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Abstract

Intersystem crossing is a common and important nonadiabatic process in 

molecular systems, and its first-principles characterization requires accurate 

descriptions of both the electronic structure and nuclear dynamics. Here, we report an 

accurate full-dimensional quantum dynamical investigation of collisional quenching of 

the excited state C(1D) atom to its ground state C(3P) counterpart by N2, which is an 

important process in both combustion and interstellar media, using full-dimensional ab 

initio potential energy surfaces and spin-orbit couplings. Satisfactory agreement with 

experimental rate coefficients is obtained. Despite relatively small spin-orbit couplings, 

it is shown intersystem crossing is efficient because of multiple passage via long-lived 

collisional resonances. 
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I. Introduction

Electronic degeneracies, which are prevalent in molecular systems, break the 

Born-Oppenheimer adiabatic approximation and allow transitions between different 

electronic states. One special type of nonadiabatic processes is mediated by spin-orbit 

(SO) coupling, which facilitates spin-forbidden reactions1 and photoreactions.2 This so-

called intersystem crossing (ISC) plays a prominent role in many molecular processes, 

particularly those involving heavy atoms because the SO coupling is a relativistic effect 

proportional to the fourth power of the atomic number. However, recent studies have 

demonstrated that ISC can also be quite facile for reactive systems involving light 

atoms, due apparently to dynamic effects.3-5 To fully understand the dynamics of 

collisional ISC processes, a first-principles characterization of the potential energy 

surfaces (PESs) and their SO couplings, as well as the associated nonadiabatic 

dynamics, is needed. Unfortunately, most of the previous theoretical studies on such 

processes have been based on models with uncertainties in either the PESs or the 

nonadiabatic dynamics.6-10 Thus far, very few first-principles studies have been 

reported, largely due to the complications associated with both the ab initio 

determination of the full-dimensional PESs and SO coupling and/or quantum 

mechanical characterization of the nuclear dynamics.11-13 In this publication, we focus 

on a prototypical collisional ISC process, namely the quenching of C(1D) to C(3P) by 

N2, which is amenable to such a thorough quantum mechanical treatment.

Page 3 of 36 Physical Chemistry Chemical Physics



4

Atomic carbon is present in abundance in combustion, atmospheres, and 

interstellar media. It is well established that the ground state carbon atom, C(3P), is in 

general much less reactive than its excited counterpart, C(1D).14 The quenching of 

C(1D) to C(3P) by N2 is believed to exist in robust nitrogen atmospheres, such as those 

of Earth and Titan. As a result, the quenching reaction may compete with reactive 

processes if the corresponding rates are comparable.15 Early experimental studies of the 

quenching reaction were reported in 1969 by Braun et al.,16 who indirectly monitored 

the pertinent species to measure the rate coefficient using a vacuum ultraviolet 

photolysis method at room-temperature. In 1971, Husain and Kirsch remeasured the 

room-temperature rate coefficient with a direct method.17 In 2016, Hickson et al. 

reported the low-temperature quenching rate coefficient using vacuum ultraviolet laser-

induced fluorescence with a supersonic flow reactor.15 The results suggested that the 

quenching rate increases with decreasing temperature, suggesting a prominent role of 

this ISC process in low-temperature environments.

Theoretically, several ab initio studies of the CN2 free radical have been 

reported,18-25 but three-dimensional PESs for the quenching process are still absent. In 

an effort to understand the quenching dynamics, one-dimensional potential energy 

curves for eight electronic states of CN2 at collinear and perpendicular (C2v) geometries 

were computed by Hickson et al.15 These authors then computed the rate coefficients 

using spherically averaged potentials with a SO coupling matrix.15 Because of the 

severe approximations in that model, their theoretical rate coefficients only provided a 

qualitative characterization of the quenching process.
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In this publication, we focus on the following process

