

Condensed-Phase Low Temperature Heterogeneous Hydrogenation of CO2 to Methanol

SCHOLARONE™ Manuscripts

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Jotheeswari Kothandaraman,^a Robert A. Dagle,^a Vanessa Labarbier Dagle,^a Stephen D. Davidson,^a Eric D. Walter, $^{\text{b}}$ Sarah D. Burton, $^{\text{b}}$ David W. Hoyt^b and David J. Heldebrant*^a

 A low-temperature CH3OH synthesis was achieved at 120-170 ˚C using tertiary amine and alcohol in the presence of $Cu/ZnO/Al₂O₃$ catalyst by $CO₂$ hydrogenation. A series of 1°, 2° and 3° amines and alcohols were screened to study its influence on the formation of CH₃OH. Particularly, 3° amines such as NEt₃ in combination with EtOH formed CH₃OH with 100% yield with respect to the amine. Unlike the traditional gas-phase heterogeneous metal catalyzed CO₂-to-CH₃OH reactions, no CO is used in the feed gas mixture in this method. In addition, the hydrogenation gives good selectivity (>95%) for CH3OH and only trace amounts of CO and CH4 are formed. The presence of CO in the gas mixture was attributed to the decomposition of CH3OH product, which was confirmed by high-temperature and high-pressure MAS NMR. The reaction was performed in the condensed phase at relatively lower temperature, thus the RWGS reaction, which typically operates at >250 ˚C, was significantly reduced at this temperature (120-170 ˚C). The first *in situ* spectroscopic evidence for the condensed phase hydrogenation of alkylcarbonate to CH₃OH via ammonium formate and alkylformate intermediates was also presented under the experimental conditions.

Introduction

Anthropogenic $CO₂$ emissions into the atmosphere are increasing continuously and it has been widely accepted as a primary cause of global warming and climate change. 1 Similar to the nature's photosynthesis, where the CO₂ is used to construct complex carbon frameworks to store energy harvested from the sunlight, which eventually turned into fossil fuels in million years, a man-made carbon cycle based on CO_2 was proposed by Olah et al.² In the proposed cycle, the CO_2 captured from air or concentrated sources are converted to chemicals and fuels in short time. $CO₂$ is an inexpensive and abundant C_1 building block. Industrially, CO_2 is already used to manufacture urea, salicylic acid, cyclic carbonate and polycarbonate.³ In addition, hydrogenation of CO₂ can produce various chemicals such as, CH₃OH, CH₄, HCO₂H, HCOOCH₃, depending on the catalyst and the reaction conditions.⁴ Among these CO₂ hydrogenated products, CH₃OH contains high hydrogen weight content (12.5 wt%) and it is also a basic commodity chemical for the synthesis of aromatics, olefins (ethylene and propylene), high-octane gasoline and other chemicals.⁵ Current industrial $CH₃OH$ synthesis is based on a $Cu/ZnO/Al₂O₃$ heterogeneous catalyst that utilizes a $CO₂/CO$ and $H₂$ mixture, which operates at high temperatures (250-300 °C) under high pressures (7 Mpa-10 MPa).⁶

Since the CH₃OH formation step is exothermic, low temperature and high pressure favor the selective formation of CH3OH (**Scheme 1**). Typically, higher temperatures are required for the hydrogenation of $CO₂$ to CH₃OH using heterogeneous catalysts.⁸⁴ Higher temperature favors the reverse water gas shift (RWGS) reaction and produces CO, which significantly reduces the $CH₃OH$ yield with respect to $CO₂$ and it also consumes valuable H₂. The CO and H_2O formed from the RWGS reaction is known to have detrimental effect on the Cu/ZnO/Al₂O₃.⁷ Therefore, in order to reduce the production costs and also to utilize the exothermicity of the CO_2 -to-CH₃OH reaction, it is desirable to perform the reaction at lower temperature.

