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Abstract

Molecular simulations of coarse-grained diblock copolymers (DBP) were conducted to study the 
effect of segregation strength and morphology on transport properties. It was found that in the 
strong segregation limit (i.e., high , where  is the Flory-Huggins parameter and  is the 𝜒𝑁 𝜒 𝑁
degree of polymerization), the presence of the DBP interfaces imposes topological constraints 
similar to those of entanglements as manifested in the rheological signature of the polymer (i.e., 
a plateau modulus). Furthermore, compared to the behavior of isotropic melts, the crossover 
from Rouse to reptation scaling of the self-diffusion coefficient ( ) parallel to the DBP interface 𝐷
takes place at a smaller , an effect that depends on temperature and is more pronounced in 𝑁
the Lamellae morphology than in the Hexagonal Cylinder morphology. Additionally, it is shown 
that for an entangled melt (i.e.,  where  is the entanglement length) block retraction is 𝑁 ≫ 𝑁𝑒 𝑁𝑒

instrumental for chains to diffuse parallel to the interface of lamellar layers. Lastly, it is found 
that the anisotropic viscosity of different morphologies is mostly affected by the orientation of 
the chains relative to the shear flow direction, exhibiting reduced values when chains align in the 
neutral or flow directions.

 

Introduction

In microphase separated phases of diblock copolymers (DBP), naturally conflicting properties are 

able to exist in nanoscale proximity, which makes these materials  attractive for applications 

ranging from lithography to artificial organ technology, drug delivery, and energy storage.1,2 For 

example, the mechanical stability of solid polymer electrolytes used in battery applications is 

essential for sustainable and safe operations.3 DBPs have been thoroughly studied as a potential 

materials’ platform to improve electrolyte stability and safety.4,5,6,7 While the conductive block is 

typically flexible and contains polar sites that can solvate salts, the other non-polar block can be 

made rigid or glassy to impart the system with the mechanical stability needed to suppress 

dendrite formation. In drug delivery applications, DBPs with hydrophilic and hydrophobic blocks 

can be utilized in order to transport hydrophobic drugs in the bloodstream at concentrations 
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above their intrinsic water solubility limit. The hydrophilic block forms a protective shell against 

bio-degradation of the bioactive molecules enhancing the drug integrity and performance. 

Additionally, the reversible nature of the temperature-driven DBPs ordering (i.e., from order to 

disorder and vice versa) allows for thermally controlled release of the bioactive molecules2. 

Hence, characterizing viscoelastic and dynamic properties of DBPs (which correlate with 

mechanical stability and ordering kinetics) is of critical importance from both fundamental and 

application perspectives. Furthermore, studying model DBP systems of linear chains could 

provide insights relevant to other more complex DBP resembling systems, such as polymer-

grafted nanoparticles, polymer brushes,8 and protein lipid bilayers.

In the past few decades, theoreticians and experimentalists have devoted much attention to 

understanding the dynamic and viscoelastic properties of homopolymers melts, and their 

departure from those of small organic liquids. One important parameter that largely influences 

the viscoelastic behavior of melts of linear homopolymer is the degree of polymerization ( ). The 𝑁

self-diffusion coefficient ( ) follows a  scaling, where  is  in the Rouse regime (consistent 𝐷 𝑁 ―𝜉 𝜉 1

with the Einstein Diffusion model), and  in the reptation regime (consistent with de Gennes’  2

tube model), while the zero-shear viscosity ( ) follows a  scaling, where  is 1 in the Rouse 𝜂0 𝑁𝜉 𝜉

regime, and  in the reptation regime.9 In the Rouse regime (i.e., below the entanglement chain 3

length, ), the polymer chains can slide past one-another. Such diffusion mechanism does not 𝑁𝑒

take place when  due to the constraints imposed by the melt that confine a particular 𝑁 > 2𝑁𝑒

chain to a tube whose diameter ( ) can be correlated with the end-to-end distance of a chain 𝑑𝑇

with  segments (i.e. , where  is the Kuhn length).10 Entanglements only allow for 𝑁𝑒  𝑑𝑇 ≈ 𝑎𝑁1/2
𝑒 𝑎

diffusion along the contour of the tube, whose length is , within which the chain-end ‘reptates’ 𝑙

from one tube to the next following the path taken by other segments of the chain. Within a 

tube, the polymer segments locally diffuse following the Rouse model; however, for the whole 

chain to diffuse it needs to travel a distance  as opposed to its end-to-end distance in 𝑙

“unentangled” polymer melt, thereby increasing the relaxation time of the chain and giving rise 

to the reptation scaling regime. The theoretical scaling predictions in the Rouse and reptation 

regimes for both  and  were found to explain experimental and computational results for 𝐷 𝜂0

homopolymer melts with only a slight difference in the  exponent observed in  the reptation 𝜉
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regime.11,12,13 The  scaling with  is more sensitive to entanglements than that of  since the 𝐷 𝑁 𝜂0