. (R1)1 3
2 2C( D) N ( 0, 0) C( P) N ( , )v j v j     

We report the construction of accurate three-dimensional PESs of several low-lying 

electronic states of the system and the corresponding SO coupling surfaces by fitting a 

large number of high-level ab initio points. The nonadiabatic quenching dynamics are 

investigated using a wave packet method for a range of collision energies, 

Ec=0.001~0.500 eV. The cross sections and rate coefficients are computed and 

compared with the available experimental results. In agreement with experiment, the 

quenching rate increases with decreasing temperature at moderately low temperatures 

between 300 and 50 K. The efficient non-adiabatic quenching cross section is attributed 

to long-lived resonances supported by the PESs, which allow multiple passes of the 

crossing seams. This theoretical study thus sheds light on the ISC process in this 

important prototype. The remainder of the publication is organized as follows. The next 

section (Sec. II) discusses the theoretical methods for treating the ISC dynamics in this 

system, including the definition of representations, the derivation of Hamiltonians, the 

ab initio calculations and fitting of the PESs and SO coupling surfaces, as well as the 

nonadiabatic nuclear dynamics on the coupled PESs. The results are presented and 

discussed in Sec. III. The final section (Sec. IV) concludes. 

II. Theory 

II-A. Representations
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The five electronic states involved in the quenching are 11A', 11A", 13A', 13A", 

and 23A" in Cs symmetry. The electronic orbital momentum quantum number and its 

projection onto the molecular axis are denoted as l and λ, respectively. The latter is a 

good quantum number at linear configurations. At linearity, the 11A' and 11A" states 

form a degenerate pair labeled as 1Δ with |λ|=2, while the 13A' and 23A" states are two 

degenerate components of the 3Π state with |λ|=1. The remaining 13A" state, the ground 

state, is represented in linearity by 3Σ- which has λ=0. Below, we only consider the 

positive values of λ. These states are eigenstates of the electronic Hamiltonian matrix 

.These adiabatic states can be denoted by the following new symbols as:ˆ
elH

, , , , .15 2 2
1 11 A

x y
'


  1 11 A xy''   3 31 A x'   3 32 A y''   3 31 A''  

Depending on the λ discussed above, we can also define signed-λ diabatic basis, , 1
2

, ,  and . The relation between signed-λ basis and adiabatic 1
2 3

1 3
1 3X %

basis can be found in Ref. 26.

When the SO coupling is considered, new bases with explicit inclusion of spin 

have to be used. Following Alexander and coworkers,27, 28 a diabatic representation 

denoted as  is preferred for deriving the electronic Hamiltonian matrix  and  ˆ
elH

SO coupling Hamiltonian matrix , which is defined by λ-signed basis and spin ˆ
soH

projection. Here, λ is conveniently assumed to still be a good quantum number even for 

nonlinear configurations. For the spin, σ is the magnetic spin quantum number, which 

is the projection of the total spin angular momentum (s) on to the z axis. This basis are 

formally the eigenfunctions of both , ,  , and  operators (ħ=1 hereafter):2l̂ ẑl 2ŝ ˆzs
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, ,                                  (1)2ˆ ( 1)l l l   ẑl   

      , .                                (2)2ˆ ( 1)s s s   ˆzs   

For a singlet (triplet) electronic state, the spin angular momentum quantum numbers 

are s=0, =0 (s=1, σ=0, ±1). Thus for CN2, there are eleven diabatic basis, which are 

denoted as , , , , , , , , 3
1;+1 1

2;0 3
1; 1  1

2;0 3 ;0 3
1; 1  3

1; 1  3 ; 1X  %

,  and , in the  form.3
1;0 3 ; 1X  % 3

1;0 2 1 ;s l 

II-B. The Hamiltonians

At linear configurations, the projection of the electronic total angular 

momentum onto the molecular axis is denoted by |ω=l+s|. By integrating over the 

electronic coordinates, one can define the elements of the diabatic potential energy 

matrix (PEM): 

,                                                   (3)ˆ
elH V         

and

.                                                   (4)ˆ
soH W        

In this representation, only couplings between the states with the same  and  are 𝜎 |𝜆|

non-vanishing, as suggested in eqn. (3). Furthermore, couplings between states with 

different  values vanish, as shown in eqn. (4), due to the selection rules of |𝜔 = 𝜆 + 𝜎|

