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ABSTRACT 

Studies have shown the excitation of plasmon resonances on nanostructured materials can 
drive catalytic processes.  Plasmon resonances can be tuned across the solar spectrum, 
offering intriguing application possibilities for plasmonic catalysis.  Previous work in our group 
indicates that nanostructures with tight junctions can create direct current (DC) electric fields.  
These fields arise from an optical rectification of the plasmon resonance on the plasmonic 
surface, and our group has shown these fields modulate photocatalytic activity.  This work looks 
to shed further light on the impact optically rectified fields can have on catalytic reactions.  
Cyclic voltammetry shows that the electrochemical reduction and oxidation potentials of a 2 mM 
CuSO4 solution occur at ~100 mV lower overpotential on an optically excited Ag nanodendrite 
electrode.  Stark spectroscopy of nitriles absorbed to these surfaces indicate photo-associated 
changes in surface potential across the Ag nanodendrites.  Localized areas evince photo-
induced changes in surface potential upwards of 300 mV.  These results provide evidence of 
optically rectified fields altering electrochemical reactivity on plasmonic surfaces and suggest 
optimizing this nonlinear phenomenon may improve plasmonic photocatalysts. 

 
INTRODUCTION 

Reports have shown that the excitation of electrons in localized surface plasmon 
resonances (LSPR) can drive photocatalytic reactions on plasmonic materials.1-3  In fact, the 
ability to tune the LSPR across the solar spectrum offers tremendous possibilities for 
photocatalysis.  Plasmonic nanostructures promote chemical reactions on their surfaces when 
illuminated at their plasmon resonance frequency.1, 2, 4-7  This behavior is contrary to that 
traditionally observed on bulk surfaces of the same materials that do not support catalysis. 
These catalysts are commonly made of metals that have intra-band electronic transitions.  The 
frequency dependence of the increased reactivity correlates strongly with the plasmon 
resonance rather than the electronic transition, thus further implicating a plasmonic effect.  
Interestingly, the excitation of plasmon resonances has been reported to alter the selectivity of 
reaction products.8, 9  Increased understanding of the phenomena arising from plasmon 
resonances offers tremendous potential for new photocatalysts. 

On nanostructured arrays, heterogeneous reactivity has been observed, implicating 
“hotspots” and step-edges, areas of intense electric fields, are important for catalysis.10, 11  The 
excitation of localized surface plasmon resonances in metal nanostructures results in confined 
electric fields that are commonly utilized for chemical transformation and trace detection.1, 12, 13 

14-16  These electric fields are largely responsible for signal enhancements in surface related 
spectroscopies, where the optical response of molecules that experience the enhanced 
electromagnetic fields increases.  When incident light is resonant with plasmon resonances in 
nanomaterials, relaxation of the excited electrons can occur both through light scattering and by 
thermal relaxation to produce hot electrons.  These hot electrons are commonly associated with 
chemical transformations, such as photocatalysis, where exciting plasmon resonances facilitate 
chemical reactions on the nanostructure surface1, 2, 4-7  
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The role of plasmons in catalysis remains an open question.  Relaxation of the electrons 
excited by plasmon resonances can occur through different mechanisms that lead to physical 
effects such as heating, hot electron formation, and optical signal generation.1, 6, 14, 15  Electron 
relaxation via thermal relaxation can produce sizable temperature increases on the surface of 
nanoparticles depending on the thermal conductivity of the surroundings;17 however, the role of 
temperature in catalysis has been recently disputed.18  The relaxation from the excited state can 
form hot electrons that promote reactions near nanostructure surfaces.  This hot electron 
mechanism has received the most attention for plasmonic catalysis.1, 2, 4, 6  

Our lab has been exploring how exciting plasmon resonances can drive static surface 
potentials, as evidenced by vibrational Stark effects.19-22  A DC field arising from plasmonic 
excitation was independently observed to generate a Stark shift in a molecule located in the 
plasmonic junction.21, 23  Measurement of the change in vibrational frequency of the bond can 
thus be used to determine the magnitude of the electric field.  The vibrational Stark effect has 
been used to measure electric fields in a variety of chemical systems including the 
electrochemical double layer,24-28 proteins,29-32 biomembranes,33 and the energy levels of 
molecules.34-36 

