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Molecular simulations of the piezoionic effect

Vasilii Triandafilidi,∗a Savvas Hatzikiriakos,a and Jörg Rottlerb

We present a molecular dynamics study of two polyelectrolyte gels with different degrees of ioniza-
tion coupled in a slab geometry. Our simulations show that a pressure gradient emerges between
the two gels that results in the buildup of a Nernst-Donnan potential. This methodology is reverse
to experiments of the piezoionic or mechanoelectric effect, in which an electric potential gradient
appears upon application of a pressure gradient to a hydrogel. The Nernst-Donnan potential at
the interface is found to scale linearly with temperature with the coefficient of proportionality given
by the fraction of concentrations of the uncondensed counterions. We show that the potential
difference can also be expressed as a linear function of the lateral pressure, thus providing a
molecular interpretation of the piezoionic effect.

1 Introduction
With increasing interest in motion capture, soft robotics, and
wearable medical technologies, flexible, conductive, and bio-
compatible sensors are required1–6. Unfortunately, most mate-
rials currently available are either solid, as in electric wires, or
liquid, as in battery electrolytes. Hydrogels are a promising class
of materials that can potentially bridge the gap between current
sensor technologies and tomorrow’s soft-sensor requirements. On
the molecular level, hydrogels resemble a three-dimensional net-
work of polyelectrolyte chains that trap the conducting particles
(ions). By choosing the monomers of the polyelectrolyte, one can
program it to respond to external stimuli like temperature, pH
or mechanical deformation (as in touch sensors). The appear-
ance of an electrical voltage between different regions due to a
non-uniform mechanical stress is called piezoionic or electrome-
chanical effect7–9. To optimize the performance of hydrogels in
touch sensors, one needs to understand in detail the motion of
ions when pressure is applied.

Gels in dry form have a neutral backbone and have no
macroions nor counterions. When placed in solvents, some
monomers on the backbone dissociate and create pairs of charged
macroions and floating counterions2,10,11. Several studies have
addressed the appearance of an electrical potential between the
gel immersed in a solvent and the solvent itself12–17. These stud-
ies found that gels with a negatively charged backbone (anionic
gels) have an intrinsically negative electrical potential when com-
pared to the surrounding solvent, as shown in Figure 1(A). This
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potential is called the Donnan potential, and it is a function of
charge density along the polyelectrolyte backbone12.

Sawahata et al.2,9 found that an electrical potential could also
be generated by a non-uniform compression of a gel. In a nor-
mal state, backbone molecules remain neutral and do not disso-
ciate into positive and negative molecules. However, the authors
argued that upon compression the monomers along the chains
become more localized, and their entropy decreases as a result.
When the entropic incentive becomes strong enough, molecules
start dissociating, and the charge density increases. Non-uniform
compression leads to a non-uniform generation of the dissociat-
ing charges and as a result, an electrical potential is generated
between two parts of the gel, as shown in Fig. 1(B).

Another insight of the piezo-ionic effect was provided by Prud-
nikova et al.12,18. They noticed that when the ionization of a gel
is kept constant (by putting the gel in a buffer solution), compres-
sion leads to an increase in the osmotic pressure of the gel, which
leads to a separation of charges and hence to an increase of the
electrostatic potential compared to a solution in equilibrium.

A complete understanding of the piezoionic effect is impossible
without a full picture of the effect on the nanoscopic level. From
experiments alone, it is difficult to gain insight into the ion be-
havior at the atomic scale. For example, it is a daunting task to
independently manipulate solvent quality, the temperature of the
solution, and polyelectrolyte ionization in a single experimental
setup. Coarse-grained molecular dynamics (MD) simulations can
be used to fill in the gap. MD simulations represent a bottom-
up approach, where the behavior of each particle in the system
is tracked, and collective properties are computed. Most impor-
tantly, MD simulations provide a simple framework to manipulate
the parameters of the studied system and observe the results.