SO coupling.27-29

At C2v configurations, there is a conical intersection (CI) between the 3A2 (

) and 3B1( ) states, but their effects are ignored, as advocated by Hickson et 31 A'' 32 A"

al.15 as the minimum energy crossing (MEX) of the CI is about 0.7 eV higher than the 
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C(1D) + N2 asymptote (R=8.00 Å). Our value for the MEX (R=1.32 Å, r=1.27 Å, and 

 =90°) is 0.62 eV higher than the C(1D) + N2 asymptote. Furthermore, the 1Δ (  and 11 A'

, ω=2) to 3Σ-( , ω=0) ISC channel is not considered, because the 11 A" 31 A''

corresponding SO coupling is much smaller than that between the 1Δ(  and , 11 A' 11 A''

ω=2) and 3Π( and , ω=2) states. This recognizes the latter as the dominant 31 A' 32 A''

ISC quenching pathway. The couplings between states with 1 and others are also |𝜔| =

small and are thus neglected in our dynamic models. With these approximations, we 

can simplify the model by one with only six diabatic states ( , , , 3
1;+1 1

2;0 3
1; 1 

,  and ), in which the electronic Hamiltonian matrix can be 1
2;0 3

1; 1  3
1; 1 

represented as eqn. (3) in Table I. The matrix elements ( , , 1, 1V V   2, 2V V  

, ) in Table I can be obtained from the adiabatic energies obtained 1 1, 1V V m 2 2, 2V V m

from ab initio calculations. In particular, we have

,                                                  (5)
2

xx yyV V
V




,                                                 (6)
2 2

2
xyx y

V V
V 






,                                                (7)1 2
yy xxV V

V




,                                                 (8)
2 2

2 2
xyx y

V V
V 




where 

,                                                (9)3 3ˆ=xx x el xV H 
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,                                               (10)3 3ˆ=yy y el yV H 

,                                            (11)2 2 2 2 2 2
1 1ˆ= elx y x y x y

V H
  

 

.                                           (12)1 1ˆ=xy xy el xyV H 

The matrix of the SO Hamiltonian in the  basis is given by eqn. (4) in Table II. 

The selection rules are  and  or  for the   operator or = =0   0s  1s   ˆ ˆz zl s

 for the  operator between different basis states = 1, = 1    m ˆ ˆˆ ˆ1/ 2 ( )l s l s      

with same signed value of ω.27, 29 The SO coupling elements A ( ), C ( ) 1, 1, 1, 1W    1, 1, 2,0W  

and E ( ) are defined as1, 1, 1, 1W m m

,                                     (13)3 3ˆ;+1 ;+1x so yA i H  

,                                             (14)1 2 3 4
1 ( )
2

C C C C C    

 where

,                                        (15)2 2
3 1

1
ˆ;+1 ;0x so x y

C H


  

,                                           (16)3 1
2

ˆ;+1 ;0y so xyC H  

 ,                                     (17)2 2
3 1

3
ˆ;+1 ;0y so x y

C i H


   

,                                          (18)3 1
4

ˆ;+1 ;0x so xyC i H  

and

.                                        (19)3 3ˆ; 1 ; 1x so yE i H    

Because the off-diagonal energy difference V1 and V2 are relatively small along the 

minimum energy pathway near linearity, where the  and  states are doubly  
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degenerate, this model can be further simplified to involve only two states (  3
1; 1 

and ). In an earlier study of the SO coupled dynamics of the Cl + H2 reaction, 1
2;0

it has been shown a similar simplification is justified and yield good results.28, 30 Hence, 

a reduced two-state model is used here to treat the nonadiabatic dynamics, which has 

the combined Hamiltonian ( ) in Table III. ˆ ˆ+so elH H

II-C. Ab initio calculations and fitting of PESs

The ab initio electronic structure calculations for constructing PESs of the CN2 

system were carried out using the MOLPRO package.31 The molecular orbitals (MOs) 

were determined by the state-averaged complete active space self-consistent field (SA-

CASSCF)32, 33 calculations including eight states (11A', 21A', 31A', 11A", 21A", 13A', 

13A", and 23A" in Cs symmetry), with the full-valence active space involving 20 

electrons in 15 occupied orbitals. The 1s orbitals of the C and N atoms were doubly 

occupied in all configurations and not optimized. The correlation-consistent polarized 

valence triple-zeta with explicitly correlated basis set (cc-pVTZ-F12)34 was used. The 

explicitly correlated and internally contracted multi-reference configuration interaction 

method with the Davidson correction (MRCI-F12+Q)35 was finally used in the ab initio 

calculations. 