The vibrational Stark effect is a change in the vibrational frequency that arises from an 
electric field perturbation to a chemical bond.  On plasmonic materials, these perturbations arise 
from the intense electric fields associated with excited plasmon resonances driving nonlinear 
optical phenomena.37  A second order nonlinear phenomena, optical rectification appears to 
increase in the high field regions associated with excited plasmon resonances.21, 23  Specifically, 
optical rectification results in a DC field at interfaces under the influence of high intensity electric 
fields as described by Equation 1:  

𝑉𝐷𝐶 ≅ −𝐴 ∙ 𝜒(2) ∙ 𝐸(𝜔)𝐸(𝜔′)   Eq. 1 

In Equation 1, the DC voltage (VDC) observed is related to the second order susceptibility, the 
electric fields [E(ω)], and a coefficient (A) accounting for the geometry of the interface.38   

The potential (VDC) induced by exciting a plasmonic junction at the resonant frequency has 
been determined by measuring the tunneling current through a bowtie gold electrode structure 
separated by a nm gap when the structure is illuminated.37  In the bow-tie example, a bias was 
used across the junction to direct the optically induced current.  Recent experiments in our lab 
show that when nanostructures have small gaps distances, within the quantum regime,39, 40 
tunneling of electrons across the junction also gives rise to a DC potential.19  In these 
experiments, the dipole of the molecules in the gap biases the interface and controls the net 
direction of the tunneling current, which is believed to control the sign of the observed field.  The 
vibrational Stark shift from a nitrile in this electric field can be used to determine the magnitude 
of the optically rectified field.  Interestingly, mapping the CN stretch of a Stark reporter on a 
plasmonic surface shows evidence of localized regions with both net positive and negative 
changes in surface potential.20  

The magnitude of the rectified field can be quite large.  Apkarian and coworkers also 
reported optical rectification in a nanoparticle dimer giving rise to a vibrational Stark shift from a 
CO molecule between the two spherical particles that correlated to an electric field 
enhancement on the order of 1012 and single molecule detection.23  The high fields reported by 
Apkarian and coworkers are consistent with previous work from our lab, where a 130 cm-1 Stark 
shift in the CN stretch frequency was observed from CN adsorbed onto a roughened gold 
surface when a nanoparticle TERS tip was brought into contact to form a plasmonic junction.21  
Only the CN in the confined region exhibits a Stark shift, while the CN stretch frequency for 
molecules outside the plasmonic junction is observed unchanged. Previous work investigating 
Stark shifts on electrochemical surfaces indicates that a blue shift corresponds to positive 
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potential on the metal surface, that shifts about 25 cm -1/V.24, 25, 30, 41, 42  Thus the 130 cm-1 Stark 
shifts would correspond to a change in surface potential of ~3-4V.  While there remains some 
uncertainty, such as the distance associated with the field for the plasmonic field compared to 
the applied electrochemical potential, the large fields observed in these examples suggest 
intriguing possibilities for photocatalytic applications of nanostructures.    

Recently, our lab has been able to show that the VDC observed on a plasmonic Au film was 
able to modulate the rate of the oxidative and reductive formation of Di-mercaptoazobenzene 
(DMAB) from nitrothiophenol and aminothiophenol upon plasmonic excitation.22  By using a 
coadsorbed Stark reporter, the surface potential was shown to correlate with changes in the rate 
of DMAB formation.  Additionally, the photocatalytic changes were shown to correlate with 
electrochemically induced oxidation/reduction of the surface species.  

The existence of these large DC fields on nanoparticle surfaces suggests an alternative 
mechanism for photocatalysis, where excitation of the LSPR in nanostructures changes the 
energy of the Fermi level, as evident in the vibrational Stark shift of adsorbed molecules.  By 
providing substantial overpotential, the DC field resulting from optical rectification thus drives the 
chemical reaction at accelerated rates.  In this report, we present results that show how the 
overpotential required for electrochemical reactions is modified by the optically rectified field on 
a plasmonic surface.  We combine Stark Spectroscopy with electrochemical measurements to 
assess the impact of plasmon resonances on the energy required for electrochemical reactions.  
These results illustrate how the previously under-appreciated phenomena of optical rectification 
modulates the activity of plasmonic catalysts.    

