 6a.u. onwards the exact vXC

is no longer periodic while the density is (unlike the case
in the previous section where a SSD is used). The dy-
namical features of the exact vTC become more and more
complex as the system evolves and at later times they
become eventually as large as the ones observed for the
SSD choice (see also Ref. [? ]); the movie 2 in supplemen-
tary materials displays the densities and xc potentials
from exact propagation, ALDA, vS

XC, and vS
XC +v

T,∆ρ1(0)
C .

Turning now to the other two approximations, vS
XC +

vTC (0) and vS
XC + v

T,ρ1(0)
C , the performances are poor,

although the release of density then absorbed by the
boundaries is less compared to the SSD case. This is be-
cause the step in the initial kinetic components is less, so
even if frozen as in vS

XC + vTC (0), it results in less density
moving out to the left. Propagation with vS

XC + v
T,ρ1(0)
C

(light blue squares) suffers from the same problem as in
the SSD choice: the uneven treatment of the interacting
and KS density matrices results in a huge step in the po-
tential that prevents the density from sloshing back and
forth as it should (right panel of Fig. 6).

Finally, since typically orbitals that reproduce the ex-
act density are not easily obtained, we show in Fig. 7 the
results of propagating a state of the form Eq. (18) where
the LDA ground and first-excited orbitals are inserted
into the KS states. We show the best of our new approx-
imations, along with ALDA. We notice that the density-
dynamics is generally significantly worsened for both
propagation with ALDA and vS

XC + v
T,∆ρ1(0)
C compared

to when initial orbitals that reproduce the exact initial
density are used.

B. Arbitrary field starting in the ground state

Next we study the dynamics of system Eq. (15) ini-
tially in the gs and driven by a non-resonant, fairly
strong, laser field, vapp(x, t) = E(t)x, where E(t) =
0.1 sin(0.4t). Since we start in the gs the natural choice is
a SSD for the KS initial state, and this is the only choice
we consider here. In Fig. 8, the dipoles and norm for the
exact and approximate KS evolutions, beginning in the
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FIG. 6: Time snap-shots of the density (upper panels)
and vXC potential (lower panels) for the dynamics

shown in Fig.5. Left panel: exact (black line), vS
XC (green

dashed), vS
XC + vTC (0) (magenta triangles) and vALDA

XC

(blue dotted). Right panel: exact (black line),
vS
XC + v

T,∆ρ1(0)
C (red crosses), and vS

XC + v
T,ρ1(0)
C (light

blue squares). The latter has been scaled by 10−4 for
t = 9au and t = 15au.

initially exact KS orbital ϕ(0) =
√

n0

2 , are shown.
The propagation with vS

XC=AEXX alone (in green
dashed) is excellent till almost t = 12 a.u., after which
it begins to significantly deviate from the exact. The
other traditional approximation ALDA (in blue dotted)
is not as good as AEXX in this case for the first few
cycles but stays closer to the exact than AEXX at later
times. Fig. 9 shows that in fact both these approxima-
tions and the new ones, except for vS

XC +v
T,ρ1(0)
C which is

not shown (see below), capture the structure of the den-
sity and the potential quite well in the central region;
the noticeable deviations of the dipole moments of the
approximations in Fig. 8 arise from errors in the density
further out where the density itself is not very large, but
these errors get enhanced by the multiplication by x in
the calculation of the dipole moment (which, addition-
ally, highlights asymmetric structures in the density).

Adding the correlation potential frozen to its initial
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FIG. 7: Time snap-shots of the density (upper panel)
and vXC potential (lower panel) for field-free dynamics
starting in 50:50 superposition state Eq. (16) and using
KS initial state of the form Eq. (18) but with the gs and

first excited LDA orbitals. Propagation with
vS
XC + v

T,∆ρ1(0)
C (red crosses) and vALDA

XC (blue dotted).
In black line the exact dynamics.

value, vS
XC + vTC (0) (in magenta triangles) does not im-

prove the results over vS
XC (except at short times) as can

be seen by comparing the green dashed and magenta
triangles curves in Fig. 8 and in the density time snap-
shots of Fig. 9. In this case the system starts off weakly
correlated, and the exact potential is a smooth well ini-
tially, but as the laser field kicks in and begins to drive
the interacting system far away from approximately a
single Slater determinant, correlation increases, as is re-
flected in the increased size of the structures in the exact
vTC evident in Fig. 9; these structures appear in vTC rather
than in vWXC which remains quite smooth. As vS

XC + vTC (0)
freezes the vTC to its initial value, it cannot capture these.

