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Abstract 

Phase-change memory takes advantage of fast phase transition between amorphous 

and crystalline phases of the phase-change materials (e.g., Ge2Sb2Te5 or GST). To 

date, while the “SET” process (crystallization of GST glass) has been intensively 

studied, studies of “RESET” process (melt-quenching amorphization of GST) are still 

limited. In this work, we explored the structural changes of GST upon rapid cooling 

by ab initio molecular dynamics simulations and an atomistic cluster alignment (ACA) 

analysis. Different from other methods which only focus on the nearest bonding 

atoms, the ACA method can study both the short- and medium-range order clusters 

containing atoms beyond the first-neighbor shell and enables us to explore the 

changes of cluster structures in a larger scale. The results reveal that the 

low-coordinated octahedral clusters tend to become high-coordinated ones, and 

Ge-centered octahedral structures change to tetrahedrons whereas Sb-centered 

tetrahedrons transform to octahedral structures during the amorphization process. 

Interestingly, the tetrahedrons show an aggregation in liquid and supercooled liquid in 
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contrast to the 6-fold octahedrons which present a notable aggregation in amorphous 

GST. Moreover, our study showed that wrong bonds (Ge-Ge, Sb-Sb, Ge-Sb and Te-Te 

bonds) can promote the formation of large rings, and irreducible rings tend to separate 

into smaller and larger rings as the temperature is decreased. Our findings provide 

useful insights into the formation process and the structure of amorphous GST, which 

is valuable for facilitating the application of phase change materials.  

 

Keywords: short-range structure, medium-range structure, amorphous, molecular 

dynamics  

 

Introduction 

  Switching of materials properties can be utilized to record information in memory 

devices.1-7 Ge2Sb2Te5 (GST), as a prototypical phase-change memory material (PCM), 

is widely utilized in nonvolatile memory devices such as random access memory 

(RAM),5-12 due to its rapid and reversible change between crystalline and amorphous 

phases. In past decades, the mechanism of the rapid crystallization of GST glass (i.e., 

the “SET” process) has been intensively studied, because the crystallization rate 

determines the writing speed of the data storage.13-16 However, the “RESET” process 

(i.e., glass forming from the melt), which determines the power-consumption of the 

memory devices, appears to be less focused on.  

The GST presents three structures under ambient conditions, namely, the stable 

hexagonal phase,17-19 the metastable rocksalt structure20, 21 and the amorphous state.13, 

19, 20
 The GST glass is amorphized from the liquid state which has high similarity, yet 

with salient difference, to the amorphous structure, as advocated by Kolobov.22 

Through simulations and experiments, Schumacher et al. noticed that the viscosity of 

liquid GST exhibits Arrhenius behavior in the equilibrium as well as in the weakly 

supercooled liquid state.23 As for the amorphous structure of GST, recent studies 

revealed that the local environment of Ge and Sb is usually distorted octahedrons in 

the first coordination shell with ABAB alternating rings (A: Ge, Sb; B: Te),24-26
 and a 
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global valence alternation was applied to explain such bonds in amorphous GST.27 A 

further study discovered the coexistence of tetrahedral- and octahedral motifs in 

amorphous phase change materials, e.g., one third of Ge atoms are in the tetrahedral 

environment while the other atoms show a defective octahedral environment.28 In 

addition, using an analytical methods based on electron charge density, the 

chemical-bonding network and lone pair electrons (i.e., a pair of unbonded electrons) 

have also been investigated to explore the structural order of amorphous GST.29 

Although these reports provide helpful information about the liquid and amorphous 

GST, the studies on the melt-quenching evolution of local structures are still 

insufficient.     

 In order to gain more details about the structures of liquid and amorphous GST, in 

this paper, we performed ab initio molecular dynamics simulations and analyzed the 

evolution of short- and medium-range order using an atomistic cluster alignment 

(ACA) method.30 We show the changes of cluster structures and quantitatively 

determine the fraction of octahedron and tetrahedron in GST during the fast cooling 

process. Furthermore, we find that tetrahedrons present an aggregation behavior in 

liquid and supercooled states but are randomly distributed in amorphous state, 

whereas the octahedrons show an aggregation phenomenon only in amorphous state. 

Finally, ABAB and irreducible rings are also studied under amorphization process. 