 
EXPERIMENTAL 
 
Materials and Reagents 

Silver nitrate (99%), reagent alcohol (95%), copper sulfate pentahydrate (98%), and sodium 
sulfate (99%) were obtained from Sigma Aldrich (Missouri, USA) and used without modification.  
Reynolds Wrap aluminum foil was purchased from a local hardware store (Ohio, USA) and used 
without modification.  4-mercaptobenzonitrile (MBN) was acquired from Synfine Research, Ltd. 
(Ontario, CAN) and used without modification. 
 
Electrochemical Depositions/Measurements 

Electrochemical deposition and measurements were performed with a CHI660D 
potentiostat.  Strips of aluminum foil, with one end folded over itself multiple times to provide a 
sturdy surface for the alligator clip, served as the working electrode.  To complete the three-
electrode system, a Ag/AgCl reference electrode and platinum wire counter electrode were 
used.  All potentials stated in the manuscript are relative to Ag/AgCl unless otherwise specified.   
  
Photo-electrochemical measurements 

All photo-electrochemical experiments were performed in a Zahner PECC-2 Cell (Admiral 
Instruments) with excitation occurring directly on the dendrites through a quartz window at the 
front of the cell.  The impact of optically rectified fields on oxidation and reduction events at the 
surface of the Ag dendrites was measured in a solution of 2 mM Cu2SO4 and 100 mM Na2SO4.  
Optical excitation was achieved using 565 nm LED (Thorlabs) at a power density of 2.3 
mW/mm2. 
 
Silver Dendrite Preparation 

Silver dendrites were prepared by electrochemical deposition using a 0.05M silver nitrate 
solution and depositing at -1.6V for 200 seconds onto an aluminum foil working electrode.  After 
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deposition, the dendrite/aluminum foil electrode was removed from the electrochemical cell and 
the dendrites were allowed to dry overnight in order to ensure they adhered to the foil. 
 
Monolayer Preparation  

A MBN monolayer was adsorbed to the surface of the Ag dendrites to generate a SERS 
signal.  Clean Ag dendrites were soaked in a 0.01 M ethanolic solution of MBN for 24 hours to 
create the monolayer. 
 
Raman Measurements 

Raman spectra were acquired using a Renishaw inVia Raman microscope with a 632.8 nm 
HeNe laser (Thorlabs).  For MBN studies, the scattering between 1912-2374 cm-1 was collected.  
Spectral analysis was performed using MATLAB with a modified peak-fitting script from 
Mathworks.  Spectra were fit with a single Gaussian, with the optimal fit being that with the 
smallest percent root mean squared (RMS) error.  In general, 15 iterations were sufficient to 
minimize the RMS error.  

For experiments analyzing the changes in MBN vibrational frequency from LED exposure, a 
455 nm LED (Thorlabs) was used as it provided the highest power density (5.4 mW/mm2) to the 
sample without exciting at wavelengths in the Raman spectrum collection region from the 632.8 
nm laser. 
 
RESULTS AND DISCUSSION 

 
Silver nanodendrites were prepared by electrochemical reduction of AgNO3 onto aluminum 