To date, most coarse-grained MD simulations of hydrogels were
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Fig. 1 A: A molecular picture of the Donnan equilibrium between two
gels with different ionizations studied in experiments. Gels with a higher
degree of negative backbone ionization have an intrinsically lower nega-
tive electrical potential when compared to the gels with lower degree of
negative backbone ionization. The system consists of negative backbone
ions (white), floating counterions (green), dissolved salt ions (orange and
purple) and water molecules. B: A schematic representation of the expla-
nation of the piezo-ionic effect proposed by Sawahata et al. 2,9 (see text).

performed in a setup with an ideal network of polyelectrolyte
chains and explicit mobile counterions floating in an implicit sol-
vent. Usually, the network consisted of a diamond or cubic lattice
of crosslinking nodes connected by polyelectrolyte chains11,19–32.
Despite its simplicity, such a setup already reveals interesting be-
havior. For instance, Yan et al.33 demonstrated that at high tem-
peratures and weak electrostatic interactions, the gel behaves as
an ideal gas. In the limit of strong electrostatics and low temper-
atures, however, the authors found a somewhat counter-intuitive
behavior, namely a decrease in pressure upon compression. This
was attributed to counterion condensation. Erbas et al.24,25 con-
sidered a gas of counterions sandwiched between two parallel gel
slabs. They showed that the electrostatic energy changes upon
compression of the gel at fixed strength of electrostatics, which
could again only be explained by counterion condensation. Build-
ing upon the results of ref.33, Mann and coworkers27 performed
an extensive study of gels of different sizes, ionizations, elec-
trostatic strength, solvent qualities and other parameters. Their
comparison between MD results with polyelectrolyte theory iso-
lated different contributions to the overall pressure and validated
the Manning theory of counterion condensation in the limit of
straight polymer chains.

The works of Yan et al.33 and Mann et al.27 provide a compre-
hensive picture of a uniform gel under various conditions, while
the work of Erbas et al.24,25 provides insight into the behavior at
the gel-counterion interface. The question arises how one could
combine those studies and create a molecular dynamics setup that

Fig. 2 A: Schematic representation of the interplay between the osmotic
pressure Πosm and elastic energy of the network Πel in the Donnan equi-
librium. B: Schematic illustration of counterion condensation. When the
Bjerrum length lB of the system becomes bigger than the distance be-
tween two neighboring backbone macroions a ≤ lB, the counterions be-
come bound to the backbone ions and stop contributing to the osmotic
pressure. The system consists of negative backbone ions (white), float-
ing counterions (green).

provides insight into the piezoionic effect. Inspired by the exper-
imental work of Sawahata et al.9, we consider here a gel slab
consisting of two different degrees of ionization. Unlike the ex-
perimental setup, where ionization was induced by the lateral
pressure applied to a gel, the ionization of both parts of the gel
is different by design. When this system is allowed to equilibrate,
an electric potential difference builds up at the interface, and the
corresponding lateral pressure difference can be obtained. We
analyze the ion density, potential and pressure profiles and show
how they vary with temperature and ionization degree. We then
show that the electrostatic potential for different gels can be col-
lapsed onto a single master curve given by the classic expression
for Donnan equilibrium. We finally show that the electrostatic po-
tential is proportional to the lateral pressure difference between
the two gels. The following part of the paper outlines fundamen-
tal theoretical principles that govern the piezoionic effect. Then,
after describing the methodology, we will present our findings.

2 Theoretical concepts for polyelectrolytes
Many gels are well soluble in water due to an abundance of po-
lar groups along their backbones. In the simplest representation,
they consist of an elastic network of crosslinked polyelectrolytes.
The elastic network comprises of both charged macroions and
neutral monomers. The quantity of charged macroions depends
on the degree of ionization f . Every charged macroion is com-
pensated by an itinerant counterion to preserve electroneutrality.