About 2000 geometries were generated in the Jacobi coordinates (R, r, ) where 

R is the distance between C and the N2 center of mass, r the N-N distance, and  the 

Jacobi angle. These points were chosen from the following ranges:  R  (0, 8.00 Å), r ∈

 (0.95, 3.00 Å), and   (0 to 90°). The adiabatic PESs of the five lowest electronic ∈ ∈
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states (11A', 11A", 13A', 13A", and 23A" in Cs symmetry) are obtained at these 

geometries. The SO coupling matrix elements are computed by using the Breit-Pauli 

Hamiltonian at the CASSCF level.32, 33

To provide an analytical representation of the ab initio points, the permutation 

invariant polynomial-neural network (PIP-NN) method36, 37 was used in fitting. In the 

PIP-NN method, the NN is frontloaded with low-order PIPs to enforce the permutation 

symmetry of the two N atoms. The PIPs are the symmetrized monomials of the Morse 

like variables designed as38

,                                         (20)
ijr
a

ijp e




where  represents the internuclear distance between the ith and jth atoms and  is set ijr a

to 2.0 bohr in this work. For CN2, the following first order PIPs were used:38

, , ,                         (21)13 23
1 2

p pG 
 2 13 23G p p 3 12G p

where the N, N, and C atoms are labeled as 1, 2, and 3, respectively. The PIP-NN 

method has been quite successful in constructing high fidelity global PESs for small 

systems.39

In this work, the standard feed-forward NN is constructed with  being the input { }iG

layer. The ab initio points are randomly divided into training (90%), validation (5%), 

and testing sets (5%), respectively. The NNs are trained using the Levenberg-Marquardt 

algorithm with early stopping for avoiding overfitting and the root mean square errors 

(RMSEs), defined as
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                                    (22)
2

1

( )
RMSE

N
output target

i

E E
N


 

is used to measure the performance.  and  are the energy of input data and targetE outputE

the fitted one, respectively. 

The SO matrix elements were fitted using PIP-NN method with the same PIPs 

used in the PES fitting. 

II-D. Nonadiabatic dynamics

The Hamiltonian in the C-N2 Jacobi coordinates (R, r, γ) is given by  

.                    (23)
2 2 2 2

2 2 2 2

ˆ ˆ1 1ˆ ˆ ˆ
2 2 2 2 el so

R r R r

L jH H H
R r R r   
 

      
 

where the first two terms denote the radial kinetic energy operators for R (C-N2 distance) 

and r (N-N distance), with  and  as the reduced masses.  is the orbital angular 𝜇𝑅 𝜇𝑟 L̂

momentum operator and  can be written as , in which we ignore the 2L̂ 2ˆ ˆ( )J j

electronic and spin angular momenta ( and ), following Alexander et al,28 in two-l̂ ŝ

state model calculations. The total angular momentum and diatomic rotational angular 

momentum are denoted as  and , respectively. We further neglect the Coriolis Ĵ ĵ

coupling between total  , , and , which couples different states.27 The last two Ĵ l̂ ŝ 

terms are the electronic and SO Hamiltonians, which have been given above. Ignoring 

the Coriolis coupling between different spin states in addition to the approximations 

made in and , the nonadiabatic dynamics in  the C(1D) + N2  intersystem ˆ
elH ˆ

soH

crossing can be described by a two-state model in which quenching happens only via 
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off-diagonal terms in . In our model, we define the z-axis of the BF frame along ˆ
soH

the  vector, and the CN2 molecule is placed in the x-z plane. The rotation between the 𝑅

BF and space-fixed (SF) frames is defined by three Euler angles (ϕ, θ, χ). 