(a) $CO_2 + H_2 \rightleftharpoons CH_3OH + H_2O$ $\triangle H^o$ (298K) = -49.4 kJ/mol

(b)
$$
CO_2 + H_2 \xrightarrow{}
$$
 CO + H₂O $\triangle H^{\circ}$ (298K) = 41.1 kJ/mol

Scheme 1. CH₃OH formation and RWGS from CO₂ hydrogenation.

The formation of CH_3OH from CO_2 proceeds via formate (HCOO_{ad}), acetal (OCH₂O_{ad}) and methoxy (OCH_{3ad}) intermediates.⁸ Irrespective of CO_2/H_2 or $CO/CO_2/H_2$ reaction systems, formate is always the reaction intermediate for the $CH₃OH$ synthesis, and the hydrogenation of formate was identified as a rate-limiting step.⁹ In 1995, Noyori et al reported that the addition of alcohol and base promote the homogenous hydrogenation of $CO₂$ to formate.¹⁰ Similarly, several systems were reported for the homogenous metal catalyzed formate and CH₃OH synthesis from CO₂ in the presence of alcohols and bases. 11 We note that alcohols and bases promote this reaction as both reagents produce dissolved anionic carboxylates (carbamates and/or alkylcarbonates) from CO_2 ,¹² which are electrophilic enough to be reduced by catalysts via an inner sphere mechanism.^{12b}

^{a.} Energy Processes and Materials Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

^{b.} Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, USA.

E-mail: david.heldebrant@pnnl.gov

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

ARTICLE Journal Name

Formate salts can then undergo thermal condensation to either a formate ester (in the presence of alcohol) or formamide (in the presence of amine), which subsequently get hydrogenated to CH3OH (**Scheme 2**). We note that literature reports cite the need for Lewis acid or base to drive the hydrogenation of formate esters and formamides to CH_3OH by homogeneous catalysis.¹¹ We hypothesized that the reactive pathways demonstrated through homogeneous catalysts would be available to heterogeneous catalysts, as the hydrogenations to CH₃OH have been shown to be catalytic with respect to capture solvent (amine and/or alcohol). Furthermore, the solid-support of heterogeneous catalysts could provide Lewis acid/base sites required for the final hydrogenation of formate esters or formamides to $CH₃OH.¹³$ The effect of amine and/or alcohol additives on the productivity of the $CH₃OH$ synthesis catalyst was studied previously using heterogeneous catalysts by different groups.¹⁴ However, most systems reported so far present series of challenges, namely use of CO in the feed gas mixture, require to start from alkylformate ester, stop at alkylformate ester intermediate, undergo decomposition of amines employed, and show low activity/selectivity for $CH₃OH$, which is still a major challenge. In order to address these challenges, careful study of reaction pathways is necessary to design a versatile and robust system for CH₃OH production from $CO₂$ at low-temperatures with high selectivity/activity.

Herein, we report a lower-temperature condensed phase heterogeneous hydrogenation of $CO₂$ to CH₃OH using only $CO₂$ as a C_1 source using the commercial Cu/ZnO/Al₂O₃ catalyst at 170 °C under 60 bar CO_2 : H₂. We utilized both base (amine) and alcohol to promote the formation of CH₃OH at low-temperature via formamide or formate ester intermediates in the condensed-phase. Thereby we significantly reduced the RWGS reaction and established a new approach for the heterogeneous metal catalyzed $CO₂$ hydrogenation at low temperature employing inexpensive NEt₃ and EtOH as additives. *Operando* ¹³C NMR spectroscopy of this reaction demonstrates the reaction proceed via alkylcarbonate, formate, and formate ester intermediates.

Results and Discussion

 $CO₂$ can be captured from air or concentrated sources by amine, amine/H2O, or amine/alcohol mixture to form carbamate, bicarbonate and carbonate respectively (**Scheme 3**).¹⁵ The CO₂ activated by this fashion can either be directly used or it can be released by temperature and/or pressure swing, then compressed and concentrated to produce useful CO_2 -derived products.

