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Abstract

Artificial intelligence (AI) and machine learning have promised to revolutionize the way we live 

and work, and one of particularly promising areas for AI is image analysis. Nevertheless, many 

current AI applications focus on post-processing of data, while in both materials sciences and 

medicines, it is often critical to respond to the data acquired on the fly. Here we demonstrate an 

artificial intelligence atomic force microscope (AI-AFM) that is capable of not only pattern 

recognition and feature identification in ferroelectric materials and electrochemical systems, but 

can also respond to classification via adaptive experimentation with additional probing at critical 

domain walls and grain boundaries, all in real time on the fly without human interference. Key to 

our success is a highly efficient machine learning strategy based on a support vector machine 

(SVM) algorithm capable of high fidelity pixel-by-pixel recognition instead of relying on data 

from full mapping, making real time classification and control possible during scan, with which 

complex electromechanical couplings at the nanoscale in different material systems can be 

resolved by the AI. For AFM experiments that are often tedious, elusive, and heavily rely on 

human insight for execution and analysis, this is a major disruption in methodology, and we 

believe such a strategy empowered by machine learning is applicable to a wide range of 

instrumentations and broader physical machineries.

* Author to whom the correspondence should be addressed to: jjli@uw.edu .
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Introduction

Artificial intelligence (AI) and machine learning have promised to revolutionize the way we live 

and work. In ancient game of Go, AI has shed unprecedented new insights that have not been 

recognized by mankind over several thousand years;1 in medicine, AI has offered diagnosis that 

rivals the best human doctors;2,3 and in physics as well as materials sciences, AI has enabled 

accelerated discovery of new substances, compounds, and mechanisms.4–8 One of particularly 

promising areas for AI is image analysis,9,10 where it far outperforms human beings in pattern 

recognitions, capable of discerning subtle features that are elusive to the naked eyes. Indeed, AI 

has been demonstrated to be very effective in analyzing data from both microscopy and 

spectroscopy studies.6,11–14 Nevertheless, many current AI applications in image analysis focus 

on post-processing of data,12,15–17 while in both materials sciences and medicines, especially 

under time- and environment-sensitive circumstance and at elusive points that are not easy to 

spot, it is often critical to respond to the data acquired on the fly, for example by acquiring 

additional data in the critical locations of material interfaces or tumors. It is also highly desirable 

to intervene in real time with manipulative or therapeutic treatments on the spot. Here we 

develop a strategy toward this vision, by demonstrating an artificial intelligence atomic force 

microscope (AI-AFM) that is capable of not only pattern recognition and feature identification, 

but can also respond to classification via adaptive experimentation with additional probing at 

critical locations, all in real time on the fly without human interference. We believe such a 

strategy is applicable to a wide range of instrumentations and experimentations, embodying the 

true spirit of the automation of science.18,19

Our work was initially motivated by atomic force microscopy (AFM),20 which is a powerful tool 

in probing, elucidating, and manipulating materials and structures at the nanoscale. Yet AFM 

experimentations are very tedious and heavily rely on users’ experiences in recognizing usually 

elusive underlying processes. Very often important yet subtle information is overlooked by the 

users while conducting experiments, and insights are only realized during the post data 

processing afterward, which is often too late - it is virtually impossible to get back to the critical 

locations again for further probing, such as defects, heterogeneities, and interfaces, where the 

most interesting physics occur. The sample could be decomposed for example, or the elusive 

critical points could be lost like a needle in a forest. This is an ideal scenario for AI-AFM we 
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propose, which is capable of not only recognition and classification, but can also follow up with 

additional probing in real time upon critical features for further insight, saving all the trouble for 

human users. This vision is schematically shown in Fig. 1, consisting of an AI-AFM that feeds 

scanning data to a machine learning algorithm in real time. The algorithm is pre-trained with data 

for material classification and feature recognition, and based on a particular class of materials 

recognized by the AI, additional features that are relevant to the underlying system will be 

identified on the fly, such as domain walls (DWs) or grain boundaries (GBs), among others. 