It seems like counterions would favor to leave the hydrogel and
escape into the external solvent as this would increase their trans-
lational entropy. However, this would break local electroneutral-
ity. Thus, in case of an immovable gel network the counterions
remain within the cell but exert an osmotic pressure onto the sur-
roundings

Π
osm
ideal = kBT

Nci

V
= kBT

f Nm

V
, (1)
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where Nci and Nm are the number of counterions and monomers
in the system. If the gel network is stretchable, the osmotic pres-
sure swells the network. The stretching of the chains decreases
their entropy, which creates an elastic pressure as illustrated in
Fig. 2A. The elastic pressure produces mechanical work ∆Wmech

due to the expansion of the network.
Besides the mechanical work, entropic forces could potentially

break the electroneutrality of the system but only on small length
scales l < Ree, where Ree is the average distance between any two
crosslinking nodes. The breaking of electroneutrality produces an
electrical potential ∆ϕ, also called as Nernst-Donnan potential,
which follows readily from equating the chemical potentials of
the counterions of charge q inside and outside of the gel:

kBT ln(co/ci) = q∆ϕ +∆µexcess, (2)

where ci and co are the average counterion concentrations in-
side and outside of the gel and µexcess is the excess chemical po-
tential due to excluded volume interactions present in the system.

At low temperatures, electrostatic interactions dominate over
thermal energies and eq. (1) is no longer valid2.The strength
of the electrostatic interaction can be quantified via the Bjerrum
length lB = kCoulq2/εdielkBT , where εdiel is the dielectric permittiv-
ity of the medium, and kCoul is the Coulombic constant. The Bjer-
rum length corresponds to the distance at which the Coulombic
energy equals the thermal energy kBT . According to Manning34,
when lB becomes larger than the distance a between two consec-
utive charged monomers, all counterions become bound to their
corresponding macroion in a phenomenon called counterion con-
densation as illustrated in Fig. 2B27.

Additionally Manning’s theory provides a simple expression for
the effective ionization of the gel depending on it’s temperature
and, hence, the electrostatic strength27 becomes

fe f f =

{
f , for lb < a

f/(lb/(b f−ν )) , for lb ≥ a,
(3)

where ν is the Flory parameter and is assumed to be 3/5.

3 Methods
Our simulation setup comprises of a box of 18x4x4 unit cells
forming a cubic lattice of crosslinking nodes. The unit cells have
lattice constant l = 50σ and are connected by polyelectrolyte
chains with Nm = 100 monomers. Due to the translational symme-
try of the system there are three polymer chains per each cell with
monomer number density c = 3 ·100/503 = 2.4 ·10−3σ−3. A frac-
tion f of the monomers in each chain are ionized, i.e. they bear
a negative charge q = −1. Monomers on the left side of the box
are ionized with the ionization degree f1, and monomers on the
right side with the degree f2 > f1. After the network is created,
Nci counterions are inserted into the box at random positions to
achieve electroneutrality. Monomers in the network are tethered
to static nodes at the left and right boundaries of the simulation
box. Periodic boundary conditions (PBC) are employed in lateral
directions only. Reflective walls are put at z = 0 and z = Lz to pre-
vent atoms from escaping the box. Several snapshots illustrating
the system are shown in Fig. 3.

The polyelectrolyte chains are modeled using the coarse-
grained Kremer-Grest (KG) bead-spring model35. Excluded vol-
ume interactions are modeled via a purely repulsive Lennard-
Jones (LJ) potential,

ULJ(ri j) =

4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
−U(rc)

]
,for r < rc

0 ,for r ≥ rc

(4)

where rc = 21/6σ . The Lennard-Jones parameters ε and σ cor-
respond to the depth of the potential well and the distance at
which the unshifted potential is zero, respectively. Both parame-
ters are identical for all species present in the system (backbone
monomers and floating counterions) and are used as units of en-
ergy and distance. Bonded interactions are modeled with a non-
linear FENE potential,

UFENE(r) =

−
1
2

k f r2
f ln

(
1−
(

r
r f

)2
)

, for r < r f

∞ , for r ≥ r f

(5)

with k f = 30ε/σ2, r f = 1.5σ resulting in a mean bond length of
b∼ σ . Ions interact additionally via the Coulomb potential