Rouse contribution to  is strong and it is only for  that the exponential component, 𝜂0 𝑁 ≫ 𝑁𝑒

arising from entanglement, becomes dominant.13 

While the dependence of dynamic and viscoelastic properties on a wide spectrum of parameters 

(i.e., temperature, concentration, and chain length), and polymer designs (i.e., branching) is well 

understood for homopolymer melt systems,14,15,16,17 it is less so for DBP systems.  Depending on 

the volume fraction of the minority block ( ), and the segregation strength (  where  is the 𝜙1 𝜒𝑁, 𝜒

Flory-Huggins parameter), linear A-B DBPs form various micro-segregated structures below the 

order-disorder temperature ( ). The presence of interfaces and confining domains in such 𝑇ODT

structures gives rise to additional energetic and entropic barriers that influence the transport and 

viscoelastic properties of DBPs.18 

It was previously suggested that in the entangled regime, strongly segregated DBPs (i.e., for 

, where  is  at the order-disorder transition (ODT)) with Lamellae (L) 𝜒𝑁 ≫ (𝜒𝑁)ODT (𝜒𝑁)ODT 𝜒𝑁

morphology (i.e., ) diffuses parallel to the interface by a block retraction mechanism 𝜙1 = 0.5

(where one block retracts to the interface before lateral diffusion along the interface can take 

place).19,20 However, this block retraction mechanism was not observed in the simulation study 

of Murat et al., who argued that Lamellae-forming DBPs have reduced entanglement density 

compared to homopolymers due to the increased ordering in the system.21,22 Using Kinetic 

Monte Carlo simulations, Pan et al. examined DBPs with L morphology and found, by comparing 

 for a wide range of  at a fixed low , that the Rouse to reptation scaling crossover chain 𝐷 𝑁 𝜒𝑁

length ( ) for DBP is the same as that for the homopolymer.23 Most recently, Sethuraman et 𝑁𝑐

al.24 and Ramirez-Hernandez et al.25 used topological analysis to identify entanglements in 

lamellae-forming DBPs. They found that  in DBPs ( ) is slightly lower than in 𝑁𝑒 ≈ 40

homopolymers ( .25 While the dynamic properties of DBPs have been the subject of several ≈ 44)

experimental studies, it is very difficult to deconvolute the anisotropic diffusion tensor 

components arising from the spatial orientation of the interfaces,  due to both the presence of 

multiple grain orientations seeded during  phase microsegregation, and the different block 

chemistries used which potentially have different .20,26 𝑁𝑒
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The stability of DBP phases under simple and oscillatory shear has been the subject of several 

studies.27,28,29,30,31 Depending on the shear rate and shear orientation (Figure 1), the DBP may 

exhibit transitions to different orientational states and to the disordered state. The dependence 

of the anisotropic viscosity tensor components on morphology has only been investigated in a 

few computational studies.32,33 Using shear-flow Dissipative Particle Dynamics (DPD) simulations, 

Zhang et al.32 found that the viscosity of the L phase, when flow and velocity gradient are parallel 

to interface (L ), is lower than that of the Hexagonal Cylinders (HC), when flow is along the ∥

cylinder axis (HC ). Ryu et al.33 used linear response theory to calculate the anisotropic zero-∥

shear viscosity ( ) for the L morphology from the stress auto-correlation function. However, 𝜂0𝛼𝛽

they combined the transverse (L ) and perpendicular (L ) contributions into one component, 𝒯 ⊥

despite these being fundamentally different due to the asymmetry of the structure.31 Oscillatory 

shear experiments revealed that cubic DBPs, such as the Gyroid (G) phase, exhibit a modulus 

plateau ( ) for  at a frequency smaller than the rubbery plateau ( ), reminiscent of 𝐺0
cubic 𝑁 < 𝑁𝑒 𝐺0

𝑁

the effect of entanglements.  of the G phase was found to span several decades in frequency 𝐺0
cubic

at the terminal regime (approaching the zero-shear limit). Moreover, it was shown that randomly 

oriented L and HC phases exhibit a behavior intermediate between that of cubic phases and 

isotropic melts.34 
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Figure 1. Illustration of the different shear orientations possible for Lamellae (L) morphology (a-c) and 

Hexagonal Cylinder (HC) (d-f). Beads from only the minority block are displayed for clarity.