Through control algorithm, the probe will get back to the identified critical feature in real time 

and carry out further experimentation appropriate for the probed system on the fly, yielding 

additional data for analyzing the underlying physical processes. Key to such a vision is a highly 

efficient machine learning algorithm capable of high fidelity pixel-by-pixel recognition instead 

of relying on data from full mapping, so that real time classification and control are made 

possible during scan. We emphasize that the concept of AI-AFM is fundamentally different from 

that of AFM robot,21 which also utilizes intensive imaging process, yet still relies on user 

intervention through an augmented reality system. In AI-AFM, all the sophisticated tasks are 

accomplished automatically in an artificial intelligence manner without user interference, 

embodying the true spirit of AI in an AFM.

Results and Discussion

To demonstrate the concept, we consider dynamic strain-based scanning probe microscopy (ds-

SPM) that is widely used to probe electromechanical coupling at the nanoscale, including 

piezoresponse force microscopy (PFM)22,23 and electrochemical strain microscopy (ESM),24–27 

both of which excite samples through a charged conductive probe and measure the 

corresponding local deformation. The electromechanical coupling is ubiquitous in both natural 

materials, synthetic devices, and biological systems, such as ferroelectric materials,23,28 lithium 

ion batteries,25–27 and voltage gated ion channels,29 underpinning a wide range of functionalities 

in information processing, energy conversion, and biological processes. Despite their vast 

different microscopic mechanisms, these electromechanical couplings often exhibit themselves 

in ds-SPM as apparent piezoresponse,30 and it is quite challenging for users to discern their 

dominating microscopic origin. A couple of examples are shown in Fig. 2, wherein the 

amplitude and phase mappings of dynamic strain for a typical ferroelectric lead zirconate titanate 
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(PZT) and electrochemical LiVO3 (LVO) are compared. While they have quite different 

microscopic mechanisms, the mappings closely resemble each other except for some subtle 

difference: the 180o phase reversal at the interface with much reduced amplitude as observed in 

PZT is a signature of ferroelectric domain wall, which is not present in LVO. The question is 

whether we can train a machine learning algorithm that first differentiates ferroelectric domains 

from non-ferroelectric mappings, and then responds with additional probing necessary at critical 

locations for further analysis, for example identify DWs in ferroelectrics and GB in 

electrochemical materials, after which detailed probing relevant to the particular system can be 

carried out across these important materials interfaces.

180o domains are commonly presented in ferroelectric materials to minimize their free energy,31 

and they usually exhibit much reduced piezoresponse on DWs with 180o phase contrast, as 

revealed by Fig. 2(c). On the other hand, amplitude and phase behaviors of non-ferroelectric 

solids, such as electrochemical materials, are usually not well defined as revealed by Fig. 2(f), 

wherein the phase contrast is smaller than 180o. Based on these observations, we employ a 

support vector machine (SVM) algorithm32 to develop a physics-based classifier that is capable 

of extracting ferroelectric DWs pixel by pixel from the inputted PFM mappings, thereby helping 

distinguishing ferroelectric materials from electrochemical ones, for which a different algorithm 

is introduced to extract GBs from AFM topography mappings, as detailed in Fig. S1 in 

Supplementary Materials (SM). Note that while popular convolutional neural network (CNN) 

has achieved remarkable success in the field of image recognition,10 it can only categorize a 

whole map but not capable of delineating the exact DWs or GBs of interest. Fully convolutional 

networks derived from CNN is capable of identifying lattice atoms in raw scanning transmission 

electron microscopy (STEM) data12,33 and should be applicable to our problem, but it requires 

extensive GPUs to facilitate the training process as well as a large amount of training data with 

DWs or GBs accurately labelled at the level of pixel. Such sophistications are unnecessary for 

our particular application, since SVM-based AI algorithm needs only a small dataset that can be 

trained in less than 10s on an ordinary PC, making it widely accessible. More importantly, this 

SVM-based algorithm is much more efficient than CNN, critical for classification and control on 

the fly. On the other hand, we also note that due to subtleties and complexities often exhibited in 

ferroelectric and electrochemical materials, careful classification based on machine learning 
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beyond simple rule-based analysis is necessary for our AI-AFM system, and we will come back 

to this point later with illustrating examples.