UCoul(ri j) = kCoul
−q2

εdielri j
=−kBT lB/ri j, for r < rel

c , (6)

To reduce the computational cost, solvent molecules are treated
implicitly through the dielectric constant εdiel . To further opti-
mize the computational performance, the electrostatic cutoff dis-
tance was set to rel

c = 17σ , above which longer-range electrostatic
interactions are calculated via a Particle-Particle-Particle Mesh
(PPPM) Ewald solver for slab systems36,37. All simulations were
performed in the NV T ensemble, with a timestep of integration
dt = 0.005 and a PPPM accuracy of 10−4. Molecular dynamics
runs were performed using the LAMMPS code38. The MD trajec-
tories were visualized using the VMD code39 and analyzed using
the MDAnalysis package40,41. The code base employed in the
present work is summarized in the PyGels library42. All results
are reported in reduced simulation units.

To calculate the pressure and energy profiles, the simula-
tion box was divided into Nbins parts along the non-periodic z-
direction. For every particle in a bin, an individual per-atom virial
tensor σ i

ab was calculated and averaged across each bin, where
a,b could be any of x,y,z and i is the index of the particle. The
per-atom virial tensor in the case of linear polymers with long-
range Coulombic interactions is defined as:

σab = − [mvavb +
1
2

Np

∑
n=1

(r1a F1b + r2a F2b)+

+
1
2

Nb

∑
n=1

(r1a F1b + r2a F2b)+Kspace(ria ,Fib)]

(7)

The first term is a kinetic energy contribution for the given atom.

1–8 | 3

Page 3 of 8 Soft Matter



The second term is a pairwise energy contribution, r1 and r2 are
the positions of the two atoms in the pairwise interaction where
Np is the total number of neighbors, and F1 and F2 are the forces
on the two atoms resulting from the pairwise interaction. The
third term is a contribution from the covalent bonds, and the last
term accounts for long-range Coulombic interactions. This tensor
has units of energy and described in detail by Thomson et al.43.
Two sets of pressure profiles were calculated during the simula-
tion run. A lateral pressure profile via Plat(z) =−(σ i

xx +σ i
yy)/2V z j

bin
and the pressure component along the z axis Pzz(z) =−(σ i

zz)/V z j
bin.

During the production run, the pressure profile was recorded ev-
ery 500 steps and averaged in post-processing. The energy and
concentration profiles were calculated in a similar fashion.

To perform the counterion condensation analysis we measured
the distances between the gel monomers and counterions. If
counterions were within rcut = 2σ of the gel backbone then it was
considered to be condensed. The value of rcut was chosen to in-
clude the first two peaks of the radial distribution function of the
condensed ions. Counterions that were within rcut of more than
one backbone monomer were counted only once. The results for
the fractions of the condensed atoms were time averaged across
the simulation.

To calculate the electrostatic potential profiles, snapshots were
saved every 1000 steps and imported into VMD’s built-in PME
Poisson solver44. The potentials of each snapshot were averaged
to obtain a potential profile φ(z). These curves were fitted to

φ(z) = φ0 +A · tanh(−x/x0) (8)

via the parameters x0, φ0, A. Eq. (8) arises from solving the Pois-
son equation in the geometry of two semi-infinite slabs with a
potential at the interface (ϕ(z−) = ϕ(z+)).

4 Results

4.1 Three regimes of Donnan equilibrium

We begin our investigation of the piezoionic effect by analyzing a
system with ionization degrees f1 = 0.1 and f2 = 1.0, i.e. 10% of
monomers are ionized on the left and 100% on the right side. To
gain insight into the conformation of the gel and counterions, sev-
eral snapshots at three different temperatures T = 1.1,0.3,0.1 are
shown in Fig. 3. A qualitative difference is observed in the behav-
ior at high, medium and low temperatures. At high temperatures
(regime 1), counterions float uniformly within the network. They
exhibit high osmotic pressure and cause significant swelling. Due
to the high degree of swelling, the boundary between two parts
of the gel is pushed further left. As the temperature decreases to
T = 0.3 the system transitions into regime 2. The particles on the
left side of the box continue to behave as they did in regime 1,
while the counterions on the right side undergo counterion con-
densation. Positively charged floating counterions become bound
to the negatively charged backbone macroions. The bound coun-
terions no longer contribute to the osmotic pressure, hence reduc-
ing the levels of swelling of the network. When the temperature
becomes even lower (regime 3), counterions in both parts of the
system condense and become bound to the backbone macroions.
Since the fraction of the free-floating counterions is further re-