In this paper, we study the effect of  and morphology on both the molecular diffusion and 𝑁

viscoelastic properties utilizing a coarse grained Molecular Dynamics (MD). The use of MD and 

model morphologies allow us to study the physical mechanisms underlying the different 

transport phenomena in the absence of major structural defects (i.e., within single-grain uniform 

structures). To form microphase separated structures with well-defined morphologies,  𝜒𝑁

should exceed the ODT value, which is efficiently achieved using a coarse-grained representation 

of the polymers. Using such a model, we were able to examine a wide range of segregation 

strengths and to probe the Rouse and reptation regimes. We find that, depending on 

temperature, the DBP properties transition from the Rouse regime to the reptation regime at a 

shorter  compared to isotropic melts, which we attribute to the topological constraint imposed 𝑁

by the interface between the two blocks that gives rise to an entanglement-like rheological 

signature (i.e., the onset of a plateau modulus). We also demonstrate the importance of block-
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retraction to activate the lateral diffusion process for  in L phase. Finally, in different DBP 𝑁 ≫ 𝑁𝑒

morphologies we show that trends in the anisotropic viscosity are correlated with the propensity 

for chain alignment with respect to the flow direction.

Methodology

Molecular Dynamic (MD) simulations were employed to study dynamic and viscoelastic 

properties of DBPs with various morphologies and chain lengths. All simulations were performed 

using LAMMPS.35 The coarse-grained model adopted consists of beads and springs similar to that 

of Kremer and Grest for homopolymer melts but adapted to DBP systems. The bead-spring model 

has proven useful in studying viscoelastic, dynamic, and static properties of neat12,13,36 and 

filled6,37,38 polymer melts. Additionally, the model was successfully extended to study the phase 

behavior of DBP melts,39,40,41 and the response of DBP networks to tensile deformation.42,43,44 

To induce phase separation, like species interact via an attractive 6-12 Lennard-Jones potential, 

while unlike species interact via a purely repulsive potential known as the Weeks-Chandler-

Andersen (WCA) potential.39 Without loss of generality, the scaling quantities of mass ( ), length 𝑚

( ), and energy ( ) are set to unity, while the simulation quantities of concern are scaled as 𝜎 𝜖

follows: temperature , time , and number density . The  𝑇 ∗ = 𝑘𝑏𝑇/𝜖  𝑡 ∗ = 𝑡 𝜖/(𝑚 ∙ 𝜎2)  𝜌 ∗ = 𝜌𝜎3

simulations were carried out in the canonical ensemble (NVT) with an integration time step ( ) 𝛿𝑡

of  using a Velocity-Verlet algorithm.  was controlled using the Nosé–Hoover 0.001 𝜏 𝑇

thermostat,  a suitable choice for studying transport properties due to its deterministic nature 45, 

with a damping parameter  of . The three values used were  and  0.5 𝜏 𝑇 = 2.63, 3.6, 5.0 𝜖/𝑘𝑏

which correspond to  values of , and , respectively.39  was kept at , a value 𝜒 3.5, 2.5 1.8 𝜌 0.85 𝜎 ―3

appropriate for polymer melts,12,13,39 assuming incompressibility of the polymer across different 

 and . Pressure isotropy was monitored to ensure that the box dimensions were appropriate 𝑁 𝑇

to fit the  natural domain periodicity of the system.46 

The different DBP morphologies were realized by varying the volume fraction of the minority 

block  (Table 1). Details about system sizes and simulation box dimensions are provided in the 𝜙1
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SI(I). A finite-size analysis of the self-diffusion coefficient is given in the SI(II) and confirms that 

finite-size effects would be negligible in our systems; self-diffusivity is used here as a 

representative probe as it is known to be a property quite sensitive  to system size.13 

Starting from a random configuration, the systems were allowed to equilibrate and achieve their 

equilibrium structure before any average property was calculated. The Gyroid (G) phase was an 

exception in that its initial configuration was obtained from a previous Dissipative Particle 

Dynamic (DPD) study by our group.47 To confirm that we have the right equilibrated 

morphologies, the static structure factor ( ) was computed using eq. 1, where  is the wave 𝑆(𝒒) 𝒒

vector (restricted to integer values of the wavelength),  is the position vector of bead , and  𝒓𝑗 𝑗 𝑛

is the total number of beads used in the calculation. The structure of all phases was visualized 

using VMD.48

𝑆(𝒒) =
(∑

𝑗cos (𝒒 ∙ 𝒓𝑗))2 + (∑
𝑗sin (𝒒 ∙ 𝒓𝑗))2

𝑛         (1)

Table 1. DBP simulated morphologies and their corresponding  and  (in units of )39 𝜙1 𝑇𝑂𝐷𝑇 𝜖/𝑘𝑏
for a given .𝑁

 ( )𝝓𝟏 𝑻𝐎𝐃𝐓
𝑵 Lamellae 

(L) Gyroid (G) Hexagonal 
Cylinder (HC) Sphere (S)

10 0.5 (4.5) ― ― ―
14 0.5 (6.8) ― ― ―
18 ― 0.33 (8.0) ― ―
24 0.5 (12.5) ― 0.25 (9.0) ―
32 0.5 (16.8) ― ― ―
40 0.5 (20.8) ― 0.25 (15.3) 0.10 (5.6)
50 0.5 (25.4) ― ― ―
60 ― ― 0.25 (22.4) ―
64 0.5 (31.2) ― ― ―
76 0.5 (35.6) ― 0.25 (27.5) ―