In the diabatic representation, the total wavefunction with a total angular 

momentum J and parity p is expressed as 

,                                (24)
1 2

1 2

1 2 ;Jp Jp
j

j
j JMp 

 

    


 

in which  and  denote the indices of the radial grids, respectively. The parity-1 2

adapted angular basis is defined below

.    (25)1/2 * *
,0 , ,2

2 1; [2(1 )] ( ) ( 1) ( )
8

J J J
M j M j

Jj JMp D p D  



    

         

Here,  is a Wigner rotation matrix element, where J designates the total angular ,
J

MD

momentum with SF projection M and BF projection Ω, and  are normalized ( )j 

associate Legendre functions with the Condon-Shortley phase convention where j 

designates the diatomic angular momentum.

The Chebyshev propagator40 is employed to propagate the wave packet as

,                                (26)2
+1 1

ˆ=2 ( 1)n n nDH D n    

where  and  is the initial wavefunction. D is the damping function that 1 0
ˆ=DH  0

prevents reflection at the edges of the grid. The radial kinetic energy operator is 

represented by sinc-DVR,41 and the angular kinetic energy operator by FBR.42 The 

action of the potential energy operator is evaluated in a grid via a unitary transformation 
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between the FBR and DVR.43 Time-dependent quantities can be readily obtained from 

the Chebyshev domain, as shown by Tal-Ezer and Kosloff.44 

The S-matrix elements were calculated by cosine Fourier transforming the 

Chebyshev correlation functions in the BF frame and then transformed into the SF 

frame.45 By summing over the initial and final orbital angular momentum quantum 

numbers L0 and Lf, the quenching state-to-state integral cross section (ICS) from 

different initial ro-vibrational (v0, j0) states of N2 to its different final (vf, jf) states can 

be written as 

,            (27)
0 0 0 0 0

00 0

2

2
0

( ) (2 1) ( )
(2 1)f f f f f

f

Jp
v j v j c v j L v j L

Jp L Lv j

E J S E
j k

   
 

where  and  is the collision energy. The uniform J-shifting 
0 0

2v j R ck E cE

approach46, 47 was used in ICS calculations. The initial state-specified rate coefficient 

with summing up all probable final ro-vibrational states was obtained by Boltzmann-

averaging the corresponding ICS over the collision energy (Ec) as

,         (28)
0 0

/

0

1 8( ) ( ) c B

f f
f f

E k T
v j v j c c c

v jel B R B

qk T E e E dE
Q k T k T




  
 

where kB is the Boltzmann constant, T is the temperature. In the quenching reaction, the 

electronic partition function  equals five accounting for the five-fold degeneracy of elQ

C(1D) and the degeneracy of the electronic state  equals 2.48 q

III. Results and Discussion 

A. Potential energy surfaces and SO couplings
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The total RMSEs of five PESs are 5.0, 5.9, 9.6, 8.7, and 8.5 meV, respectively. 

The RMSEs for the SO coupling A and C are 0.021 and 0.023 meV, respectively. The 

fitting errors suggest that both the diagonal and off-diagonal elements of the potential 

energy matrix are well represented. 

The potential energy curves for the collinear approach of the atom C to the 

molecule N2 are shown in Fig. 1(a). The triplet states  (doubly degenerate) and 3A %

 are correlated to the  asymptote, while the singlet states  3X % 3 1
2C( P)+N ( )g

 1a %

(doubly degenerate) are correlated to the  asymptote. All three PESs 1 1
2C( D)+N ( )g



have wells, corresponding to the collinear CNN radical. There is a significant barrier 

for the  state. In Fig. 1(b), the potential energy curves for the perpendicular (C2v) 3A %

approach of the C atom to the molecule N2 are shown. The  and  states, which 3A % 1a %

are degenerated in collinear configurations, now split into the  and  states, and 3
1B 3