The approximation v
T,∆ρ1(0)
C (red crosses) does in-

clude partial step structures, although not always quite
in phase with the exact (see also the movie 3 in the sup-
plementary material). However, these do not appar-
ently have a significant effect on the ensuing dynamics,
neither in the region where the density is appreciable,
nor in the dipole moment that weighs more the low-
density regions further out, and the dipole moment is
not better than the traditional approximations except at
short times. One aspect of the largest of these step struc-
tures for this dynamics, is that they can change very
rapidly, for example the large step switches sides from
t = 43 a.u. to 44 a.u. Also, at t ≈ 60 a.u. the exact
dynamics begins to show some absorption (see upper
panel Fig. 8) which is underestimated in vS

XC + v
T,∆ρ1(0)
C .

This leads to some discrepancy in the dipole moments,
but the density in the central region is very well repro-
duced still (see lower panel in red crosses in Fig. 9).

The propagation under vS
XC + v

T,ρ1(0)
C develops very

large features near the boundaries (no compensation of
the large step in vS

C, as in the discussion in the previous
section) that progressively approach the central region,
growing in size, and by t ≈ 5 a.u. the step has become so
large and sharp, that the propagation results in a freez-
ing of the density on the left (in light blue squares in
Fig. 8) .
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FIG. 8: Dynamics of the laser-driven gs. Norm (upper
panel) and dipole (lower panel) for exact (black line),
vS
XC =AEXX (green dashed), vS

XC + v
T,∆ρ1(0)
C (red

crosses), vS
XC + vTC (0) (magenta triangles) and

vS
XC + v

T,ρ1(0)
C (light blue squares) and vALDA

XC (blue
dotted).

Finally, in practice we rarely have access to the ex-
act initial KS orbitals, and approximate DFT orbitals are
used for the initial state. In Fig. 10 LDA orbitals are
propagated using vS

XC + v
T,∆ρ1(0)
C and ALDA, showing

a noticeable deviation from the results when the exact
initial orbitals are used, especially, in this case for the
propagation under vS

XC + v
T,∆ρ1(0)
C .

V. CONCLUSIONS

Building approximations based on the exact expres-
sion for the time-dependent xc potential, Eq. (1), allows
us to immediately break free of the adiabatic approxi-
mation in TDDFT. The expression requires approxima-
tions for the time-evolving xc hole and for the 1RDM
of the interacting system, quantities that are not accessi-
ble in a KS calculation. In this work, we have proposed
a number of practical approximations to these terms,

11

Page 11 of 19 Physical Chemistry Chemical Physics



0

0.5 t=0

-0.5

0

0.5 t=19

-4

-2

0

2

0

0.5 t=43

-1

0

1

0

0.5 t=44

-4

-2

0

2

-10 -5 0 5 10

x (a.u.)

0

0.5t=0

-0.5

0

0

0.5t=19

-4

-2

0

2

0

0.5t=43

-1

0

1

2

0

0.5t=44

-10 -5 0 5 10
-4

-2

0

2

x (a.u.)

FIG. 9: Density (upper panels) and vXC potential (lower
panels) for the laser-driven gs. Left panel: exact (black

line), vS
XC =AEXX (green dashed) and vS

XC + vTC (0)
(magenta triangles). Right panel: exact (black line) ,
vS
XC + v

T,∆ρ1(0)
C (red crosses) and vALDA

XC (blue dotted).

evaluated their satisfaction of some known exact con-
straints in TDDFT, and explored their performance on a
few model systems. The approximations have memory-
dependence, in particular initial-state dependence, and
how well they perform in turn depends on the choice of
KS state in which to begin the propagation. The func-
tionals can be viewed as orbital-functionals, however
they do not require TDOEP in their operation, and have
an explicit dependence on the initial interacting many-
body state and the initial choice of KS state.