Scheme 2. Proposed pathways for the CO₂ hydrogenation to CH₃OH.

In this study, we subjected the *in-situ* formed carbonates and carbamates to hydrogenation. Bicarbonates are not chosen for this study because the presence of H_2O is known to poison the

Cu/ZnO/Al₂O₃ catalyst.^{16,14h} We initially screened 1° and 2° amines, finding that amine bases were hydrogenated to their respective formamides, but were unable to continue to $CH₃OH$ (entry 1 and 2, **Table S1**). This result indicates that the formamide route (**Scheme 2**, bottom) may not be feasible under these conditions, which we attribute to the low hydride acceptor strength (low electrophilicity) of formamides compared to that of formate esters.

Scheme 3. CO₂ capture using different amines.

Tertiary amines (NEt₃) were found to be non-reactive, as were alcohol (EtOH), though the combination of 3˚ amine and alcohol produced CH3OH (entry 1-3, **Table 1**). These results suggest that the neutral CO₂ may not be the active species. Thus, we propose that the anionic alkyl carbonate is possibly the active species likely via

Table 1. Hydrogenation of CO² to CH3OH

Ent ry	Promoters	Amine: alcohol	HCOO ⁻	HCOOEt	CH ₃ OH
$\mathbf{1}$	NEt ₃		trace		
2	EtOH	$\qquad \qquad \blacksquare$			٠
3	NEt ₃ : EtOH	1:1	trace	trace	2%
4	NEt₃ : EtOH	10:1			
5	NEt₃ : EtOH	1:10	3%	trace	100%
6^a	NEt₃ : EtOH	1:10	3%	1%	76%
7 ^b	NEt₃ : EtOH	1:10		1%	28%
8 ^c	NEt ₃ : EtOH	1:10	4%	4%	19%
9	NEt₃ : EtOH	1:5	trace	trace	7%
10	TMEA:EtOH	1:10		1%	18%
11	DEEA:EtOH	1:10	0.5%	trace	21%

Standard reaction conditions: Catalyst=Cu/ZnO/Al₂O₃ (300 mg), CO₂/H₂=60 bar (1:2), EtOH (200 mmol), amine (20 mmol), T=170 °C t=16h. HCOO⁻, HCOOEt and CH₃OH yield are based on 1 H NMR. The yields are calculated with respect to the amine. ^a40h, ^b150°C and ^c120°C

the observed coordination to the cationic metal surface by which hydrogenation to HCO2H occurs, *vide infra*. The methanol conversion is reported against the amount of amine as it provides a readily available internal standard to calculate against. NEt₃ and EtOH produced CH₃OH at 2% conversion with respect to NEt₃ (entry 3, **Table 1**). While the tertiary alkanolamines, N,N,N',N'-tetrakis(2 hydroxyethyl) ethylenediamine (THEED) and triethanolamine (TEA) decomposed at high temperature (entry 4 and 5, **Table S1**). Diethylethanolamine (DEEA) however, produced 6.5 mmol of CH3OH (4% conversion based on amine, entry 6, **Table S1**). Unexpectedly, Proton-sponge and Bisphenol A underwent partial hydrogenation of aromatic ring (entry 7 and 8, **Table S1**) and were not tested further.