Initial Configuration Random DPD structure Random Random 

Equilibrium and non-equilibrium MD simulations were implemented to measure the properties 

of interest. The diffusion coefficient for motions parallel to the interface between the two blocks 
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( ) was computed in the L and HC phases. For the G phase and Homopolymer (HP), the isotropic 𝐷 ∥

diffusion coefficient ( ) was calculated. The diffusion coefficient ( ) was found from the Mean 𝐷iso 𝐷

Square Displacement ( ) in equilibrium simulations using the Einstein relation of eq. 2, 〈Δ𝒓(𝑡)2〉
where is averaged over time origins ( ), and  is the dimensionality of the space where 〈Δ𝒓(𝑡)2〉 𝑡0 𝑏

motion is tracked (e.g.,  for HC phase,  for L phase, and  for isotropic phases):49𝑏 = 1 2 3

𝐷 =
1

2𝑏
𝑑
𝑑𝑡 〈(𝒓(𝑡 + 𝑡0) ― 𝒓(𝑡𝑜))2〉𝑡0

        (2)

 is computed when a linear relationship between  and  develops, indicative of diffusive 𝐷 〈Δ𝒓(𝑡)2〉 𝑡

motion. The production period of the simulation ranged from  to . For these 75,000 100,000𝜏

calculations we only tracked the positions of the minority component bead connected to the 

majority component (i.e., the “interface bead”). Note that since we are only interested in the 

long-time diffusion, its value is largely independent on whether for the calculations we track the 

interfacial bead, the chain center-of-mass, or any other bead.

To compute , , and , non-equilibrium MD simulations were performed using the SLLOD 𝜂0 𝐺′ 𝐺′′

equations of motion.50 A combination of simple shear flow and oscillatory shear flow simulations 

were used to compute the zero-shear anisotropic viscosity components ( ) using eqs. 3 and 4 𝜂0𝛼𝛽

below, where  is the stress tensor component in the flow direction  that is normal to velocity 𝜎 ∗
𝛼𝛽 𝛼

gradient direction ,  is the strain rate, and  is the oscillation frequency: 𝛽 𝛾𝛼𝛽 𝜔

𝜂0𝛼𝛽 = lim
𝛾𝛼𝛽 → 0

𝜎 ∗
𝛼𝛽

𝛾𝛼𝛽
        (3)

𝜂0𝛼𝛽 = lim
𝜔 → 0

(𝐺′′𝛼𝛽)2 + (𝐺′𝛼𝛽)2 𝜔        (4) 

The loss ( ) and storage ( ) moduli were calculated using eqs. 5-6, where  is the stress 𝐺′′𝛼𝛽 𝐺′𝛼𝛽 𝜎 ∗
0𝛼𝛽

amplitude,  is the strain amplitude and  is the phase lag.  in the oscillatory shear 𝛾0𝛼𝛽 𝛿 𝛾0𝛼𝛽

simulations was fixed to 10%, which ensures operating in the linear response regime where the 

Cox-Merz Rule applies51 (see Figure S1 of SI(III)).  and  were obtained from the least-square 𝜎 ∗
0𝛼𝛽 𝛿

fit of the sinusoidal function (eq. 7) to the simulation data.
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𝐺′′𝛼𝛽 =
𝜎 ∗

0𝛼𝛽

𝛾0𝛼𝛽
sin 𝛿        (5)

𝐺′𝛼𝛽 =
𝜎 ∗

0𝛼𝛽

𝛾0𝛼𝛽
cos 𝛿        (6)

𝜎 ∗
𝛼𝛽 = 𝜎 ∗

0𝛼𝛽sin (𝑡𝜔 + 𝛿)        (7)

Results and Discussion

Figure 2 shows our results for  of DBPs with various morphologies and  values (listed in Table 𝐷 𝑁

1), including results for  of HP for comparison. Although only one result is available for the G 𝐷

phase, it clearly shows that its isotropic diffusion is significantly slower than that of the L phase, 

by a factor of , a difference that is consistent with experimental findings and is attributable to ~2

the tortuosity of the G structure.6,26 One unexpected observation in Figure 2 is that in the high-

 regime chains diffuse faster in the HC phase than in the L phase. This may be due to the looser 𝑁

pinning of interfacial beads in the HC phase than in the L phase (as those beads in a curved 

interface partially experience the faster short-time dynamics of the nearby non-interfacial 

beads52), which facilitates the drift of long chains.  