Two of these newly proposed approximations stand
out. One is vS

XC in which all quantities in the exact ex-
pression for vXC are replaced by their KS counterparts.
This approximation has been explored in recent litera-
ture where it was found to be an excellent approxima-
tion to the interaction component vWXC of the exact po-
tential [? ? ] and to yield a significant improvement
in dynamics of an electron approaching a target in scat-
tering compared to ALDA and AEXX [? ? ] albeit ul-
timately failing to actually scatter even qualitatively. In
the examples studied here, it provides a reasonable ap-
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FIG. 10: Time snapshots of the density (upper panels)
and vXC (lower panels) for laser-driven dynamics

starting in the LDA ground-state: propagation under
exact (black line), ALDA (blue dotted), vS

XC + v
T,∆ρ1(0)
C

(red crosses).

proximation, although ALDA was in fact generally bet-
ter. A dynamical accounting of correlation beyond what
is present in vS

XC is required. The approximation satis-
fies the most exact conditions out of the new approxi-
mations considered, including ZFT, GTI, 1e-SI-free, and
the memory condition.

The second approximation that worked reasonably
well was vS

XC +v
T,∆ρ1(0)
C , where the kinetic component is

approximated by freezing the difference in the 1RDMs
to the initial value. In the examples considered here, it
did not perform particularly better than the traditional
approximations; a better accounting of correlation is re-
quired. The approximation satisfies the ZFT and is 1e-
SI-free, but violates the other exact conditions we con-
sidered. A key factor in determining the accuracy of the
performance of any approximation, is the choice of the
KS initial state; the field-free propagation of the super-
position state demonstrated clearly the vast improve-
ment of all approximations once the KS initial state was
chosen with a configuration close to that of the interact-
ing state.

It is clear that better approximations are needed for
the kinetic term, that involve a dynamical approxima-
tion to the 1RDM of the interacting system, and such
developments are underway [? ]. This term is more
challenging as it has much more structure and a stronger
non-adiabatic dependence than the interaction term [? ].
How well these approximations work for realistic many-
electron three-dimensional systems remain to be seen.
For robust performance, we expect that certainly the ap-

12

Page 12 of 19Physical Chemistry Chemical Physics



proximation should satisfy the ZFT; satisfaction of GTI,
1e-SI-free, memory-condition, and CRC will likely im-
prove its accuracy. As in the ground-state case, it is not
always clear which exact conditions are most important
for predicting a functional approximation’s success. The
approach pointed to in this work, based on approxima-
tions to the 1RDM-difference and xc hole appearing in
Eq. (1), provides a starting point to develop such practi-
cal memory-dependent approximations.

Acknowledgments: Financial support from the US Na-
tional Science Foundation CHE-1566197 (NTM) and the
Department of Energy, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences and Bio-
sciences under Award DE-SC0015344 (JIF and LL) are
also gratefully acknowledged. JIF acknowledges CON-
ICET Argentina. SEBN acknowledges financial support
from the European Research Council (ERC-2015-AdG-
694097) and European Union’s H2020 programme un-
der GA no. 676580 (NOMAD).

VI. APPENDIX

A. Zero Force Theorem Satisfaction

1. Exact components: vWXC, vTC , vTint, and vTS

Here we prove that vWXC, vTC , vTint, and vTS indepen-
dently satisfy the ZFT, Eq. (9).

Beginning with vWXC, we write nXC(r, r′, t) in terms of
the pair density, so that ∫

n(r, t)∇vWXC[n](r, t)d3r =∫ ∫
n(r, t)

(
P (r′, r, t)

n(r, t)
− n(r′, t)

)
∇w(|r′ − r|)d3rd3r′

(20)

Interchanging r ↔ r′ in Eq. (20) we get the same but
with opposite sign since the integral is antisymmetric
due to the gradient,∇r′w(|r′−r|) = −∇rw(|r′−r|). Thus
the only possible solution for Eq. (20) is zero. Note that
the 1

n(r,t)∇× ai(r, t) terms do not contribute to the ZFT
integral, and so we ignore them in the present discus-
sion. This is because

∫
∇ × ai(r, t)dr equals the surface

integral of the cross product of the normal vector and
ai(r, t), which vanish as ai(r, t) vanish at infinity (as the
other terms in n∇vWXC and n∇vTC vanish at infinity).