2B

to the  and  states, respectively. 1
1A 1

2A

The calculated equilibrium geometries the collinear CNN radical at the three 

lowest-lying electronic states are shown in Table IV. The agreement with the previous 

theoretical values,15 which are also listed in the table for comparison, is quite 

reasonable. In Table V, the calculated adiabatic excitation energy is compared with the 

earlier theoretical15, 21 and experimental values.18 The comparison is also quite 

satisfactory. The calculated dissociation energy (De) of CNN on the ground state to the 

 asymptote is calculated to be 32.6 kcal/mol, which is almost identical 3 1
2C( P)+N ( )g



to the value reported by Hickson et al. (32.5 kcal/mol).15 Experimentally, Clifford et 
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al.18 estimated the D0 value to be 37±3 kcal/mol. Our D0 value is 31.4 kcal/mol, which 

is in qualitative agreement with the experiment. The singlet-triplet gap for the carbon 

atom is 10023.8 cm-1, which agrees with the 10000 cm-1 value reported by Hickson et 

al.15 These values can be compared with 10192.6 cm-1 from NIST Atomic Spectra 

Database.49

The contours of the  and  PESs are shown in the lower panels of Fig. 1. 3V
 1V



Here, the energy zero is defined at the equilibrium geometry of CNN ground state. It is 

clear from Fig. 1(c) that the triplet state is largely repulsive as the two reactants 

approach each other. At linear geometry, there is a high energy barrier, but the ISC 

crossing seam occurs before the barrier. In Fig. 1(d), it is shown that the singlet state is 

attractive in the collinear geometry, featuring a deep well near R is about 1.8 Å.  

However, it becomes repulsive in the perpendicular path. From these contour plots, it 

is clear that the PESs are quite anisotropic. Consequently, the treatment of N2 as a 

sphere, as done in the previous work,15 is bound to introduce large errors. 

In Fig. 2, the SO matrix elements A and C (cm-1) are shown as a function of 

each (R, γ ) with the r(N-N) distance at 1.183 Å. The element A representing the 

diagonal SO coupling between  and  is shown at upper panel. The 3
1;+1 3

1;+1

element C representing the off-diagonal SO coupling between  and  3
1;+1 1

2;0

is shown in lower panel. At the collinear crossing seam (R=2.67Å), they are very small 

(A = 11.60cm-1, C = -23.56cm-1).
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To test the SO coupling, the splitting among the three fine-structure states of 

ground state carbon, namely the , , and  states, are computed by diagonalizing  3
2P 3

1P 3
0P

 asˆ ˆ
el soH H

                     (29)3 3ˆ ˆP P 0,1,2n el so n nH H E n  

using the SO coupling elements at the asymptotic collinear geometry for CNN with N2 

in the equilibrium geometry. The comparison with experimental values suggest that the 

calculated SO couplings lead to underestimation of the experimental energies, as shown 

in Table VI. As a result, these elements are multiplied by a factor of 1.213 to scale A 

and C in the  matrix in the calculations reported below. The fine-structure energy ˆ
soH

levels using the scaled A and C are given in parentheses, and their agreement with 

experiment is much better.

B. Quenching dynamics 

To compute the quenching probabilities, a Gaussian wave packet is launched 

form the reactants C(1D) and N2 (R=12.00 bohr). The central collision energy and width 

of the initial wave packet are respectively 0.10 eV and 0.10 bohr, and it is associated 

with the ground rovibrational state of N2. The calculations were carried out using a 

rovibrational basis with vmax = 6 and the jmax = 128 and its corresponding DVR grid. The 

propagation time is 19 ps, which is sufficient to converge the dynamical results. A 

damping function of the form , 13.00 bohr R 18.00 
2

exp( 0.3 [( 13.00) / 5.00] )t R   ≤ ≤

bohr, was used in the R coordinate to impose outgoing boundary conditions. To make 

the rate coefficient converged at temperatures below 300 K, the collision energy should 
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be up to 0.50 eV and the maximum J value would be up to 130. The J-shift method was 

for J values higher than 21, while for J values between 0 and 20 the cubic spline 

interpolation method was used with the results for J = 0, 5, 10, 15, and 20.