The trends in Figure 2 also indicate that DBPs with L morphology exhibits a transition from the 

Rouse regime to the reptation regime at a crossover chain length ( ) that is shorter than that 𝑁𝑐

for HP. It is known that the onset of the reptation scaling occurs when , where  is the 𝑁𝑐 ≈ 2𝑁𝑒 𝑁𝑒

entanglement chain length of HP. The slightly higher entanglement density of the L phase 

compared to the isotropic melt25 cannot account for such “early” crossover (at ) 𝑁𝑐 ≈ 𝑁𝑒

suggesting that an alternative diffusion mechanism takes place in the L phase.
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Figure 2. Effect of morphology and  on  for L and HC phases, and  for G phase and HP at 𝑁 𝐷 ∥ 𝐷iso

. The dashed (solid) lines represent Rouse (reptation) scaling law. The error bars represent 𝑇 = 2.63 𝜖/𝑘𝑏

the standard deviation about the averages found for each system.

Dalvi et. al.20 hypothesized that the lateral diffusion of an entangled L DBP melt proceeds via a 

block retraction mechanism, analogous to arm retraction in star polymers, where one block 

retracts to the interface in order for the chain to diffuse parallel to the interface plane. We tested 

this hypothesis by quantifying the effect on  of artificially reducing the tendency to block 𝐷

retraction. For this purpose, we pinned the end beads of either one block or both blocks to a stiff 

harmonic spring potential  (with ) to restrict chain motions only in the 
1
2𝑘(𝑧𝑖 ― 𝑧0

𝑖 ) 𝑘 = 400 𝜖/𝜎2

direction normal to the interface ( ). The preferential position ( ) for each of the affected end 𝑍 𝑍 𝑧0
𝑖

beads was taken to be its initial value in an equilibrated structure. Figure 3a shows the probability 

distribution of the center-of-mass position of one block in the  direction ( ) when the 𝑍 𝐶𝑂𝑀𝑧

pinning springs are or are not enacted. For the pinned case, the probability distribution was 

averaged over chains with similar  (within ), whereas all the chains were used for the 𝑧0
𝑖 ± 0.5 𝜎

unpinned “free” system. The  variance for the constrained system is  about half that for the 𝐶𝑂𝑀𝑧

free system. As shown in Figure 3b, for , the springs hinder the lateral motion 𝑁 = 200

significantly whether one block or both blocks are pinned. As expected from the behavior of 

trapped entangled systems,  approaches a plateau value of  (i.e., the squared 〈Δ𝑟2〉 ∥ 𝑎2𝑁𝑒

diameter of the tube). On the other hand, for  (i.e., a non-entangled system), ( ) is 𝑁 = 10 〈Δ𝑟2〉 ∥
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not affected by the springs (Figure 3c). Overall, these results indicate that for entangled chains 

the cooperative motion of both blocks is required to activate the lateral diffusion process, further 

suggesting that the tubes formed by the entangled melt are preferentially aligned normal to the 

interface. Given that block retraction (taking place in the direction normal to the interface) is an 

essential component to the diffusion process of entangled self-segregated DBPs, we hypothesize 

that the pinning effect of the interface acts as a topological constraint akin to entanglements. In 

other words, the interface participates in the construction of the entanglement tube by 

preferentially aligning it in the direction normal to the interface. This would hence explain the 

“early” crossover from Rouse to reptation scaling seen in Figure 1 for the L morphology (  𝑁𝑐 ≈ 1

 compared to HP (  . 𝑁𝑒) 𝑁𝑐 ≈ 2𝑁𝑒)
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(a)

(b)

(c)

Figure 3. Effect of pinning potential on (a) the  probability distribution of one block for , 𝐶𝑂𝑀𝑧/𝑑 𝑁 = 200

where the interface is located at , and on  for (b)  and (c) , where 𝐶𝑂𝑀𝑍/𝑑 = 1.0 〈Δ𝑟2〉 ∥ 𝑁 = 200 𝑁 = 10

solid and dashed lines illustrate  (diffusive motion) and  (entangled motion) scaling, respectively. 𝑡1 𝑡0.25

The error bars represent the 95% confidence interval of the averages found for the population of chains 

in the system.
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To further test our hypothesis that the interface has the same effect on the dynamics of polymer 

melt as an entanglement, we examine the effect of DBP segregation strength on  by varying . 𝑁𝑐 𝑇

Note that  is related to segregation strength in DBPs but has no effect on  for HP as shown in 𝑇 𝑁𝑐

Figure 4 (which includes the simulation data from Bulacu et al.53). As shown in Figure 5a,  𝑁𝑐

increases with  and, based on the interface-effect, it is expected that at , the behavior 𝑇 𝑇 ≫ 𝑇𝑂𝐷𝑇

should approach that of HP. The effect of  on the segregation strength of the L phase can be 𝑇

captured by measuring the interfacial thickness ( ), which is related to ,54 by fitting the order Δ 𝜒𝑁

parameter  (eq. 8) to eq. 9, where  is the volume fraction of component  in the  𝜓(𝑧) 𝜙𝑖(𝑧) 𝑖 𝑍

direction, and  is the position at which :21𝑧0 𝜙𝐴(𝑧) = 𝜙𝐵(𝑧)