Fig. 3 Snapshots of a system with ionization degrees f1 = 0.1 and f2 =

1.0 at three temperatures T = 1.1,0.3,0.1. In snapshots white balls are:
uncharged backbone monomers, red: negatively charged monomers,
blue: tethered static monomers, green: positevely charged counterions.
For illustration purposes, only counterions within the dashed box are
shown. Regime 1: no counterion condensation, i.e. the Bjerrum length
is smaller than the distance between two consecutive backbone charges.
Regime 2: the left part (less ionized) of the system is not condensed, but
the right part has undergone counterion condensation. Regime 3: both
parts of the system undergo counterion condensation.

duced due to the condensation on both parts, the exerted osmotic
pressure decreases even further. This causes significantly lower
degrees of swelling than in the case of regime 1, as seen in Fig. 3

These trends can be rationalized with Manning criterion for
counterion condensation. For the present gel, the spacing of
charges in gel 1 is a1 = Ree/Nm f1 ' 5, while a2 ' 1. In regime
1, the Bjerrum length lB = 1/T = 0.91 is smaller than both a1

and a2, hence no counterions condense. In regime 2, however,
lB = 3.33 exceeds a2 but not a1, so counterions condense in gel
3 only. Finally in regime 3, lB = 10 exceeds both a1 and a2 and
condensation occurs in both gels.

To quantify the counterion condensation, we performed a coun-
terion condensation analysis as described above. In Fig. 4, we
present the fraction of free counterions ffree,i = fi(1−Qi), where
Qi is the fraction of condensed ions. The theory predicts that at
high temperatures no counterion condensation will occur and the
effective ionization ffree,i should remain equal to the actual ioniza-
tion fi. As the temperature is lowered, counterions are expected
to condense, hence ffree,i should decrease. As expected, we ob-

4 | 1–8

Page 4 of 8Soft Matter



serve that the fraction of free counterions saturates at high tem-
peratures, indicating that the electrostatic forces are not strong
enough to facilitate condensation. Also, at a certain temperature
(which depends on the ionization of the gel), the gel undergoes
a transition where the effective ionization starts to decrease with
decreasing temperature. The three regimes of the Donnan equi-
librium introduced previously in Fig. 3 can also be observed de-
pending on the onset of counterion condensation in each part of
the simulation box. As the temperature decreases from T=1.1,
where ions in both parts of the gel are not condensed, to T=0.7
the right side of the gel undergoes counterion condensation as in-
dicated by the decreasing fraction of counterions, see 4 B and the
system transitions from regime 1 to regime 2. When the temper-
ature is further decreased to T=0.5, the counterions on the left
side of the gel also condense, as indicated by the change in curve
behavior in 4 A. The three regimes can also be observed on the
graph of the ratio of effective ionization degrees f f ree,2/ f f ree,2, see
4 B.

In Fig. 4, we also compare this effective ionization ffree,i that
was calculated by directly analyzing the number of condensed
counterions with the Manning prediction given by Eq. (3). The
simulation curves are in a excellent agreement with this simple
prediction in case of low ionization, however, the discrepancies
increase in the case of higher ionizations (bottom panel). The
discrepancies are possibly due to the fact that the Manning model
was derived from solving a PB equation for a straight rod. How-
ever, in case of high ionization the system has numerous charged
particles around the nodes, which have a star-topology rather
than one of a straight chain.