Changing the ratio of amine to alcohol influenced the conversion to CH₃OH; if the ratio of amine to alcohol was 10:1, the conversion of $CH₃OH$ with respect to amine is poor, whereas a ratio of 1:10 enables a 100% conversion to CH₃OH with respect to amine (entry 4 and 5, Table 1). The CH₃OH synthesis activity as high as 4166 mmol/(Kg-cat-h) was obtained at 170 °C with a CH₃OH yield of $^{\sim}10\%$ with respect to CO_2 . An excess of NEt₃ could passivate the catalyst surface and limiting the reaction. It is likely that polarity has a strong influence on the reactivity as we have shown the formation of alkylcarbonates to be highly sensitive with respect to polarity.^{15a} The relatively lower polarity of NE t_3 would disfavor the formation of the highly polar alkylcarbonate, whereas an excess of alcohol would be polar enough to favor alkylcarbonate formation. Further EtOH could solvate polar transition states and charged intermediates common to $CO₂$ hydrogenations whereas NEt₃ would not. Excess alcohol would also promote the thermal esterification to produce formate ester. Gas chromatographic analysis of the gas mixtures only showed trace of CH₄ and CO in addition to excess H₂ and CO₂.

Table 2. Effect of basicity of amine on the carbonate formation

Standard reaction conditions: (A) alkylcarbonate formation from $CO₂$ capture –alkylcarbonate yield calculated with respect to amine by 13 C NMR of 2M amine in CH₃OH under 10 bar CO₂ at RT, a NMR resonance of methyl carbon in CH₃OCOO⁻ species, ^bNMR resonance of carbonate carbon in CH₃OCOO⁻ species. DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene, DIPEA = N,N-Diisopropylethylamine, DMAP = 4-Dimethylaminopyridine, DABCO = 1,4 diazabicyclo[2.2.2]octane

The necessity for the combination of non-nucleophilic bases and alcohols suggests $CH₃OH$ production proceeds via the formate and formate ester route (**Scheme 2**). The presence of amine and alcohol promotes the formation of alkylcarbonate, ammonium formate and alkyl formate ester intermediates. Under optimal conditions, the amount of CH₃OH produced never surpassed the amount of amine used regardless of time, which is suggestive of an established equilibrium (entry 6, **Table 1**). Even at lower temperatures 150 °C and 120 °C, moderate CH₃OH yields were obtained (entry 7 and 8, **Table 1**) suggesting that the reaction does not necessarily need to proceed at 170 °C. Tetramethylethylenediamine (TMEA) and DEEA formed 18% and 21% CH₃OH respectively in presence of excess EtOH (entry 10 and 11, table 1). From entry 11, **Table 1** and entry 6, Table S1, it is clear that the presence of excess alcohol does not improve the amount of $CH₃OH$ formed in the case of DEEA base as it decomposes under these conditions.

We then studied the effect of basicity on alkylcarbonate formation capacity of the amines and alcohols on the $CH₃OH$ formation. The alkylcarbonate formation in **Table 2** was studied under high pressure since some alkylcarbonates are not stable under atmospheric conditions. From **Table 2**, it is clear that the strong bases give high methyl carbonate yield, however with low

CH3OH yield (**Figure 1**). While less basic amines give moderate methyl carbonate yield but high CH_3OH yield. NEt₃ showed the highest $CH₃OH$ yield, suggesting a pKa of the conjugate acid above or below 11 (in H_2O) is optimal under these conditions. Since aromatic ring hydrogenation was observed in the presence of Cu/ZnO/Al₂O₃ catalyst (vide supra), DMAP and pyridine were not chosen for the $CO₂$ hydrogenation study.

Table 3. Effect of alkyl chain length and sterics of alcohol on the

carbonate formation

Standard reaction conditions: Alkylcarbonate formation from CO₂ capture $-$ alkylcarbonate yield calculated with respect to amine by 13 C NMR of 2M NEt₃ in alcohol under 10 bar CO₂ at RT, 3 Only one OH group is carbonated. ^bthe reaction was performed in THF.

Figure 1. Standard reaction conditions: (A) Alcohols: catalyst=Cu/ZnO/Al₂O₃ (300 mg), CO₂/H₂=50 bar (1:2), EtOH (200 mmol), amine (20 mmol), T=170 °C, t=16h, (B) Amines: catalyst=Cu/ZnO/Al₂O₃ (300 mg), CO₂/H₂=50 bar (1:2), alcohol (200 mmol), NEt₃ (20 mmol), T=170 °C, t=16h, CH₃OH yield calculated with respect to amine.

