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New Topological States in HgTe Quantum Wells from
Defect Patterning†

Hua-Hua Fu,∗a,b and Ruqian Wu∗a

To explore new opportunities for the realization of the
quantum spin Hall (QSH) effect in two-dimensional (2D)
materials, we have constructed a honeycomb geometry
(HG) by etching rows of hexagonal holes in HgTe quantum
wells (QWs). Theoretical calculations show that multiple
Dirac cones can be produced by HG, regardless of whether
the band inversion occurs or not. Furthermore, the topo-
logical states originating from a narrow HG region in a
wide ribbon show strong localization at the physical edges
of the ribbon, making them easy for manipulation and
exploitation. When the band inversion condition for QW
states is satisfied, the topological states generated from
two different mechanisms may coexist. Our studies pave
a way to produce and control multiple QSH states in 2D
materials as desired for the design of innovative spintronic
materials.

Quantum spin Hall (QSH) insulators, also known as two-
dimensional (2D) topological insulators (TIs), manifest a new
state of quantum matter characterized by the presence of con-
ducting helical edge states (HESs) in the bulk band gap.1–3 The
QSH state was first predicted for graphene, but the small spin-
orbit coupling (SOC) of carbon atoms makes this important phe-
nomenon undetectable in experiments.3 A major step toward the
realization of the QSH state was achieved by using materials
with ąřinvertedąś energy bands, i.e., the bands with two distinct
wave function features cross each near the Fermi level. Accord-
ingly, a quantum phase transition was predicted by Zhang et al.
for HgTe/CdTe quantum wells (QWs), which change to the QSH
phase as the thickness of the HgTe layer becomes larger than a
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critical value (dc = 7.5 nm).4–6 It is recognized nowadays that
there are two different physical mechanisms for the production of
the QSH state, even though both need strong SOC. One is based
on the peculiar electronic features of a honeycomb lattice such
as graphene, and the other stems from the inverted band struc-
tures. For the convenience of discussions below, we call the mate-
rials in these two categories type-I and type-II TIs respectively. To
search for type-I TIs, ultracold atom honeycomb supperlattices,7

graphene-like organmetallic lattices,8 molecular graphene,9 2D
electron gases covered by a geometric array of gates10,11 and 2D
single-crystalline sheets of semiconductors with honeycomb lat-
tice,12–14 have been proposed. On the contrary, only very few
type-II TIs such as InAs/GaSb heterostructures have been inves-
tigated.15 Nevertheless, experimental observations of the QSH
state have only been reported for HgTe/CdTe6 and InAs/CaSb
QWs,5,16 whereas numerous predictions for type-I TIs remain to
be confirmed.

Applications of the QSH state in realistic devices require mate-
rials with large topological gaps and high tunability. To this end,
it is necessary to employ or combine different physical mecha-
nisms for the design of new topological materials. In this let-
ter, we construct HgTe QWs with defect arrays in a honeycomb
lattice. Through tight-binding calculations, we find several un-
usual topological phenomena which have not reported so far, due
to the coherent interplay of the type-I and type-II mechanisms.
The band structure shows multiple Dirac cones and nontrivial flat
bands, regardless of the status of band inversion, and the Dirac
cones from different physical mechanisms can coexist in the same
material. The required conditions to realize the coexistence of
the two types of Dirac cones are discussed in detail. Furthermore,
the topological states produced by defect arrays may extend far
away through the non-defected region of the QW to the edges
of nanoribbon, which provides a possibility to operate QSH state
from far-away terminals. Our findings open doors to realize the
coexistence of multiple QSH states with different physical mech-
anisms and to generate the QSH state with desired properties for
device applications.