4.2 Potential energies

The physical transition from regimes 1 to 3 shown in Fig. 3 also
alters the potential energy profiles shown in Fig. 5. Here we plot
the normalized profiles of the pair energy of interaction along the
z-axis. We split the pair energy into Lennard-Jones (repulsion due
to the excluded volume interaction) and Coulombic components.
To be able to observe the qualitative changes in the energy of the
system with temperature, the energy values were normalized by
temperature. The energy profiles in Fig. 5 exhibit qualitatively
different behavior across the three aforementioned regimes. In
regime 1 (high temperatures T = 1.1− 0.5), both the left and
the right part of the normalized energy profiles show very little
change with temperature and approach a common curve. In this
regime, the energy is essentially proportional to temperature. In
regime 2 (medium temperatures T = 0.4− 0.2), the left part of
the system shows no change with temperature, but the right one
exhibits an increase in the value of the Lennard-Jones-component
and a decrease in the Coulombic component. Finally, in regime
3 (T = 0.1), the energy profiles in both parts change. Instead of
a evenly distributed gas of counterions, all counterions are now
concentrated in the vicinity of the backbone ions. This drastically
increases the repulsive Lennard-Jones component and decreases
the Coulombic component of the energy.
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Fig. 4 Analysis of the fraction of free counterions (open symbols) com-
pared to the Manning theory (filled symbols) for the gel slabs with ion-
ization degrees f1 = 0.1 and f2 = 1.0 (blue) and f1 = 0.25 and f2 = 0.5
(cyan). A: Fraction of free counterions f f ree,1 = f1(1−Q1) on the left side
of the gel. B: Fraction of free counterions f f ree,2 = f2(1−Q2) on the right
side of the gel. C: Ratio f f ree,2/ f f ree,1. Vertical dashed lines correspond
to the temperatures where counterion condensation occurs in one part of
the gel as indicated by the change in the curve behaviour.

4.3 Nernst-Donnan model for the electrostatic potential
In order to test whether the Nernst-Donnan picture describes the
molecular simulations correctly, we first compute the ion con-
centration profiles in Fig. 6. With increasing temperature, the
counterion profile becomes smoother as the itinerant ions equili-
brate more easily across the system against the electrostatic en-
ergy penalty. We denote the concentrations in the two gels as c1

and c2, respectively. In order to systematically define these values
in the two parts of the gel, we take the peak value of the concen-
trations away from any boundaries. Just as before, we introduce
a value cfree,i which is a concentration of uncondensed counteri-
ons cfree,i = ci(1−Qi). Eq. (2) predicts that the potential scales
linearly with temperature with the coefficient of the proportion-
ality given by ln(cfree,2/cfree,1). To test this, the potential energies
q∆ϕ of four different gels are scaled by ln(cfree,2/cfree,1) and plot-
ted as a function of temperature, see Fig. 7. All data sets collapse
reasonably well onto a linear master curve with slope unity (cir-
cles).

Additionally, the master curve has zero offset along the vertical
axis, with a slight divergence from linear behaviour at low tem-
peratures. This confirms that excluded volume interactions and
hence the excess chemical potential in Eq. (2) are negligible in
the current model, especially in the high temperature regime.
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Fig. 5 Normalized energy profiles (A: Coulombic contribution, B:
Lennard-Jones contribution) of the system with f1 = 0.1, f2 = 1.0 for dif-
ferent regimes. Here N is the total number of atoms in the system.

In experiments, the degree of ionization is not directly con-
trolled, but is assumed to respond to external pressure changes.
The electric potential can be connected to the applied pressure
in two steps: understanding the behavior of the pressure profiles
and then connecting the potential to the observed pressure differ-
ence between the two gels. To understand the behaviour of the
pressure profiles at different temperatures, the pressure compo-
nents Plat and Pzz horizontal and vertical to the gel slab are com-
puted as a function of the z-coordinate. The lateral pressure Plat