Similarly, the choice of alcohol on the alkylcarbonate was investigated under pressure (Table 3). The presence of CH₃OH or EtOH did not show significant difference in the alkylcarbonate yield, which is contributed to similar pKa's of the alcohols. However, the alkyl chain length and sterics significantly reduced the alkylcarbonate conversion and CH3OH yields (**Figure 1**). This result is consistent with our previous observations that secondary alcohols do not form as much alkylcarbonate as linear alcohols because of steric crowding.¹⁷ Similarly, phenol is likely not electrophilic enough to attack $CO₂$ and doesn't carboxylate under these conditions (entry **ARTICLE Journal Name**

6, **Table 3**). The results obtained from **Table 2**, **Table 3** and **Figure 1** suggests that the 3˚amines and short linear alcohols are the best combination for high $CH₃OH$ yield, consistent with conditions that favor alkylcarbonate formation.

Scheme 4. Plausible reaction mechanism for the one-pot $CO₂$ capture and conversion.

While a direct correlation between the alkylcarbonate formed and CH3OH formation was observed (**Table 2** and **Table 3**), it is expected that there is a small amount of alkylcarbonate present at 170 °C under 25 bar $CO₂$. Based on our observations and the literature studies¹⁸, we propose a plausible reaction mechanism via coordination of anionic ethyl carbonate to the catalyst surface, by which the reaction proceeds via formate and ethylformate intermediates (**Scheme 4**). Catalyst recycling was studied under 1:2 $CO₂:H₂$ pressure. In the second run, some drop in catalytic activity was observed. However, the activity remained the same in the third run. The decrease in the catalytic activity was probably due to the catalyst sintering, which was confirmed by powder X-ray diffraction (XRD) - performed after the third run (**Scheme S7**). The Cu particle size increased from 21 nm (freshly reduced) to 40 nm (spent). Similar sintering of catalyst in the batch reactor was observed previously in the presence of H_2O , the byproduct.⁷ XRD analysis also showed the presence of ZnCO₃, which could have formed from an excess CO2 concentration under pressurized conditions.¹⁹ Thus, changes in activity could be explained by both sintering of the Cu particles and due to phase change of the ZnO support. However, at this point of the study, it is not clear whether ZnCO3 is involved in the active catalytic cycle. We note that inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the solution after the hydrogenation showed minimal catalyst leaching (Cu=2.2 ppm, Zn=5.1 ppm, Al=<1.3 ppm)."

Figure 2. *In-situ* ¹³C MAS NMR of the reaction mixture (NEt₃:10EtOH, ¹³CO₂ and H_2) in the presence of Cu/ZnO/Al₂O₃ at 170 °C, 1h.

High temperature *operando* ¹³Cmagic angle spinning (MAS) NMR study of the catalyst in the presence of $1:10$ NEt₃ and EtOH mixture at 20 bar of $CO₂$ at 120 °C showed ethylcarbonate (158.9 ppm) at a concentration 2.2 times that of the active sites on the catalyst. We also observed ethylcarbonate bound to the catalyst (165.7 ppm) at a concentration that is 22% of the active site calculated for the catalyst (Figure S2). 19% conversion to CH₃OH was observed at 120 ˚C (**Table 1**) indicating ethylcarbonate exists in a significant enough concentration to participate in the reaction at least up to this temperature.

 Ω *perando* 13 C MAS NMR at 170 $^{\circ}$ C in the presence of H₂ did not show a detectable amount of ethylcarbonate, though it clearly showed the formation of triethylammonium formate (168.5 ppm) as an initial intermediate, which then converted to ethyl formate (161.2 ppm). CH₃OH signal at 48.7 ppm started to grow quickly in less than 5 min of heating at 170 °C (Figure 2). Over time CH₃OH decomposed into CO (182.2 ppm), confirming the hydrogenation does not proceed via CO.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
f1.₍ppm)

Figure 3. *In-situ* ¹³C MAS NMR of the reaction mixture (NEt₃:10EtOH, ¹³CO₂ and H_2) in the presence of Pd/ZnO at 170 °C, 15h.