Because the exact vXC satisfies ZFT and vWXC does inde-
pendently, then vTC = vXC−vWXC must also independently
satisfy the ZFT. This can also be shown explicitly. In fact,
even the exact interacting and KS contributions to vTC in-
dependently satisfy the ZFT, as we will now show (and
hence this also shows explicitly that vTC independently
satisfies it).

Consider the force contribution from the interacting

part, vTint,∫
n(r, t)∇vTint(r, t)d3r =

1

4

∫
d3r (∇′ −∇)

(
∇2 −∇′2

)
(ρ1(r′, r, t)) |r′=r

=
N

2
Re

∫
d3rd3r2..d

3rN
(
∇Ψ∗∇2Ψ−Ψ∗∇3Ψ

)
=
N

4

∫
d3rd3r2..d

3rN∇
(
4|∇Ψ|2 −∇2|Ψ|2

)
(21)

where arguments (r, r2...rN ) are understood for the
wavefunctions, and ∇ is the gradient with respect to
r. To obtain the third line, the definition of the 1RDM
in terms of the wavefunction is inserted, and we have
noted that ∇′ = ∇r′ acts only on Ψ∗(r′, r2..rN ) while
∇ = ∇r acts only on Ψ(r, r2..rN ). Noting that the inte-
grand in the final line is in fact a total gradient, we see
that upon performing the integral over r, the integral
vanishes for finite or periodic systems where the inte-
grand vanishes at infinity or is identical at either end of
the periodic system. Hence, the ZFT is satisfied by vTint.
An identical argument can be made using KS wavefunc-
tions, to show that vTS also satisfies the ZFT.

We conclude that both
∫
n(r, t)∇vTint(r, t)d3r and∫

n(r, t)∇vTS (r, t)d3r vanish independently, and there-
fore vTC fulfills ZFT independently of vWXC.

2. Approximations: vS
XC, v

T
C (0), v

T,∆ρ1(0)
C , v

T,ρ1(0)
C

That vS
XC satisfies the ZFT follows from the same ar-

gument as applied to vWXC in the previous section, noting
that the KS pair density PS(r, r′, t) obeys the same sym-
metry relations as for the true pair density.

Turning to the frozen kinetic components, consider
first vTC (0), for which ∫

n(r, t)∇vTC (r, 0)d3r =∫
d3r

n(r, t)

n(r, 0)

∫
d3r′(∇′ −∇)(∇2 −∇′2)∆ρ1(r′, r, 0)|r′=r

(22)

At the initial time, the right-hand-side is zero, as follows
from the previous section, but at later times, due to the
ratio of the densities factor, the arguments of the pre-
vious section cannot be made, and there is no guaran-
tee that the integral will be zero. In fact it is generally
non-zero, and therefore vTC (0) violates the ZFT. This is
also evident in the numerics as can be seen in Fig. 4 and
the violation leads to numerical instabilities from ”self-
excitation”of the system [? ].

Fortunately, the other two frozen approximations do
satisfy the ZFT. By keeping the density in the denom-
inator of Eq. (4) dynamical and equal to the evolving
density, the density factor in the zero force expression
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∫
n(r, t)∇vT,∆ρ1(0)

C d3r is exactly cancelled and the ar-
gument follows closely to that of Eq. (21) and subse-
quent discussion in the previous subsection. Likewise,
the proof there that the two components of vTC indepen-
dently satisfy the ZFT, ensures that vT,∆ρ1(0)

C and vT,ρ1(0)
C

also satisfy it.

B. Generalized Translational Invariance Satisfaction

1. Exact components: vWXC, vTC , vTint, and vTS

From the expression, Eq. (12), for the boosted wave-
function discussed in section III it follows that the xc
hole transforms as nbXC(r1, r2, t) = nXC(r1 + b(t), r2 +
b(t), t) under a boost. Given the invariance of w(|r1 −
r2|) under such a transformation we conclude that the
vWXC component fulfills GTI,

vW,bXC [nXC](r, t) = vWXC[nXC](r + b(t), t). (23)

To study the translational invariance of the kinetic
correlation potential we again separate it into interact-
ing and KS contributions, ∇vTC = ∇vTint − ∇vTS , and
study the behavior of each term separately under the
boost. That is,