SVM is one of the most widely used machine learning algorithms in industry and academia,34 as 

detailed in SM, with its applications ranging from handwritten digit recognition for postal 

automation services,35 E-mail spam filtering,36 and accelerating discovery of new piezoelectric 

materials.4 SVM can be easily trained with a set of labeled examples, each of which consists of a 

fixed number of features  and a label  illustrating whether it belongs to one of the 1 2( , ..., )nx x x y

two categories ( =1 or 0). As schematically shown in Fig. 3(a), we first prepare a training y

dataset for our SVM model, wherein amplitude and phase variations across a morphology 

interface are used as indicators to classify whether the interface is a ferroelectric DW or not. For 

each pixel P0 (marked as green star) on PFM maps of ferroelectric LiNbO3 in Fig. 3(a), 6 

adjacent pixels (marked as white dots) are picked from a line centered at P0 and parallel to its 

phase gradient. The distance from these 6 pixels to P0 are fixed and their respective amplitude 

and phase, 14 features in total, are sufficient to represent the local variance across P0. Such 14 

features with a label of the pixel (DW or not) is then fed into the SVM model. Since each map 

contains 256×256 pixels and thus generates almost the same amount of training data (with the 

exception on the map border), it turns out that only 5 pairs of ds-SPM maps are sufficient to train 

the SVM model, making it highly efficient compared to CNN that has to use a whole map as one 

training example. More details about our training set is presented in SM along with artificially 

simulated dataset in Fig. S2. SVM first represents these training data as points in a hyperspace, 

the dimensionality of which depends on the number of features n. It then tries to find a 

hyperplane  to separate these points into two categories, as schematically shown in 0T b  w x

Fig. 3(a), where w is the feature weights vector and b is the bias term.32 The points that are most 

close to the hyperplane from both sides are called the support vectors, as marked on Fig. 3(a), 

and the larger distance from these two points to the hyperplane (so-called functional margin), the 

better performance of the trained classifier model. Finally, testing data from new images that are 

denoised by a local median filtering with a 3-by-3-pixel window can be mapped into the same 

space, and then classified according to which side of the hyperplane they fall into, revealing 

whether it is on a DW or not. Note that the pixel-by-pixel recognition of SVM makes it possible 

to adaptively adjust experimental parameters during scanning, while for CNN that relies on full 
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mapping for recognition, such real time adjustment is not possible. This process is repeated for 

all pixels except those on the border of maps, creating a binary mask with DWs marked as True. 

Since DWs are continuous lines on the map, the length of longest line on the binary mask is used 

to judge whether there are ferroelectric DWs or not. One positive example is shown in Fig. 3(b), 

wherein 180o DWs in molecular crystal of diisopropylammonium bromide has been correctly 

identified by the SVM, as marked by the red lines and overlaid on the topography. The negative 

example of Fig. 3(c), on the other hand, shows ESM maps of a LiV3O8 sample for which GBs are 

identified instead. In fact, we have surveyed 7174 ds-SPM mappings accumulated in our lab in 

the past 10 years, and the normalized confusion matrix in Fig. 3(d) shows that 97.3% of 475 

maps predicted having 180o DWs are correctly classified, while 99.6% of 6699 maps predicted 

having no 180o DWs are properly identified as well. Additional examples are presented in Fig. 

S3. These results confirmed that the SVM-based AI algorithm is capable of classification and 

feature identification of ferroelectric materials with 180o DWs. On the other hand, popular 

Canny edge detector often fails, as detailed in Fig. S4. This is because phase contrast at 

ferroelectric DWs in real materials often deviates from idealized 180o, and it is often interfered 

by topography features as well. Since edge detector are highly sensitive to the gradient of a map, 

slight phase distortion due to scanning disturbance, impurities, topography variation, or artificial 

pattern may cause false identification, as made evident in Fig. S4, while our machine learning 

algorithm does not suffer from such problems. This demonstrates the need for machine learning-

based AI instead of simple rule-based analysis in the classification and identification.