We also studied the $CO₂$ hydrogenation via the ammonium formate and alkyl ester intermediates in the presence of Pd/ZnO catalyst under the same conditions studied previously for the $Cu/ZnO/Al_2O_3$ catalyst. Though Pd/ZnO was well-studied in the

4 | *J. Name*., 2012, **00**, 1-3 This journal is © The Royal Society of Chemistry 20xx

Journal Name ARTICLE ARTICLE

literature for CH₃OH formation via CO route (>250 °C),²⁰ there was no detectable amount of CH_3OH observed by ^{13}C NMR at 170 °C. However, slow accumulation of alkyl formate was observed overtime (**Figure 3**).

Conclusions

We have demonstrated a low-temperature condensed phase heterogeneous hydrogenation of $CO₂$ to CH₃OH using NEt₃ and EtOH. The formation of side products such as CO and $CH₄$ are significantly reduced. Screening of various amines and alcohols revealed that the alkyl carbonate, ammonium formate and alkyl ester are the key intermediates involved in the reaction which was confirmed by *Operando* ¹³C MAS NMR. The degree of alkyl carbonate and methanol formation were found to be limited by polarity of solvents as well as basicity of the amine. Performing the present reaction in a flow system could significantly improve the overall productivity of the system, as poisoning of catalyst arising from the accumulation of products would be minimal.

Acknowledgements

DJH and JK thank the United States Department of Energy's Office of Science Basic Energy Sciences Early Career Research Program FWP 67038 for funding. We also thank Dr. John Linehan for helpful discussions with the PEEK NMR studies. The HT/HP solid-state NMR experiments were performed using EMSL (Proposal ID 50121), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research. Pacific Northwest National Laboratory is proudly operated by Battelle for the US Department of Energy.