The quenching reaction probabilities are plotted in Fig. 3 for several partial 

waves. It is clear from the J=0 result, that there is hardly any threshold, indicating a 

barrierless process. This is consistent with the fact that the crossing seam near the 

collinear geometry between the  and  states near R=2.67 Å is 0.10 eV lower than 1 3

the  asymptote. A threshold starts to appear for higher J values, due 1 1
2C( D)+N ( )g



apparently to the centrifugal barrier. At low collision energies, the probabilities 

generally decay with increasing energy, suggestive of a capture process. Most 

prominently, the reaction probabilities are dominated by many oscillatory features, 

which are due to long-lived resonances. These resonances are mostly supported by the 

collinear well of the  state. In Figure 4, the resonance wavefunction in the  state 1 1

at Ec=0.284 eV above the  asymptote is plotted over the PES contours 1 1
2C( D)+N ( )g



at the collinear geometry. It can be seen from the figure that the wavefunction is largely 

localized in the PES well and has with many nodes. Resonances like this are above the  

 asymptote and their decay is via ISC to the state. Due to their long 3 1
2C( P)+N ( )g

 3

lifetimes, evidenced by the narrow widths in the reaction probabilities, the ISC occurs 

via repeated passage of the crossing seam. Despite small SO coupling, the multiple 

passage of the crossing seam greatly enhances the ISC process, leading to efficient 

quenching.
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The N2 vibrational and rotational state distributions at J=0 are displayed in Fig. 

5 for several collision energies. The N2 vibration is mostly below v=2, but there are also 

some population at higher levels (v=4). The former can be attributed to the small 

variation of the N-N distance in both PESs. On the other hand, the latter is most likely 

due to resonance energy transfer as the energy of N2(v=4) is very close to the 

 asymptote. The rotation of N2 is highly excited, with j up to 60. The 1 1
2C( D)+N ( )g



rotational excitation is most likely due to the anisotropy of the PESs, which exerts a 

torque on the N2 moiety during the collision. Since not all partial waves are computed 

explicitly, no cross sections were obtained.

Finally, the calculated quenching rate coefficient is plotted in Fig. 6 as a function 

of temperature, along with the available experimental data. The earlier theoretical 

results of Hickson et al.15 are also included for comparison. It can be seen that our 

calculated rate coefficients are in much better agreement with experiment, capturing 

more than 30% of the measured values, than either the collinear or spherical models 

used in Ref. 15. More importantly, our results clearly reproduced the negative 

temperature dependence of the rate coefficient, which is almost certainly due to the 

monotonically decaying reaction probabilities at small J values. This trend was not 

captured in previous theoretical calculations. The remaining error in our calculations 

could be due to a number of reasons. For instance, the internally excited N2 reactant, 

which are not considered in this work, might enhance the quenching. The neglect of 

derivative coupling and conical intersections might also cause uncertainty. In addition, 
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errors in ab initio calculations and fitting cannot be completely ruled out as well. 

Finally, the dynamic approximations discussed above could introduce additional errors. 

III. Conclusions

In this work, we constructed the full-dimensional PESs for three triplet states 

and two singlet states of CN2 using the PIP-NN fitting method. The ab initio 

calculations used in these fittings are performed at the ic-MRCI-F12+Q level with the 

cc-pVTZ-F12 basis set. The equilibrium geometries and excited energies are in good 

agreement with previous theoretical and experimental results. And two SO coupling 

elements A and C are calculated at CASSCF level with cc-pVTZ-F12 basis set and 

fitted by PIP-NN approach. The small RMSEs of those surfaces are indicative of high-

fidelity representation of the ab initio data. 

The quenching dynamics is investigated using a diabatic representation with an 

effective two-state model. To this end, the quenching probabilities were computed for 

several J values using a full-dimensional Chebyshev wave packet method. The 

quenching at J=0 has no threshold, and the probabilities decay as a function of the 

collision energy at low energies. This suggests that the ISC quenching resembles a 

barrierless capture process, which manifests in the rate coefficient as the negative 

temperature dependence, in agreement with experiment. The quenching is enhanced by 

long-lived resonances, which allow multiple passage the ISC crossing seam. The 

calculated rate coefficients are in satisfactory agreement with experiment, within a 
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factor of 2-3. This full-scale quantum dynamical study shed valuable light on the 

mechanism of collisional ISC processes. 
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Table I. The electronic Hamiltonian in the six-state diabatic basis.