Our ultimate goal is to demonstrate an AI-AFM platform that integrates the SVM algorithm with 

AFM control that is capable of not only classifying ferroelectric materials with 180o DWs in real 

time, but also adopt adaptive experimentation on the fly to probe the characteristics and 

mechanisms of apparent piezoresponse in details at critical material interface, i.e. DWs in 

ferroelectrics and GBs in electrochemical materials. Such additional probing is necessary to 

confirm the classification without ambiguity, a common practice by human users. To this end, 

two blind experiments have been conducted on ferroelectric PMN-Pt single crystal and 

electrochemical Ceria ceramic, as detailed in SM, both of which unknown to the AI-AFM in 

advance, and the screenshot of the complete experimental processes are recorded. As is shown in 

Mov. S1, PMN-Pt was determined to be ferroelectric having 180o DWs during scanning, and 

representative amplitude, phase, and topography (overlaid with identified DWs) mappings are 
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shown in Fig. 4(a-b). After such preliminary classification a “ferroelectric routine” was triggered, 

with the scanning probe zoomed in on an identified DW and carrying out switching spectroscopy 

PFM (SS-PFM) experiments 37 on a line of points across DW, yielding hysteresis and butterfly 

loops of Fig. 4(c) characteristic for ferroelectric materials, and thus confirm the ferroelectric 

classification without ambiguity. When Ceria was tested, as shown in Mov. S2, the AI-AFM 

found no 180o DWs from its amplitude and phase mappings in Fig. 4(d), and thus a “non-

ferroelectric routine” was triggered to identify GBs overlaid on topography in Fig. 4(e), after 

which the scanning probe was zoomed in on an identified GB and carried out measurements of 

first and second harmonic piezoresponses 38,39 across GBs. As seen in Fig. 4(f), second harmonic 

piezoresponse dominates the first harmonic one in Ceria, characteristic of electrochemical 

materials, and thus confirm its non-ferroelectric nature without ambiguity. As is clear from the 

movies, both experiments have been conducted in artificial intelligence manner without human 

users’ interference, demonstrating the capability of our AI-AFM system. Note that the probed 

sample could be neither ferroelectric nor electrochemical, which can be revealed by the 

characteristics of first and second harmonic piezoresponse across grain boundaries.

What we demonstrate here is a simple yet powerful prototype artificial intelligence AFM that is 

trained to carry out complicated scientific experiments from beginning to end, all on its own, and 

it is just matter of time to incorporate more profound physical processes and more sophisticated 

deep learning algorithm to expand its power. Indeed, our current implementation is based on 

interfacial profile of vertical piezoresponse, which could be complemented by additional lateral 

probing for possible in-plane polarization, as well as pre-probing lithography for single-domain 

ferroelectrics. Classifying atypical polar materials such as surface polar phases 40, mixed 

polar/nonpolar-phases 41, and highly fragmental, curved and fine-scale domains in relaxors 42 

could impose additional challenges, but there is no fundamental difficulty. We also ignored 

possible change of surface condition and wearing of probe during scanning, which could be 

addressed by auto-tuning the probe parameters with the help of advanced convolutional neural 

network. We acknowledge that the DWs and GBs recognized by the current AI implementation 

is not really elusive per se, but the strategy points toward a viable direction toward more subtle 

features that is easy to be overlooked. We expect that similar strategy can also be developed for a 

wide range of scientific instruments from transmission electron microscope to X-ray 

diffractometer, as well as a broader physical machineries and systems that heavily rely on human 
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experience to operate at the moment. It is also conceivable that an eco-system can emerge from 

such vision that all the AI-AFM are interconnected to share and strengthen training data, 

machine learning algorithm, as well as control, so that user experiences and know-how are no 

longer limited in a particular lab, but readily spread over the network, and we have made our 

algorithms publicly accessible to facilitate such movement.43 More importantly, a general 

intelligent machine may evolve from such eco-system, which is capable of all round AFM 

experiments and analysis on its own, revolutionizing the way we do AFM experiments.

Methods
Extraction of grain boundaries (GBs). As shown in the upright inset of Fig. S1(a), the first-

order derivative of height map usually is not continuous at GBs, leading to an overwhelming 

second-order derivative values there compared to those of nearby area. By setting a threshold 

value at 90% of the maximum second-order derivative of the map, a binary mask of GBs can be 

produced as shown in Fig. S1(d). This method works well in general, but may run into difficulty 

in identifying exact location of GB when there is large topography variation, which calls for 

more advanced algorithms.