Notes and references

- 1 (a) http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html; (b) https://www.epa.gov/ghgemissions; (c) https://climate.nasa.gov
- 2 (a) G. A. Olah, A. Goeppert and G. K. S. Prakash, *J. Org. Chem.* 2009, *74* (2), 487–498. (b) A. Goeppert, G. K. S. Prakash, G. A. Olah, Beyond Oil and Gas: The $CH₃OH$ Economy, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2009. (c) G. A. Olah, A. Goeppert and G. K. S. Prakash, *J. Am. Chem. Soc.* 2011, *133*, 12881-12898.
- 3 M. Aresta, Carbon dioxide as chemical feedstock; Wiley-VCH: Weinheim, 2010.
- 4 (a) G. Centi, E. A. Quadrelli and S. Perathoner, *Energy Environ. Sci.* 2013, *6* (6), 1711-1731; (b) C. Song, *Catal. Today* 2006, *115*, 2–32; (c) M. Yadav, J. C. Linehan, A. J. Karkamkar, E. Van Der Eide and D. J. Heldebrant, *Inorg. Chem.*, 2014, **53**, 9849–9854; (d) M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz and T. E. Müller, *ChemSusChem*, 2011, **4**, 1216–1240; (e) K. M. K. Yu, I. Curcic, J. Gabriel and S. C. E. Tsang, *ChemSusChem*, 2008, **1**, 893–899; (f) G. Centi and S. Perathoner, *Catal. Today*, 2009, *148*, 191–205; (g) T. Sakakura, J. C. Choi and H. Yasuda, *Chem. Rev.*, 2007, **107**, 2365– 2387; (h) C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuéry, M. Ephritikhine and T. Cantat, *Angew. Chem., Int. Ed.*, 2012, **51**, 187–190; (i) Q. Liu, L. Wu, R. Jackstell and M. Beller, *Nat. Commun.*, 2015, **6**, 5933; (j) J. Klankermayer and W. Leitner, *Philos. Trans. R. Soc. London, Ser. A*, 2016, **374**, 20150315; (k) J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow and W. Leitner, *Chem. Rev.*, 2018, **118**, 434–504.
- 5 https://www.methanex.com/about-CH₃OH/
6 (a) S. Arab. J. Commenge. J. F. Portha and L.
- 6 (a) S. Arab, J. Commenge, J. F. Portha and L. Falk, *Chem. Eng. Res. Des* 2014, *2* (92), 2598–2608. (b) K. C. Waugh, *Catal. Today* 1992, **15**, 51−75. (c) M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hav̈ecker, F. Abild-pedersen, S. Zander, F. Girgsdies, P. Kurr, B. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov and R. Schlögl, *Science* 2012, **336**, 893−898. (d) S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff and J. Sehested, *Angew. Chem., Int. Ed.,* 2014, 53, 5941–5945. (e) J. B. Hansen and P. E. Højlund Nielsen, Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
- 7 J. T. Sun, I. S. Metcalfe and M. Sahibzada, *Ind. Eng. Chem. Res.* 1999, *38* (10), 3868–3872.
- 8 (a) M. D. Porosoff, B. Yan and J. G. Chen, *Energy Environ. Sci.*, 2016, **9**, 62–73; (b) Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, *Science* 2017, *355* (6331), 1296–1299.
- 9 (a) X. Wang, H. Zhang and W. Li, *Korean J. Chem. Eng.* 2010, *27* (4), 1093–1098; (b) J. Wambach, A. Baiker and A. Wokaun, *Phys. Chem. Chem. Phys.,* 1999, *1* (22), 5071–5080; (c) C.-S. Chen, W.-H. Cheng and S.-S. Lin, *Catal. Lett.*, 2000, **68**, 45–48.
- 10 P. G. Jessop, T. Ikariya and R. Noyori, *Chem. Rev.* 1995, *95* (2), 259–272.
- 11 (a) K. Tominaga, Y. Sasaki, M. Kawai and T. Watanabe, M. Saito, *J. Chem. Soc., Chem. Commun.* 1993, **7**, 629−631; (b) S. Wesselbaum, T. Vom Stein, J. Klankermayer and W. Leitner, *Angew. Chem., Int. Ed.* 2012, **51**, 7499−7502; (c) S. Wesselbaum, V. Moha, M. Meuresch, S. Brosinski, K. M. Thenert, J. Kothe, T. v. Stein, U. Englert, M. Hölscher, J. Klankermayer and W. Leitner, Chem. Sci. 2015, **6**, 693−704. (d) C. A. Huff, M. S. Sanford *J. Am. Chem. Soc.* 2011, **133**, 18122−18125; (e) K. Tominaga, Y. Sasaki, T. Watanabe and M. Saito, *Bull. Chem. Soc. Jpn.* 1995, **68**, 2837−2842; (f) N. M. Rezayee, C. A. Huff and M. S. Sanford, *J. Am. Chem. Soc.* 2015, **137**, 1028−1031; (g) J. Kothandaraman, A. Goeppert, M. Czaun, G. A. Olah and G. K. S. Prakash, *J. Am. Chem. Soc.* 2016, **138**, 778−781; (h) S. Kar, A. Goeppert, J. Kothandaraman and G. K. S. Prakash, *ACS Catal.*, 2017, **7**, 6347–6351; (i) A. P. C. Ribeiro, L. M. D. R. S. Martins and A. J. L. Pombeiro, *Green Chem.*, 2017, **19**, 4811–4815.
- 12 (a) J. Su, M. Lu and H. Lin, *Green Chem.,* 2015, *17*, 2769– 2773; (b) D. B. Lao, B. R. Galan, J. C. Linehan and D. J. Heldebrant, *Gre*e*n Chem.* 2016, *18*, 4871–4874.
- 13 (a) P. M. Jones, J. A. May, J. B. Reitz and E. I. Solomon, *J. Am. Chem. Soc.* 1998, *120* (7), 1506–1516. (b) J. Shi, *Chem. Rev.*, 2013, **113**, 2139–2181.
- 14 (a) H. Nieminen, G. Givirovskiy, A. Laari and T. Koiranen, *J. CO² Utiliz.* 2018, *24*, 180-189; (b) J. Zeng, K. Fujimoto and N. Tsubaki, *Energy Fuels* 2002, *16* (1), 83–86; (c) C. Reller, M. Pöge, A. Lißner and F. O. R. L. Mertens, *Environ. Sci. Technol.* 2014, **48**, 14799−14804; (d) L. Fan, Y. Sakaiya and K. Fujimoto, *Appl. Catal. A: General* 1999, **180**, L11−L13; (e) J. Q. Zeng, N. Tsubaki and K. Fujimoto, *Fuel* 2002, *81*, 125−127; (f) N. Tsubaki, M. Ito and K. Fujimoto, *J. Catal.* 2001, **197**, 224−227; (g) Y. Chen, S. Choi and L. T. Thompson, *ACS Catal.*, 2015, **5**, 1717–1725; (h) K. M. Kerry Yu and S. C. Tsang, *Catal. Lett.*, 2011, **141**, 259–265.
- 15 (a) J. E. Rainbolt, P. K. Koech, C. R. Yonker, F. Zheng, D. Main, M. L. Weaver, J. C. Linehan and D. J. Heldebrant, *Energy Environ. Sci.* 2011, **4**, 480–484; (b) P. V. Kortunov, M. Siskin, L. S. Baugh and D. C. Calabro, *Energy Fuels,* 2015, *29*, 5919– 5939; (c) F. Mani, M. Peruzzini and P. Stoppioni, *Green Chem.* 2006, *8*, 995–1000; (d) N. McCann, D. Phan, X. Wang, W. Conway, R. Burns, M. Attalla, G. Puxty and M. Maeder, *J. Phys. Chem. A* 2009, *113*, 5022–5029; (e) J. Kothandaraman, A. Goeppert, M. Czaun, G. A. Olah and G. K. Surya Prakash, *Green Chem.*, 2016, **18**, 5831–5838; (f) D. J. Heldebrant, P. K.