ˆ
elH 3

1;+1 1
2;0 3

1; 1  1
2;0 3

1; 1  3
1; 1 

 2 2 -2 -2 0 0

3
1;+1 VΠ 0 0 0 0 V1

1
2;0 0 VΔ 0 V2 0 0

3
1; 1  0 0 VΠ 0 V1 0

1
2;0 0 V2 0 VΔ 0 0

3
1; 1  0 0 V1 0 VΠ 0

3
1; 1  V1 0 0 0 0 VΠ
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Table II. The SO Hamiltonian in the six-state diabatic basis.

ˆ
soH 3

1;+1 1
2;0 3

1; 1  1
2;0 3

1; 1  3
1; 1 

 2 2 -2 -2 0 0

3
1;+1 A C 0 0 0 0

1
2;0 C 0 0 0 0 0

3
1; 1  0 0 A -C 0 0

1
2;0 0 0 -C 0 0 0

3
1; 1  0 0 0 0 E 0

3
1; 1  0 0 0 0 0 E

Page 25 of 36 Physical Chemistry Chemical Physics



26

Table III. Total Hamiltonian in a two-state model.

ˆ ˆ+so elH H 3
1; 1  1

2;0

 ±2 ±2

3
1; 1  VΠ+A ±C

1
2;0 ±C VΔ
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Table IV. Calculated equilibrium geometries of the collinear CNN radical

This Work Hickson et al.15State

 r(C-N) /Å  r(N-N) /Å  r(C-N) /Å  r(N-N) /Å

3A % 1.223 1.183 1.226 1.178

1a % 1.261 1.183 1.262 1.185

 3X % 1.235 1.208 1.249 1.183
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Table V. Adiabatic excitation energies for the ground state CNN radical and 

comparison with experiment.

Excitation energies /cm-1State

This work
w/ ZPEs

Hickson et al.15

w/o ZPEs
Pd et al.21

w/ ZPEs
Expt.18 

3A % 24017 23825 23850 23850
1a % 6798 6803 7879 6823±113
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Table VI. Calculated fine-structure energies for the ground state carbon atom using 

the ab initio (scaled) SO couplings in comparison with experimental values.

C This work/cm-1 Expt. /cm-1 49, 50

3
0P 0 0

3
1P 12.64(15.33) 16.42

3
2P 37.87(45.94) 43.41
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FIG. 1. Potential energy curves of the ground and low-lying excited states of the C + 

N2 collisions in collinear (a) and perpendicular (b) approaches. For each distance R, the 

r(N-N) distance is optimized. Contour plots of the adiabatic PESs averaged over the 

two triplet states 23A" and 13A' (c) and two singlet states 11A' and 11A" (d) are plotted 

as a function of R and γ . The distance r(N-N) is optimized for each (R, γ ). The 

contour intervals are 0.5eV. The crossing seam between the triplet and singlet adiabatic 

PESs is illustrated by a solid black line.
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FIG. 2. Contour plots of the SO coupling elements A (upper panel) and C lower panel 

(cm-1) as a function of (R, γ) with the r(N-N) distance fixed at 1.183 Å. The contour 

starts as 0 cm-1 with an interval of 3 cm-1 for A and 6 cm-1 for C.
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FIG. 3. Quenching reaction probabilities of  as 1 3
2 2C( D)+N ( , 0) C( P)+N ( , )v j v j  

a function of the collision energy (Ec) for several partial waves. 
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FIG. 4. Contour of the  component of a resonance wavefunction (J=0) at 0.284 eV 1

of collision energy overlaid on the PES of the  state. The Jacobi angle is fixed at 0.1
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FIG. 5. The J=0 N2 vibrational (upper panel) and rotational (vf=0, lower panel) state 

distributions for several collision energies (Ec). 
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 FIG. 6. Rate constants for the  quenching 1 3
2 2C( D)+N ( , 0) C( P)+N ( , )v j v j  

reaction as a function of temperature. Expt. 1-3 are data from Hickson et al.15 (red 

circle), Husain et al.17 (cyan square) and Braun et al.16 (blue diamond). The rate 

coefficient calculated in this work (black line) is much closer to the experimental data 

than those obtained with the collinear (red line) and spherical (blue line) models.15 
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