Following the previous design of HgTe QWs by Bernevig et al., 5
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Fig. 1 (a) Model 1: A HgTe QW ribbon with two flat boundaries and
three rows of hexagonal holes symmetrically along the ribbon direction.
(b) Model 2: A HgTe QW ribbon with five rows of hexagonal holes and
two flat boundaries, the structure parameters are set as the same as
these in Model 1. (c) Model 3: A HgTe QW ribbon with five rows of holes
and two zigzag boundaries to feature graphene-like supperlattices. In
the all ribbons, d denotes the QW thickness, l1 (= 35 nm) denotes the
hole width, l2 (= 25 nm) denotes the distance between two boundaries
of the nearest holes, and W refers to the ribbon width. In Model 1 and
2, Wc denotes the distance between the first (last) row of holes and the
upside (downside) ribbon boundary. (d) A magnifying diagram of a HgTe
hexagonal hole, in which every red dot shows the lattice site mapped by
the tight-binding model, the distance between two nearest lattice site is
denoted by a (= 5 nm).

we construct two defected HgTe QW ribbons by etching multiple
rows of hexagonal holes along the ribbon direction. To see the
effect of these superstructures, we first construct Model 1 and 2
with two flat edges, and three and five rows of holes are adopted
to form honeycomb lattices, respectively, as shown in Figs. 1a
and b. In both models, we denote the hole width with l1 (=
35 nm) and the distance between two nearest holes with l2 (=
25 nm), the ribbon width with W , and the distance between the
upside ribbon boundary and the nearest row of holes with Wc. To
simulate the graphene-like geometry, we further construct Model
3 with two zigzag boundaries based on Model 2. We want to
point out the fundamental difference between our models and the
HgTe, PbSe or CdSe QWs and superlattices used in some previous
studies.17,18

The Bernevig-Hughes-Zhang (BHZ) model has been used for
studies of HgTe QWs in quantum dots, quantum point contacts
and multiple H-shape terminals,19–21 it is should be also appli-
cable to describe the HgTe layers in our structures, if the contri-
butions of low-energy electrons are mainly considered.5,22 Based
on the symmetry consideration, the effective BHZ Hamiltonian
can be mapped into a tight-binding model on a square lattice with
four special orbit states |s,↑〉, |px+ ipy,↑〉, |s,↓〉 and |−(px− ipy),↓〉

as follows23,24

H = ∑
i

ϕ†
i Eiϕi +∑

i
(ϕ†

i vi+δxϕi+δx +ϕ†
i vi+δyϕi+δy +H.c.), (1)

where i = (ix, iy) is the site index, and δx and δy are unit vec-
tors along the length and width direction, ϕi = (ai,ci,bi,di)

′ rep-
resents the four annihilation operators of electron on the site i
with the above four states, Ei =

(
1 0
0 1

)⊗ (Es 0
0 Ep

)
denotes the on-

site potential matrix, vi+δx =
(

1 0
0 0

)⊗( Vss Vsp
−V ∗

sp Vpp

)
+
(

0 1
0 0

)⊗( Vss V ∗
sp

−Vsp Vpp

)
,

and vi+δy =
(

1 0
0 0

)⊗ ( Vss iVsp
iV ∗

sp Vpp

)
+
(

0 1
0 0

)⊗ ( Vss −iV ∗
sp

−iVsp Vpp

)
. Here, Es =

C+M−4(B+D)/a2, Ep =C−M−4(B+D)/a2, Vpp = (B+D)/a2

and Vsp = −iA/2a, with a (= 5 nm) denoting the lattice con-
stant (see Fig. 1). The SOC is naturally invoked in this Hamil-
tonian through the spin-orbit coupled p orbitals: |px + ipy,↑〉 and
|− (px − ipy),↓〉. The parameters A, B, C, D and M depend on the
pure QW geometry, and they can be estimated by comparing re-
sults of the well-established 8× 8 Kane Hamiltonian.25,26 In the
following, we use values A = 364.5 meV nm, B = -686 meV nm2,
C = 0 and D = -512 meV nm2. The Dirac rest mass M in QWs
can be tuned continuously from a positive value M > 0 for thin
QWs with thickness d < dc to a negative value M < 0 for thick
QWs with d > dc, which corresponds to the topological trivial and
nontrivial regions, respectively. To mimic the defected HgTe rib-
bons with multiple holes and zigzag edges, we remove orbitals of
vacant sites from the tight-binding model calculations. The spin-
dependent wave-function distributions of the lattice (m, n) can be
calculated by ±|Φm,n|2 = ±∑k=s,p〈ϕm,k,σ |ϕn,k,σ 〉, where σ is the
spin index, m (n) is the lattice position along the ribbon length
(width) direction and the positive (negative) sign refers to the
spin-up (-down) state.