Koech, V. A. Glezakou, R. Rousseau, D. Malhotra and D. C. Cantu, *Chem. Rev.*, 2017, **117**, 9594–9624.

- 16 G. Centi, E. A. Quadrelli and S. Perathoner, *Energy Environ. Sci.* 2013, *6* (6), 1711–1731.
- 17 D. J. Heldebrant, C. R. Yonker, P. G. Jessop and L. Phan, *Energy Environ. Sci.,* 2008, **1**, 487–493.
- 18 Y. Chen, S. Choi and L. T. Thompson, *Catal. Today* 2016, *259*, 285–291.
- 19 Z. Pan, J. Tao, Y. Zhu, J. F. Huang and M. P. Paranthaman, *Chem. Mater.* 2010, **22**, 149−154.
- 20 (a) H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan and G. Lalev, *J. Catal.*, 2016, **343**, 133–146; (b) J. Xu, X. Su, X. Liu, X. Pan, G. Pei, Y. Huang, X. Wang, T. Zhang and H. Geng, *Appl. Catal. A Gen.*, 2016, **514**, 51–59; (c) V. M. Lebarbier, R. A. Dagle, L. Kovarik, J. A. Lizarazo-Adarme, D. L. King and D. R. Palo, *Catal. Sci. Technol.*, 2012, **2**, 2116.

1058x528mm (72 x 72 DPI)