𝜓(𝑧) = (𝜙𝐴(𝑧) ― 𝜙𝐵(𝑧)) (𝜙𝐴(𝑧) + 𝜙𝐵(𝑧))        (8)

𝜓(𝑧) = tanh (2(𝑧 ― 𝑧0)/Δ)        (9)

Figure 4. The effect of  on the dependence of  on  for HP. The effect of  is normalized for by a 𝑇 𝐷 × 𝑁 𝑁 𝑇

reference system ( ) at the particular . The solid line represents the reptation scaling ( ). The 𝑁0 = 14 𝑇 𝑁 ―1.4

error bars represent the standard deviation about the averages found for the chain population in each 

system.

As shown in Figure 5b,  increases with  (for any ) until reaching a plateau value that is Δ 𝑇 𝑁

dependent on . Since for the same  range,  is independent of  for HP, we attribute the 𝑇 𝑇 𝑁𝑐 𝑇

change in  with  for DBPs to changes in the segregation strength as captured by the  trends 𝑁𝑐 𝑇 Δ

in Figure 5b. The results from Figure 5a for , where  is weakly dependent on  𝑇 = 2.63 𝜖/𝑘𝑏 Δ 𝑁
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(Figure 5b), indicate that  since one constraint needs to come from a “true” 𝑁𝑐 ≥ 𝑁𝑒

entanglement for the crossover to take place, hence, the crossover at  (i.e. where the 𝑁𝑐 ≈ 30

Rouse and reptation scaling laws intersect in Figure 2).

(a)

(b)

Figure 5. Effect of  on (a) the dependence of  with  for DBP having L morphology and HP, where 𝑇 𝐷 × 𝑁 𝑁

the effect of  is normalized with respect to a reference system ( ) at the particular , and the 𝑇 𝑁0 = 24 𝑇

solid line represents the reptation scaling ( ), and (b) the dependence of  with  for DBP having L 𝑁 ―1.4 Δ 𝑁

morphology. Error bars represent the standard deviation about the averages from the different chains in 

the system in (a) and from the different configurations used in the calculation for (b).

Figure 6 shows the  and  moduli (eqs. 5 and 6) obtained from oscillatory shear 𝐺′′𝛼𝛽 𝐺′𝛼𝛽

simulations of the L phase. The first intersection of these curves (i.e., at small oscillation 

frequency ( )) of  and  is related to the entanglements’ relaxation time (i.e., 𝜔 𝐺′ 𝐺′′
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disentanglement), while the second intersection corresponds to the segment relaxation time 

between entanglements.13,55 Figure 6(a-c) shows that for the L  orientation no signs of ∥

entanglements are detectable for  where beads are expected to experience a nearly 𝑁 = 10 ― 76

homogenous environment. However, in the L  and L  orientations (Figures 6(d-i)) for ,  ⊥  𝒯 𝑁 > 40

an entanglement-like signature in the oscillatory shear modulus is observed, consistent with the 

topological constraint effect induced by the interface. To elucidate whether the modulus plateau 

of the L  and L  orientations is related to rubbery or cubic-phase behavior, dynamic oscillatory ⊥  𝒯

shear simulations of HP with  and  were conducted as a referential case pertinent to 𝑁 = 200 40

rubbery plateau behavior. The results shown in Figure 7 indicate, counter to trends observed in 

a previous experimental study of randomly oriented L grains,34 that the modulus plateau of the 

HP is lower in magnitude than the modulus plateau found for the L   and L , and that the ⊥  𝒯

onset of the plateau takes place over a similar  regime. Additionally, for L  with  only 𝜔 ∥ 𝑁 = 200

one plateau is apparent, similar to the HP case. For HP with , no rubbery plateau is 𝑁 = 40

observed, suggesting that the apparent plateau in DBPs for  is related to the presence of 𝑁 < 𝑁𝑒

the interface. We note in passing that our oscillatory shear simulations for the  phase with 𝐺

 confirm the presence of a modulus plateau at terminal frequencies as found in 𝑁 = 18

experiments and attributed to the 3D lattice interconnectivity of the block domains.34

To confirm that the range of  used is wide enough to capture the different relaxation time 𝜔

scales, we tested whether the calculated reached the Newtonian regime, which is a key tenet 𝜂0 

in our simulations. We show in the SI(IV) the mapping of our scaling quantities (  and ) to a 𝑚, 𝜖, 𝜎

linear polyethylene melt by mapping  in our model to experimental data (Table S3). We then 𝑁𝑐

used these scaling quantities to predict  (Figure S2) and  (Figure S3) and show that they agree 𝐷 𝜂0

with available experimental and atomistic simulations data for polyethylene.