∇vT,bint (r, t) =

(∇′ −∇)
(
∇2 −∇′2

)
ρb1 (r′, r, t)|r′=r

4nb(r, t)
+
∇× abint(r, t)

nb(r, t)
(24)

where

ρb1 (r′, r, t) = e−iḃ(t)·(r−r′)ρ1(r′ + b(t), r + b(t), t) (25)

Neglecting the∇×abint term momentarily, and working
through the derivatives eventually leads to

∇vT,bint (r, t) = ∇vTint(rb(t), t)−

(
ḃ(t) · ∇

)
j(rb(t), t)

n(rb(t), t)

+ ḃ(t)
ṅ(rb(t), t)

n(rb(t), t)
+ ḃ(t)

ḃ(t) · ∇n(rb(t), t)

n(rb(t), t)
(26)

where rb(t) ≡ r + b(t) and ṅ = ∂tn.
Eq. (26) shows that∇vTint does not satisfy GTI by itself

even for one-dimension or other cases where aint = 0,
since the last three terms on the right are not gener-
ally zero. However, once we subtract the correspond-
ing equation for ∇vTS , noting that the KS system has the
same density as the interacting system, we find

∇vT,bC (r, t) =

∇vTC (rb(t), t)−

(
ḃ(t) · ∇

) (
j(rb(t), t)− jS(rb(t), t)

)
n(rb(t), t)

(27)

where jS(r, t) is the current-density of the KS system.
In one-dimension, the second term vanishes as the KS
and interacting currents are the same, but in three-
dimensions they are generally not the same. Yet, we
know that the exact full vXC satisfies GTI, and also that
the exact vWXC does, and therefore vTC = vXC − vWXC and
∇vTC must also. The resolution lies in the term ∇×a2(r,t)

n(r,t)

in Eq. (4): in three-dimensions this term is not generally
zero, and it plays a crucial role here in restoring GTI.
Applying the Sturm-Liouville operator to Eq. (27) yields
∇ · [n(rb(t), t)∇vT,bC (r, t)] = ∇ · [n(rb(t), t)∇vTC (rb(t), t)]
since∇ · [j(r, t)− js(r, t)] = 0 by virtue of the continuity
equation, so indeed vT,bC (r, t) = vTC (rb(t), t).

In summary, although ∇vTint and ∇vTS separately are
in general not translationally invariant, their difference,

vT,bC [n,∆ρ1](r, t) = vTC [n,∆ρ1](r + b(t), t). (28)

does satisfy GTI.

2. Approximations: vS
XC, v

T
C (0), v

T,∆ρ1(0)
C , v

T,ρ1(0)
C

The same argument used in the previous section to
prove that the exact vWXC fulfills GTI can be carried
over for the single-particle approximation vS

XC since the
KS xc hole transforms properly under a boost, namely
nS,bXC (r1, r2, t) = nS

XC(r1 + b(t), r2 + b(t), t),

vS,bXC [nS

XC](r, t) = vS

XC[nS

XC](r + b(t), t). (29)

However none of the frozen approximations to vTC sat-
isfy the GTI. In vTC (0) the entire kinetic potential remains
constant in time, so does not transport rigidly under
a boost. Likewise it can be seen that freezing ∆ρ1 in
v
T,∆ρ1(0)
C or ρ1 alone in v

T,ρ1(0)
C will not transform cor-

rectly under a boost.

C. Memory Condition Satisfaction

Adiabatic xc functionals trivially fulfill the memory
condition, Eq. (13) because of the lack of dependence
on the initial interacting and KS states Ψ(0) and Φ(0).
When we introduce partial memory as in the approxi-
mations proposed here, this condition becomes suscep-
tible to being broken.

1. Exact components: vWXC, vTC , vTint, and vTS

The memory condition is fulfilled by the exact inter-
acting component, vWXC,

vWXC[nt′ ,Ψ(t′),Φ(t′)](rt) = vWXC[nXC[Ψ(t)](t)](r, t) (30)

which is independent of t′ < t, because it depends ex-
plicitly on the exact xc hole, nXC(r, r′, t), at time t, which,
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although an implicit functional of the history of the den-
sity and the initial interacting state, is an explicit and in-
stantaneous functional of Ψ(t), from which it is obtained
directly. Likewise, the memory condition is fulfilled by
the two components of the exact correlation potential
independently: vTint explicitly depends on the instanta-
neous interacting 1RDM, an implicit functional of the
history of the density and the initial interacting state, but
is obtained explicitly from the instantaneous interacting
state,