shows a step-like behavior with higher pressure on the higher ion-
ized side, while Pzz remains constant across the gels as required
by the condition of mechanical equilibrium. In Fig. 8, we plot the
potential difference between the gel parts q∆ϕ = q(ϕ2 − ϕ1) as
a function of lateral pressure difference Plat,2−Plat,1. The figure
shows that the data points fall nearly perfectly onto a straight line,
especially at lower temperatures. The gels with higher ionization
difference f2 − f1 exhibit higher pressure difference values and
consequently higher potential values. This result shows that the
energy of expansion scales linearly with the electrostatic energy
change, which can also be inferred from the equality of chem-
ical potentials that reads ∆P = ∆Π. Specifically, the minimum
property of the Gibbs free energy that reads V ∆P = N∆µ, leads to
∆P∼ ∆Π∼ cfree,1kBT ln(cfree,2/cfree,1), which implies a linear scal-
ing between pressure and Nernst potential when combined with
q∆φ = kBT ln(cfree,2/cfree,1) from Fig. 7.

5 Conclusions
Molecular dynamics simulations of coarse-grained polyelectrolyte
gels have been performed to study the Donnan equilibrium and
Nernst-Donnan potential at the boundary between gels with dif-
ferent ionizations. We explored several combinations of ioniza-
tions and different regimes of counterion condensation by vary-
ing the simulation temperature. The inspiration for the current
study comes from the work of Sawahata et al.9, who argued
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T = 0.2
T = 0.3
T = 0.5

T = 0.7
T = 0.9
T = 1.1

Fig. 6 Counterion concentration profiles of the system with f1 = 0.1,
f2 = 1.0 for different temperature regimes. Colors are the same as in
Fig. 5
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[
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Fig. 7 Normalized electrostatic potential as a function of temperature.
Circles: q∆ϕ∗ = q∆ϕ/ ln(cfree,2/cfree,1). Red: f1 = 0.1, f2 = 0.2; magenta:
f1 = 0.1, f2 = 0.3; green: f1 = 0.1, f2 = 0.5; blue: f1 = 0.1, f2 = 1.0. The
dashed line has slope unity.

that the piezoionic (mechanoelectric) effect in gels arises from
the stress-induced ionization of its compressed part, thus estab-
lishing a Nernst-Donnan equilibrium. Here, we showed that a
reverse methodology can be used to study this electric potential:
two gels with pre-defined ionization create a lateral pressure gra-
dient that results in a the Nernst-Donnan potential generated at
the interface.

Depending on the spacing between consecutive backbone
macroions (a) and the Bjerrum length (lB), different types of be-
havior could be observed. At high temperatures (small Bjerrum
lengths lB < a2 < a1), all counterions are itinerant. They exhibit
high osmotic pressure, which creates high elastic pressure of the
network which expands it and causes high degrees of swelling.
Counterions float at random positions and the pair energy in the
system scales linearly with temperature. The high osmotic pres-
sure results in a relatively large break in the local electroneu-
trality, and hence large potential gradients occur at the interface
between networks with different ionizations.
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Figure 8 Potential difference as a function of the lateral pressure differ-
ence. Red: f1 = 0.1, f2 = 0.2; magenta: f1 = 0.1, f2 = 0.3; green: f1 = 0.1,
f2 = 0.5; blue: f1 = 0.1, f2 = 1.0. Here V is the volume of the simulation
box.

At low temperatures (high Bjerrum lengths lB > a1,a2) both
sides of the gel undergo counterion condensation. Positively
charged floating counterions on the right side become bound to
negatively charged backbone macroions. The bound counteri-
ons effectively stop contributing to the osmotic pressure, which
causes smaller levels of swelling of the network on the right hand
side. Both parts of the system experience a decrease in Coulombic
energy and an increse in Lennard-Jones energy.

The Nernst-Donnan potential at the interface scales linearly
with temperature with the coefficient of proportionality driven
by the fraction of concentrations of the uncondensed counteri-
ons ln(cfree,2/cfree,1). We also showed that the potential difference
can be expressed as a linear function of the lateral pressure. In-
terestingly, this relationship is robust and hold equally well for
weak and strong counterion condensation. This linear relation-
ship thus provides a molecular level explanation of the piezoionic
effect, and calls for verification in experiments.
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