foil.  These structures have previously been reported to provide high surface area electrodes43 
and enable surface enhanced Raman scattering.44  The structure of these electrodes is 
consistent with heterogeneous surfaces previously shown to evince Stark shifts from nitrile 
containing molecules adsorbed to the surface.20  To calibrate the surface potential to the 
vibrational frequency of our Stark reporter molecule adsorbed to the Ag dendrites, we performed 
spectro-electrochemical measurements.  Figure 1 shows the observed CN stretch frequency as 
a function of applied electrochemical potential from MBN adsorbed to the Ag nanostructures.  
The potential was swept from 0V to -1V at a scan rate of 10 mV/s while Raman spectra were 
recorded every second.  As the surface potential becomes increasingly negative, the CN stretch 
frequency is observed to decrease to lower Raman shifts.  Fitting the change in CN stretch 
frequency versus potential indicates a Stark tuning coefficient of 8 cm-1/V.  This value is 
consistent with our previous reports from MBN on Au nanowire array electrodes.22 
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Figure 1.  The change in CN stretch frequency as a function of applied electrochemical 
potential is plotted for MBN adsorbed to a Ag nanodendrite electrode.  The CN stretch is 
observed to decrease at a rate of 8 cm-1 V-1.  The inset shows a heatmap illustrating how the 
vibrational mode lineshape evolves with potential.  Spectra were taken using a 40x water 
immersion objective (NA=0.8), 0.20 mW laser power at the sample, and 1 s acquisition 
times.  The error bars are the standard deviation observed from 6 separate measurements 
on different spots.  A linear fit is plotted to show the expected trend in CN frequency with 
changes in applied potential.  

 
To verify the formation of optically rectified fields on the surface of the Ag nanodendrites.  

The CN stretch mode was recorded with increasing laser power.  Figure 2A shows the observed 
change in the CN frequency observed with increased laser power.  The CN stretch frequency 
was determined from the center of a Gaussian line shape fit to the observed spectrum.  The 
experiment was performed with 4 measurements from different spots on the same substrate.   

From Eq. 1, we observe the expected linear change in frequency with increased power 
arising from a linear change in VDC.  The power range examined is limited by the output of our 
HeNe laser and the damage threshold of the surface.  Over the 4.5 mW range measured, we 
observe a frequency shift of -0.32 cm-1 mW-1.  Figure 2B shows the spectra observed at 0.04 
mW and 4.45 mW excitation power.  The peaks are clearly shifted but show negligible 
broadening.  The lack of broadening suggests that temperature is not a dominant factor at these 
powers, as temperature should increase the heterogeneous line broadening and give rise to 
wider peaks.  Temperature is not expected to change the vibrational frequency of the CN 
moiety.  
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Figure 2.  A) The CN stretch frequency is plotted as a function of laser power incident on a 
MBN functionalized Ag nanodendrite surface.  With increasing power, the CN stretch is 
observed at decreasing Raman shifts.  The change in Raman shift with power indicates the 
formation of a negatively charged optically rectified field on the electrode surface.  B) 
Example spectra obtained at 0.04 mW (black) and 4.45 (red) are shown.  The spectra were 
corrected for acquisition time and laser power and then normalized for comparison.  Spectra 
were obtained using a 50x air objective (NA=0.75)

 
The results in Figures 1 and 2 combine to suggest that the plasmonic structures give rise to 

a negatively charged surface with increasing laser power.  This negative potential should affect 
the reduction and oxidation activity on the electrode surface.  To assess the impact of the 
optically rectified electric fields on the electrochemical activity of the surface, spectro-
electrochemical measurements were performed consisting of cyclic voltammetry in the presence 
of 2mM CuSO4 while the surface was either illuminated with a 565 nm LED or dark.  Figure 3 
shows results from these spectro-electrochemical measurements.  In the absence of 
illumination, Figure 3A shows that as the potential is made more negative, a reduction peak is 
observed near -0.05 V.  Upon switching the direction of the potential sweep, two oxidation 
peaks are observed at 0.05 V and 0.2 V.  There is some minor fluctuation of the peaks, likely 
arising from inhomogeneities on the highly branched electrodes.  When the surface is 
illuminated with the diode, a new reduction peak is observed at 0.1 V in the cathodic sweep, and 
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at 0.25 V upon switching the potential in the anodic sweep.  The peak currents associated with 
these new peaks are observed to diminish and disappear when the light is turned off.   

Figure 3B shows the time dependent behavior observed from the photo-induced peaks on 
the surface.  The reduction and oxidation peak currents are shown to correlate with illumination 
of the surface.  The increase and decrease in peak current occurs on a timescale of seconds, 
suggesting that mass transport effects (e.g. double-layer charging) impact the formation of the 
optically rectified fields on the electrode surface.  Further study is needed to explore the origins 
of the observed kinetics.  However, the new oxidation and reduction peaks are observed at 
potentials positive of the events measured in the dark.  This is consistent with optical 
rectification providing an increase in negative potential to facilitate these electrochemical 
transitions. 