To reveal the topological properties, the width size W of Model
1 is set as a general value, i.e., 285 nm (=57a) (see Fig. 1a), and
its band structure is calculated for various values of M, ranging
from 10 to -20 meV. Some particular properties can be identi-
fied from the bands plotted in Fig. 2a to 2c. First, a band gap
appears around the Fermi level (EF = 0) and the gap decreases
with increasing QW thickness, which ascribes the gradual phase
transition to TI as the quantum confinement effect decreases in
the QWs.13 Second, the bands show Dirac cones regardless of the
value of M, even in the region where HgTe QW has a trivial in-
sulating feature. Since the appearance of the Dirac states here
is independent of the thickness of the QW, these states should
be produced by the honeycomb lattice of defects, rather than by
the band inversion in the QW.27,28 To support this conclusion,
we also study a HgTe QW ribbon with only one row of hexagonal
holes, and find that the band inversions when d > dc is still the
prerequisite of the presence of Dirac states, as shown in Fig. S1
in the Supporting Information (SI). Moreover, to grasp the phys-
ical nature of these Dirac states, we examine two chosen states,
i.e., α1 and α2 in the Dirac bands, and plot their spin-dependent
wave-function spatial distributions as a function of the lattice po-
sition n along the ribbon width in Fig. 2i. It is interesting that
these Dirac states are localized at the edges of the QW ribbon,
rather than at the edges of the defect sub-ribbon. This suggests
an inspiring characteristic of QSH state: the topological states
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Fig. 2 (a-c) The band structures of Model 1 with two flat boundaries, where Wc = 75 nm. (d-f) The band structures of Model 2 with two flat boundaries
and Wc = 25 nm. In these two models, the parameter M is set as 10, 0, and -20 meV to show the increased QW thickness. (g) and (h) The spin-
dependent wave-function spatial distributions ±|Φmn|2 of the chosen states β1 and β2 (see figure a) and the states γ1 and γ2 (see figure c), where ąř+
(-)ąś denotes the distributions of the spin-up (-down) state. (i) and (j) The wave-function distributions of the related edge states α1 (α1’) and α2 (α2’) in
Model 1 (2) versus the lattice position n along the width direction.

produced by the defect arrays drift to the physical edges of the
ribbon, but do not localize at the boundaries of the defect sub-
ribbon. The drifting of the above QSH state is tightly related to
the particular geometric structure of the model. In fact, Model
1 can be regarded as a graphene-shape supper lattice structure
having two wide flat edges, and the QSH state originated from
the HG should be localized at the outmost edges of the model3.

To see the robustness and generality of this drift, we construct
Model 2 as illustrated in Fig. 2b, in which two rows of holes are
added in the QW ribbon. Interestingly, the Dirac bands remain in
the band structures regardless of QW thickness as shown in Fig.
2d to 2f, which confirms further that the Dirac states originate
from the honeycomb lattice of defects. Similarly, we choose two
Dirac states, i.e., α1

′ and α2
′ as shown in Fig. 2f, to examine their

wave-function spatial distributions. One can see that they have
the same localization at the physical boundaries of QW ribbon as
α1 and α2 of Model 1 (see Fig. 2i). This confirms the robustness
of the Dirac states induced by the honeycomb lattice of defects,
because the spatial distributions of Dirac states are rather inde-
pendent of the rows of holes. Since the defect-driven topological
states may drift far away from the region where they are created,
one may control the transport properties of nanoribbons more
easily. For example, we may generate topological states in the
conventional insulators with strong SOC, but operate them from
distant terminals. Additionally, the band structures of Model 2
show that the additional two rows of holes bring about more flat
bands, indicating that the flat bands refer to the circulating edge

states around the holes.