Training data. Considering that the histograms of phase maps are always concentrated around 

several specific angles, delivering very sparse information, we randomly change the phase offset 

when picking the 14 features to build a robust model that can work for other realistic cases with 

various phase offsets. We also intentionally vary the scaling of amplitude features and add white 

noises to them for the same reason. Although real maps with manually highlighted DWs can be 

utilized as training dataset, we also succeed in training a model based on simulated maps without 

tedious labelling work. Specifically, a binary mask of random DWs is first generated and then 

rendered to mimic the pattern of real maps with respect of morphology, as shown in Fig. S2.

Implementation of Support Vector Machine (SVM). Functions “fitcsvm” and “predict” in 

MATLAB are employed to train SVM models and classify new examples, separately. Gaussian 

kernel is used to implicitly map input dataset into high-dimensional feature spaces,44 enabling an 

efficient non-linear classification. Since amplitude and phase values are two set of independent 

features, we use them separately to train two different SVM models – Amp model and Pha 

model. When doing prediction, the algorithm will assign a pixel as point of DWs if and only if 

both Amp and Pha models determine it to be DW based on input features, as shown in Fig. S3.
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Canny edge detector. It is a technique to extract edges from different vision objects in images.45 

In this work, we used edge function in MATLAB with canny method and default setting. 

First and Second Harmonic. The first and second harmonic PFM responses originates from 

piezoresponse and other electromechanical mechanisms.38 For each measured point, a set of AC 

voltages from 1.5 to 7.5 V were applied with an increment of 0.5 V. At each voltage step, the 

sample is excited around f0 first and then around f0/2, thereby generating two set of tuning data 

around f0. The corresponding first and second harmonic amplitude can be extracted by fitting the 

raw data with the SHO model.

AI-AFM system. The AI-AFM experimentation is performed with a commercial Asylum 

Research MFP-3D AFM. Nanosensors PPP-EFM conductive probes were used for all data 

shown in Fig. 4. The system first conducts a DART PFM mapping to survey possible DWs with 

the pretrained SVM model. If DWs are found, the probe will move to locate in the middle of the 

longest DW identified. Then, the system will zoom in on this area with a scan size half of 

previous one to double-check those DWs. Finally, the middle point on the DW as well as other 4 

points across it will be marked so that a set of SS-PFM tests can be completed on each of these 

points. If no DWs are found, the material will be further assessed for its apparent piezoresponse 

mechanism. The system will highlight GBs in a height map by using the method discussed in Fig. 

S1 and then zoom in on a specific GB to finish a few first and second harmonic comparison 

experiments. The decision-making process of location here is similar to that of DWs. 

Corresponding video can be seen in Mov. S1 and S2. The AI is implemented with MATLAB 

code and can automatically send commands to AFM after analyzing the scanning data on the fly.

Availability of data and codes

All the data and algorithms of AI-AFM used in this paper can be requested from authors.
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Fig. 1 The concept of AI-AFM that feeds scanning data to machine learning in real time and 

classifies samples under probing accordingly, with appropriate features identified. Additional 

experiments are then carried out on the fly near critical spots for additional data and further 

insight, all without human interference.
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Fig. 2 Comparing the amplitude and phase mappings of dynamic strain measured by ds-SPM for 

(a-c) ferroelectric PZT and (d-f) electrochemical LiVO3, along with their respective line profiles.
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Fig. 3 Illustration and performance of SVM algorithm for AI-AFM; (a) schematics of training 

dataset using PFM mappings of LiNbO3 and the corresponding classification of ferroelectric 

DWs; (b) PFM mapping of ferroelectric diisopropylammonium bromide, with 180o DWs 

identified and overlaid on topography; (c) ESM mapping of electrochemical LiV3O8, with GBs 

identified and overlaid on topography; (d) normalized confusion matrix of classification 

performance on 7174 ds-SPM maps of various materials.
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Fig. 4 Demonstration of AI-AFM for two “unknown” samples that are determined to be 

ferroelectric (a-c) and electrochemical (d-f); (ad) mappings of amplitude and phase; (be) DWs 

and GBs recognized; and (cf) ferroelectric hysteresis and butterfly loops on DW and comparison 

of first and second harmonic piezoresponse on GB, all measured on the fly. 
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