 
Figure 3.  A) Cyclic voltammograms taken with and without illumination from 565 nm LED 
are shown.  When the Ag plasmonic electrode is illuminated, new peaks are observed in the 
cathodic wave (blue arrow) and anodic wave (red arrow).  B) The samples peak current of 
the photo induced voltammogram peaks (red and blue) are plotted versus time.  When the 
LED is turned on is noted by the green arrow, while the time when the LED is turned off is 
noted by the black arrow.  The colored circles correspond to the similarly colored 
voltammograms in (A).   
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To further examine the origins of the photo-induced electrochemical behavior we obtained 
Raman images of the MBN functionalized surface with and without diode illumination (Figure 4).  
To avoid interference from the diode in our Raman measurements, we used a 455 nm LED with 
an estimated power density of 5.4 mW/mm2.  The Raman excitation laser power was minimized 
to 0.008 mW to avoid inducing an additional Stark shift.  From Figure 2, this laser power has a 
negligible impact on the CN stretch frequency.  Figure 4A plots the CN stretch frequency 
observed from a Ag dendrite SERS surface without LED illumination.  Similar to previous 
results, the magnitude of the CN shift is observed to distribute across different regions of the 
substrate.   

In Figure 4B, we observe that LED illumination produces a change in the observed CN 
stretch frequencies.  By repeating the Raman map with the LED illuminating this region, the 
value of the CN stretch is observed to increase in some areas and decrease in others.  Using 
the Stark tuning coefficient (8 cm-1/ V) determined from Figure 1, we are able to determine the 
distribution of surface potentials on the nanostructured silver surface.  The intensities observed 
in the repeated Raman maps were consistent, indicating no visible drift or photodamage 
occurred.  The observed CN stretch frequencies were observed to change. 

Figure 4C plots the distribution of surface potentials observed from 3 different experiments.  
To create the distribution, a linear background was subtracted and the spectra fit to a single 
Gaussian lineshape.  Only peaks 3 standard deviations above the noise were included.  The 
observed frequencies were weighted by the fit amplitude.  The change in Raman shift was then 
converted to surface potential using the Stark tuning coefficient determined in Figure 1.  The 
mean calculated surface potential of -0.054 V agrees with the observed center of the Gaussian 
distribution of -0.052 V; however, it is evident that there are regions with substantially different 
charge.   

The small net change in surface charge helps explain the new peaks observed in the cyclic 
voltammetry experiments.  If the optically rectified fields altered the surface potential of the 
entire surface, the applied electrochemical potential relative to Ag/AgCl would shift 
proportionally.  However, with illumination, we observe two distinct behaviors: one 
representative of the electrode in the dark, and two a photo-induced behavior requiring less 
overpotential to drive the electrochemical reaction.  Based on the distributions in Figure 4C, we 
assign the photo-induced behavior to those areas that have significantly shifted surface 
potentials.  The ~150 mV shift in peak potential observed in the CV experiment is easily 
contained in the distribution of potentials in Figure 4C.  Previous work has associated defects, 
step edges, and nanoparticle corners as catalytically active sites,10, 11  this agrees with our 
observations.  However, we believe the optically rectified field at these sites also plays a role in 
the observed photo-electrochemical activity.   
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Figure 4. A) The image plots the CN stretch frequency observed from an MBN 
functionalized surface without LED illumination.  B) Changes in the CN frequency over the 
same area plotted in (A) are observed when a 455 nm LED illuminates the surface at power 
density of 5.4 mW/mm2.  C) The difference in CN stretch frequency with and without 
illumination at each pixel in 3 separate experiments were combined and converted to 
surface potential using the Stark tuning coefficient (8 cm -1/V) determined in Figure 1.  The 
black line is the Gaussian fit to the distribution.
 