The plateau modulus ( ) can be related to  via the Rubber Elasticity theory:55𝐺0
𝑁 𝑁𝑒

𝐺0
𝑁 =

4
5

𝜌𝑘𝑏𝑇
𝑁𝑒

≈ 𝐺′(min(tan 𝛿))        (10)  

resulting in  for the L  and L  orientations, independent of  above . At 𝑁𝑒 ≈ 11 ⊥  𝒯 𝑁 40 𝑇 = 5.0 𝜖/

, the oscillatory shear dynamics display no signs of entanglements for  (whose  is 𝑘𝑏 𝑁 = 40 𝑇ODT
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 (Table 1)). These results again confirm that the interface in the strong segregation limit 20.8 𝜖/𝑘𝑏

gives rise to an entanglement-like behavior that correlates with the crossover between the Rouse 

and reptation scaling regimes for  shown in Figure 2. 𝐷

Figure 6. Effect of  and oscillatory direction on , and  for DBP with  morphology at 𝑁 𝐺′,𝐺′′ tan (𝛿) 𝐿

 and , where . For clarity,  is only shown for . Error bars 𝑇 = 2.63 𝜖/𝑘𝑏 𝛾0 = 0.1 tan 𝛿 = 𝐺′′/𝐺′ tan (𝛿) 𝑁 = 76

for  and  for  represent the 95% confidence interval for results from 12 uncorrelated initial 𝐿 ⊥ 𝐿 𝒯 𝑁 = 40

configurations. 

Page 16 of 24Soft Matter



17

Figure 7. of L  and L  orientations compared to  of HP case at  and  for 𝐺′𝛼𝛽 ∥ ⊥ 𝐺′ 𝑇 = 2.63 𝜖/𝑘𝑏 𝛾0 = 0.1

 and  obtained from dynamic oscillatory shear simualtions. Error bars represent the 𝑁 = 40 𝑁 = 200

standard error from uncorrelated initial configurations. The results for the L  orienation, which are  𝒯

similar to those of the L  orientation, are not shown for clarity. See Figure 1 for nomenclature of shear ⊥

orientations.

Another important property of polymeric materials that is strongly affected by entanglements is 

. In Figure 8 we compare  for HP obtained from steady shear simulations to the anisotropic 𝜂0 𝜂0

zero-shear viscosity ( ) for DBPs with L and HC morphologies calculated via both steady and 𝜂0𝛼𝛽

oscillatory shear simulations, and  for Sphere (S) and G morphologies calculated via oscillatory 𝜂0

shear simulations. It can be seen that no signs of reptation can be inferred from the scaling of 

the trends for all the morphologies and orientations, in agreement with the results from a 

previous study for homopolymer melts.13 Figure 8 also shows that the viscosity of the HC  and ∥

S phases are greater than that in the L  phase, in agreement with a previous study.32  for the ∥  𝜂0

S phase is smaller than that of HC , possibly due to its reduced . For ,  of the G phase  ↺ 𝜙1 𝑁 = 18 𝐺′

exhibits a plateau that spans several decades in frequency at low  (consistent with experimental 𝜔

findings34), and as a result,  diverges in the  range examined. Since the flow direction in the L𝜂0 𝜔

, L  and HC  orientations is not across the interface, we suspect that viscosity differences  ∥ ⊥ ∥

among them are connected to differences in how chains align relative to the flow direction. The 

larger viscosity values observed for the L , HC , and S phases, where the flow direction is across  𝒯 ↺
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the interface, likely arises from energetic contributions to the stress response associated with 

unfavorable deformations of the interface structure. 

Figure 8. Zero-shear viscosity (  for DBPs of different morphology and for homopolymer melt (HP), as 𝜂0𝛼𝛽)

a function of shear orientation and  at . The straight line represents the Rouse scaling law 𝑁 𝑇 = 2.63 𝜖/𝑘𝑏

( ).𝑁1

In the HC phase, the majority block conformation is more isotropic, especially on the plane 

orthogonal to the cylinder axis, compared to the L phase where the blocks are distinctly more 

stretched in the direction normal to the interface than parallel to the interface. Figure 9 shows 

the distribution of the end-to-end distance ( ) in the three cartesian directions for the L (Figure 𝑅𝑒𝑒

9a) and HC (Figure 9b) morphologies. No difference is observed between the parallel components 

of  in the L phase and individual components of  in the HC phase. We note that the use of 𝑅𝑒𝑒 𝑅𝑒𝑒

cartesian coordinates, rather than cylindrical coordinates to analyze the components of Ree in the 

HC phase, was intended to unveil correlations with the effect caused by a shear deformation 

being applied in directions aligned with the box’ cartesian coordinates.