Another interesting finding here is that the Dirac cones origi-
nating from two different mechanisms can coexist in one system.
In Model 1, as the QW thickness increases, eight lowest conduc-
tion bands gradually show linear dispersions, as plotted in Fig.
2a to 2c. To perceive the evolution of the topological feature of
these states, we analyze their spatial distributions for different M
values. Note that the regimes above and below the three rows of
holes in Model 1 can be viewed as two pure HgTe QW subribbons
with a width of Wc (= 75 nm), as illustrated in Fig. 1a. When M =
10 meV, the spin-up state β1 and the spin-down one β2 chosen in
Fig. 2a, distribute rather uniformly in the pure HgTe sub-ribbons
as drawn in Fig. 2g. This indicates that these two states display
as a trivial feature of the conduction states of a semiconductor. As
the thickness of the HgTe QW increases to the regime of topolog-
ical phase transition (M = -20 meV), these conduction bands be-
come more linear. The spin-up state γ1 and the spin-down one γ2

tend to behave as edge states that localize at the physical bound-
aries of the HgTe QW subribbons as shown in Fig. 2h. Apart from
these, some supplementary calculations show that as the HgTe
QW become thicker, several conduction bands are more linear,
as shown in Fig. S2 in the SI. Thus it can be drawn that these
newly-developed Dirac bands in Model 1 are generated by the
band inversion. Considering the Dirac bands originating from the
honeycomb lattice of defects in the low-energy region, Model 1
can be regarded as the first example in which the Dirac cones
from two different mechanisms can coexist in the same system.
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Fig. 3 (a-c) The band structures of Model 3 with two zigzag boundaries and different QW thickness. (d) and (f) The Dirac bands and the flat bands,
and some typical states are chosen and labeled as ϕ1, ϕ2, ξ1 and ξ2. (e) The spin-dependent wave-function distributions ±|Φmn|2 of the states ϕ1 and
ϕ2 in the Dirac bands, where ąř+ (-)ąś denotes the distributions of the spin-up (-down) state. (g) The wave-function spatial distributions of the states ξ1
and ξ2 in the flat bands, where six repeating units along the ribbon direction are adopted.

The coexistence of two types of edge states opens a door to gen-
erate multiple channels of spin transport towards special device
applications.

It should be stressed that the finite-size effect occurring in the
HgTe QW subribbons is an important factor to influence the co-
existence of two types of the Dirac cones. To illustrate this point,
we plot the wave-function spatial distributions of two Dirac states
(cf. the states γ1 and η in Model 1) in Fig. 2j. Although these two
states retain the typical characteristics of edge states, they ex-
tend in a larger region, attributing to the finite-size effect.29–31 In
Model 2, the widths of the HgTe QW sub-ribbons are narrow (i.e.,
Wc = 25 nm), which makes the bulk states in the Dirac bands of
Model 1 disappearing in Fig. 2d to 2f. As a result, it is impossible
to reach the coexistence of Dirac states with different mechanisms
in Model 2.

Next, to show the robust characteristics of the Dirac states pro-
duced by hexagonal defect arrays, the flat boundaries of Model
2 are replaced by two zigzag-like boundaries, which further ex-
tends the model to a nearly perfect graphene-shape superlattices
(cf. Model 3 in Fig. 1c). Interestingly, the band structures of
this example shown in Fig. 3a to c retain all the main features
of Model 2 drawn in Fig. 2, including the band gaps and the
Dirac cones. Nevertheless, the bands of Model 3 has larger spin-
splittings than those of previous models, due to the fact that the
zigzag boundaries break the inversion symmetry.2 Meanwhile,
due to the additional electron scatterings along the two zigzag
boundaries, the velocity of Dirac electrons in Model 3 decreases.
To appreciate the physical nature of the spin-splittings of Dirac
bands, we give their spin-dependent wave-function distributions