Figure 5. The brightfield image of the Ag dendrite (A) and the corresponding Raman map 
(B) plotted from the intensities of the CN stretch are shown.  C) The distribution of surface 
potentials calculated from the change in CN stretch frequency with and without illumination 
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for the Raman map (B) provides a far field picture of how the change in charge density 
corresponds to the location of hotspots.  In (C), red indicates a more positive, blue is a more 
negative, and green is unchanged surface potential. 
 
To further evaluate the correspondence between “hotspots” and the observed optically 

rectified fields, Figure 5 shows how the SERS intensity corresponds with the observed 
distribution of surface potentials.  Figure 5A shows the brightfield image of the Ag dendrite 
surface corresponding to the Raman map in Figure 5B.  In Figure 5B, the intensity of the CN 
stretch from the MBN molecules on the Ag dendrite is plotted.  Regions of intense Raman 
scattering are observed along the dendrites.  Figure 5C shows the calculated charge distribution 
from the same area determined from maps with and without illumination.  The correlation 
between the hotspots and the charge density is not clear.  However, this is reasonable because 
the hotspots, nanojunctions, are the point where the electrons tunnel between nanostructures.  
Therefore, one side should be positively charged and the other negatively charged.  The Raman 
microscopy used in this experiment does not have the spatial resolution to distinguish 
spectroscopic changes on this length scale. What is observed are pockets of altered charge 
density near where hotspots are observed.  The physical structures that correlate to these 
pockets of altered charge density are hypothesized to give rise to the photo-induced features in 
the cyclic voltammetry.   
  
SUMMARY AND CONCLUSIONS 
 

Taken together our results suggest optical rectification of plasmonic fields are relevant to 
catalytic reactions on these materials.  Figure 6 summarizes our results and presents a picture 
of what we believe may occur.  In the presence of light to drive the plasmon resonance, 
electrons can tunnel though nanojunctions and give rise to optically rectified fields (VDC).  This 
optically induced voltage raises the Fermi level of the electrode in localized regions.  These 
localized fields on the plasmonic material enable electrochemical reactions at reduced 
overpotentials.  In Figure 6, we analyze the cathodic wave of the CV, which appears to have 
more straightforward behavior.  Ep,c corresponds to the reduction of Cu by the electrode without 
the assistance of the plasmon.  When the plasmons are excited, regions on the electrode at 
increased negative potential drive the reaction at lower applied potential giving rise to Ep,c*.  The 
behavior of the anodic wave is also consistent with this explanation; however, the two oxidation 
peaks observed in the dark require additional treatment.   
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Figure 6.  The schematic illustrates the connection between the optically rectified field (VDC) 
and the observation of new redox peaks in the CV measurement.  Ep,c is the reduction peak 
arising from the regions of the electrode that show no change in potential with optical 
illumination and have electrons with a defined Fermi level (EF,0).  Ep,c* corresponds to 
regions of the electrode where the optically rectified field (VDC) raises the energy of the 
Fermi level, enabling reduction with less applied negative potential.   

 
This model has implications for mechanisms of plasmonic catalysis.  First, no thermal effects 

are included in this model.  Our observations are based on changes in, and indicators of, 
potential.  Both the frequency of bond and the redox peak observed in CV are expected to 
broaden at increased temperature, but not shift.  The Fermi-Dirac distribution of electrons into 
different energy levels, f(E), is sensitive to temperature, but the center of the distribution, the 
Fermi level, does not change.  While temperature clearly has an effect on catalytic rates, it is in 
addition to the optically rectified fields.  Second, our previous work indicates that nanojunctions 
are required for optical rectification.19  This suggests that reactions on isolated plasmonic 
structures occur through a different mechanism, such as hot electron generation.  In the case of 
coupled nanostructures, the optically rectified field has been shown to modulate the hot electron 
associated reaction rates.22 

In conclusion, the combination of Stark spectroscopy and electrochemical measurement 
provides evidence that optical rectification on plasmonic surfaces plays an important role in 
plasmon catalysis.  Future efforts to design catalytic materials will benefit from understanding 
the impact of this nonlinear process.   
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