In the L  orientation, the shear-flow neutral direction is normal to the interface. The viscosity ∥

in the L  orientation is smaller than in the HC  orientation because in the former chains are ∥ ∥

more aligned in the neutral direction and hence chain segments experience a smaller velocity 

gradient. Similarly, the L  viscosity is greater than those for the L  and HC orientations ⊥ ∥ ∥  

because in the former chains are more aligned along the velocity gradient direction (i.e., the 

interface-normal direction). In Figure S6 of the SI(V), we further show that uniaxial deformation 
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simulations for the L and HC phases yield stress responses whose trends can be correlated to the 

same microscopic trends in chains conformations given here to explain the trends in viscosity 

from shear simulation results.

(a) (b)

Figure 9. Distribution of the absolute value of the end-to-end distance of the majority block chains ( ) 𝑅𝑒𝑒

in the three cartesian directions for (a) L morphology and (b) HC morphology with  chains in the 𝑁 = 40

unperturbed state. The specific directions probed are depicted in the inset.

Conclusions

In this work, we examined first the role of DBP microphase separation on the onset of reptation 

scaling in . We studied in particular detail the behavior of the diffusivity parallel to the interface 𝐷

in the L morphology. Specifically, we showed that in the strong segregation regime, the DBP 

interface constrains chain conformations in a way akin to topological constraints caused by 

entanglements, giving rise to a temperature-dependent early crossover from Rouse to reptation 

scaling (i.e.  vs.  in homopolymers). Our oscillatory shear simulations also 𝑁𝑐 ≈ 𝑁𝑒 𝑁𝑐 ≈ 2𝑁𝑒

showed an entanglement-like signature at the same  for the L  and L  orientations. Given 𝑁𝑐 ⊥ 𝒯

that a brush of mobile chains densely grafted to a flat surface, can be likened to a DBP lamellar 

layer, our results are loosely related to those of Lai et al.56 who also showed that  for the lateral 𝑁𝑐

diffusion in a polymer brush depends on the grafting density with higher values resulting in earlier 

crossover. 
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We also found that the value of  for the diffusion coefficient increases with  as the 𝑁𝑐 𝑇

segregation strength decreases in DBPs, in contrast to the independent crossover behavior 𝑇 ―

in HP. Our estimation of the interface thickness, which relates inversely with the segregation 

strength, confirmed that  is associated with  at which the interfacial thickness reaches a 𝑁𝑐 𝑁

plateau at a given . At low ,  becomes independent of  since at least two effective 𝑇 𝑇 𝑁𝑐 𝑇

topological constraints are needed for the crossover to take place (i.e., one from the interface 

and at least one from the chain length).

In the entangled regime, we found that block retraction is an important mechanism in the 

diffusion of chains parallel to the L phase interface. In simulations designed to suppress 

fluctuations in chain extension normal to the interface, we found that the lateral mean square 

displacement of the interfacial bead approaches a plateau that is commensurate to the squared 

diameter of the tube in reptation theory, consistent with the tenet that block retraction is 

important to activate lateral diffusion. For chain lengths below , the lateral diffusion was found 𝑁𝑒

to be independent of the block retraction motion. More generally, however, lateral diffusion of 

a given chain is likely a complex process that involves not only its retraction but also the 

cooperative motion of the surrounding neighbor chains. Further analysis of the effect of 

neighboring chains will be needed to identify in more detail the underlying mechanism of DBP 

diffusion in the entangled regime.

Analysis of steady and oscillatory shear simulations of different morphologies with different 

orientations revealed that the anisotropic zero-shear viscosity ( ) mainly depends on chain 𝜂0𝛼𝛽

alignment with respect to the “virtual” flow direction (by virtue of microphase separation) in the 

unperturbed state (i.e., zero shear), exhibiting a reduced value when chains are aligned in the 

flow or neutral direction. Moreover, the viscosity is always the largest when the shear flow 

direction is across the interface, likely due to additional energetic contributions associated with 

the stress response to interfacial deformations.

This work was concerned with describing the anisotropic stress response of DBPs to different 

modes of deformation (simple shear, oscillatory shear, and uniaxial elongation) and the direction 

of the deformation relative to orientation of the morphology. This study could be extended in a 
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number of different directions. For example, the uniaxial deformations simulated in this study 

(as reported in the SI(V)) have mainly probed the rubbery and solid-like response; however, 

performing a constant cross-section uniaxial elongation would be informative to probe adhesive 

properties.57 It would also be interesting to perform simulations that probe the nano- and micro-

rheology of DBP systems given the multiple length scales (such as , , and domain size) that 𝑑𝑇 Δ

define the structure of microphase separated morphologies. Such studies would allow to 

elucidate the interplay between the different length scales and the dynamics of nanoparticle 

probes with different size and moving at different speeds. Such  insights would be relevant to 

understand the rheology of not only DBP melts but also DBP composites and electrolyte systems 

(whose macro-viscoelastic properties have little influence on the dynamics of the particles37,57). 

Work related to these topics is currently underway.
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