vTint[nt′ ,Ψ(t′),Φ(t′)](r, t) = vTint[ρ1[Ψ(t)](t)](r, t) (31)

and so again is independent of t′ < t. An analogous
argument can be made for vTS , and so the kinetic com-
ponent of the correlation potential satisfies the memory
condition,

vTC [∆ρ1[nt′ ,Ψ(t′),Φ(t′)](t)](r, t) (32)

because it is independent of t′ < t. Note that the bound-
ary terms (∇×ai(r, t))/n(r, t) do not affect this analysis,
since they depend on instantaneous quantities.

2. Approximations: vS
XC, v

T
C (0), v

T,∆ρ1(0)
C , v

T,ρ1(0)
C

In the case of vS
XC the proof follows a similar path as

for the exact interaction component Eq. (30). The poten-
tial vS

XC is an explicit functional of the KS xc hole nS
XC(t)

which is obtained explicitly from the instantaneous KS
wavefunction Φ(t), hence

vS

XC[nt′ ,Ψ(t′),Φ(t′)](rt) = vS

XC[nS

XC[Φ(t)](t)](r, t) (33)

is independent of t′ < t.
In the case of the frozen approximations to the kinetic

component, we first note that these approximations are
defined with freezing parts of the kinetic component to
their values at the time that is considered the initial time,
i.e. the time t′, in vXC[nt′ ,Ψ(t′),Φ(t′)](rt). Therefore,
freezing the entire kinetic potential as in vTC (0) means
freezing it to vTC (t′). This clearly is t′-dependent, and
so violates the memory condition. The approximation
v
T,∆ρ1(0)
C (t) also violates the condition, since, even tak-

ing ai = 0 as in one-dimension,

∇vT,∆ρ1(0)
XC [nt′ ,Ψ(t′),Φ(t′)](t) =

D∆ρ1(r′, r, t′)|r′=r

4n(r, t)
(34)

whereD = (∇′−∇)
(
∇2 −∇′2

)
and ρ1(r′, r, t′) generally

depend on t′. Likewise vT,ρ1(0)
C (t) will violate it in gen-

eral, due to the t′-dependence of the interacting 1RDM
in this approximation.

D. 1-electron self-interaction

1. Exact components: vWXC, vTC , vTint, and vTS

The exact interaction component cancels the Hartree
component for one electron as it should, since forN = 1,
nXC(r′, r, t) = −n(r′, t), and therefore

∇ ·
(
n(r, t)∇vWXC(r, t)

)
= −∇ ·

(
n(r, t)∇

∫
n(r′, t)w(|r′ − r|)d3r′

)
= −∇ · (n(r, t)∇vH(r, t)) . (35)

The two exact components of the kinetic potential are
not independently 1e-SI-free,

vTint 6= 0 and vTS 6= 0 for N = 1 (36)

but it is the subtraction of the two that gives the exact
kinetic correlation component, which properly vanishes
for one electron,

vTC (r, t) = 0 (N = 1) (37)

since for N = 1, Ψ(t) = Φ(t) and thus ρ1(t) = ρ1,S(t)
(and so also the a2(r, t) are identical).

2. Approximations: vS
XC, v

T
C (0), v

T,∆ρ1(0)
C , v

T,ρ1(0)
C

That vS
XC is 1e-SI-free follows directly the argument

above for vWXC, since for one electron Ψ(t) = Φ(t) , the
pair-density is zero, and nS

XC(r, r′, t) = nXC(r, r′, t) =

−n(r′, t). The approximations vTC (0) and v
T,∆ρ1(0)
C are

both 1e-SI-free, because for one electron ρ1(0) = ρS
1(0),

so

vTC (0)(r, t) = 0 and v
T,∆ρ1(0)
C (r, t) = 0 (N = 1)

(38)
On the other hand, for vT,ρ1(0)

C the uneven treatment of
the interacting and KS 1RDMs results, in general, in a 1e
SI error,

v
T,ρ1(0)
C (r, t) 6= 0 t > 0 (N = 1). (39)
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A decomposition of the exact time-dependent exchange-correlation potential offers a new starting point 

for non-adiabatic TDDFT functionals.  
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