in Fig. 3e for the case with M = -20 meV. Two Dirac states, i.e,
the spin-down state ϕ1 and the spin-up one ϕ2 chosen in Fig. 3d,
localize at two physical boundaries, and display as a zigzag-like
shape, following the boundary geometry. Moreover, these two
spin states have different propagation direction and spin orienta-
tion at the opposite boundaries, as shown in Fig. 3e. The spin-
momentum lock feature of these edge states confirms further their
topologically nontrivial nature. It is well known that the HESs in
zigzag graphene ribbons are contributed from atoms near to the
edges.32 However, the HESs shift to the outermost sub-ribbons,
making the graphene-like superlattices more attractive for device
applications. Additionally, to explore the topological properties
of many nearly flat bands of the model, two typical spin states
(cf. the states ξ1 and ξ2 in Fig. 3f) are chosen to show their
spin-dependent wave-function distributions, as plotted in Fig. 3g.
We find that these states are localized at the edges of the holes
and can convert to the Dirac ones as they are coupled with each
other, as shown in Fig. S3 in the SI, supporting the topological
characteristic of the flat bands.

Finally, we want to comment on the experimental feasibility
for the fabrication and characterization of our model systems.
The QSH state of HgTe QWs have already been realized in ex-
periments. Some modifications in the original procedure such as
growing HgTe layer on a substrate with rows of hexagonal pil-
lars,5,6 etching rows of hexagonal holes in the HgTe layer, en-
couraging some work has already been done for the GaAs QWs.33

It should be pointed out an artificial graphene in small-period
nanopatterned GaAs QWs has already been constructed in a very
recent experiment, and the Dirac states from the honeycomb su-
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Fig. 4 (a) The band structures of the clean HgTe QW ribbon without
any gate voltage or holes. The numerical results are well consistent with
those obtained in some previous works. 5,24 The QW ribbon has the same
width of Model 3 and the parameter M is set as -10 nm. (b)-(f) The band
structures of the HgTe QW ribbon with the increase of the gate voltage
Vg from 20 meV to 500 meV. The region of the applied gate voltage has
the same configuration shape as the five lines of defected holes and the
two zigzag-like boundaries in Model 3 with a reasonable value of M (≈
-10 meV).

perlattices were observed successfully.34 The experimental break-
through supports the realization of the coexistence of two dif-
ferent kinds of Dirac states in our model systems. Besides, we
propose another alternative route to fabricate HG: applying gate
voltage or external electric field on the clean HgTe QWs in a pat-
tern. The gate voltage has the same configuration shape as the
defect region with five lines of hexagonal holes and two zigzag-
like boundaries in Model 3. To confirm our idea, in Fig. 4, we
calculate the band structures of the HgTe QWs covered by the
voltage gate, and find that as the gate voltage Vg is increased to
500 meV, the band structure can be compared with that of Model
3 with a suitable value of M (≈ -10 meV). We noted that the top
gate voltage as high as 5 V has been successful applied on the
HgTe QWs to control carrier density in experiments,35,36 indicat-
ing the feasibility of creating novel QSH state in gate voltage.

In summary, we have constructed HgTe QWs with defect arrays
in honeycomb pattern HG and determined their electronic prop-
erties through four-band tight-binding calculations. Interesting

QSH state can be generated and manipulated such as: (i) HgTe
QWs with HG have multiple Dirac cones, regardless of the QW
thickness, which provides a feasible way to realize the QSH ef-
fect for particular use; (ii) the QSH state produced by HG may
exist in regions without HG, allowing to separate the generation
and operation of QSH states from far away terminals and (iii),
the HgTe QWs with HG can be considered as the first example of
the coexistence of the Dirac cones with different physical mecha-
nisms, and offer an useful platform for studies of the QSH effect in
nanosystems. Although the four-band model might be too simple
to describe atoms at the edges, we noted that states from those
atoms most form flab bands and the Dirac states we discussed in
this work hence should be reasonably described. We believe our
predictions here may inspire experimental tries and should open
a new way for the design of topological status of materials.
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