Our results contribute to a better understanding of the glass-forming ability of GST 

and have implications on the design of low-power-consumption PCMs.   

  

Methods  

The ab initio molecular dynamics (AIMD) simulations have been performed using 

the Vienna ab initio simulation package (VASP) program based on the density 

functional theory,31, 32 with the projector-augmented wave method33, 34 and the 

Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) for the 

exchange-correlation energy functional.35
 The initial simulation cell was a cubic 

supercell consisting of 42 Ge, 42 Sb and 105 Te atoms. Only Γ point was sampled 
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in the Brillouin zone in the AIMD simulations. The simulations were carried out at a 

canonical ensemble (i.e., constant number of particle, constant volume, and constant 

temperature (NVT) ensemble) with the periodic boundary conditions. The 

temperature was controlled by the Nose-Hoover thermostat.36, 37 At the beginning of 

the simulation, the system was heated to 2000 K and relaxed for 30 ps in order to 

remove the memory effect from the initial configuration. Then, the temperature of 

GST was cooled down to 300 K quickly with a constant cooling rate of 0.1 K/step. 

The time step was set to 3 fs. Then the configurations at the temperatures of 1273, 

1073, 900, 773, 623, 473 and 300 K respectively were sampled to investigate the 

structural properties of GST. Each sample was relaxed for 6000 MD steps at the 

sampled temperature to bring the system to equilibrium, and the size of simulation 

cell was adjusted to ensure that the internal pressure of the system was close to zero. 

6000 trajectories at each sample temperature were utilized to study the structural 

changes in GST from liquid to amorphous state.  

In this work, the ACA method,30 which is an effective and convenient tool to 

investigate the short- and medium-range arrangements in liquids and glasses,38-42 was 

applied to explore the structural orders of GST in different states. The short-range 

order (SRO) characters are classified by two types of alignment schemes. (1) The 

collective alignment is the first type of ACA method, e.g., a lot of clusters (center 

atom and its neighboring atoms) composed of the same number of atoms are selected 

randomly from the system, then center atoms of all the selected clusters are put in a 

same position and they are rigidly rotated to minimize the overall mean-square 

distances between different clusters. Finally, the average short-range structure is 

obtained with a proper isosurface value. (2) Individual cluster-template alignment is 

utilized to further classify the system into various types of short-range structures 

according to the similarity between selected cluster and given templates. In a typical 

run of individual cluster-template alignment, the template is fixed, and the selected 

single cluster is randomly rotated to minimize the mean-square distance between 

template and selected cluster. A direct parameter called “structure fitting score f” is 

straightforward to describe the structural similarity, 
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where	∆��,�
�  is the distance between atom C in cluster and atom T in template. ∆��

� is 

the minimal square distance between atom T in the template and all	�C atoms in the 

cluster. Structure fitting score f characterizes the difference between the template 

(usually an undistorted octahedron or tetrahedron for GST) and the real clusters, e.g., 

f=0 indicates that the selected cluster has exactly the same structure to the template, 

and a larger f means the selected cluster has more deviation from the template. For 

each template, by summarizing all the clusters with the structure fitting score f less 

than a “cutoff”, we can calculate how many clusters that resemble the template 

structure. The selection of the f cutoff may has some impact on the final results, e.g., 

larger cutoff will include more cluters with larger distortion. In our ACA analysis, we 

choose f = 0.2 as the cutoff so that most of relevant clusters, even with moderate 

distortions, are counted in. Detail procedures of both alignments can be found in Ref 

30.  

 

Results and Discussion 

Figure 1(a) plots the structure factors of GST at 300 K obtained from our 

simulation which are in good agreement with x-ray diffraction data.43-45 Figure 1(b) 

plots the total pair correlation function (PCF) of GST at different temperatures. The 

first peak of the PCF at 1273 K locates at the vicinity of 2.87 Å. As the temperature 

decreases to 300 K gradually, the first peak shifts slightly to the left but its amplitude 

increases remarkably, indicating that the local structure becomes more well-defined. 

Similar to previous studies,23, 25, 46-48 the second and third peaks are observed below 

900 K (melting point)23 and they become more prominent with the decreasing 
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temperature, demonstrating that there are strong short- and medium-range49 orders 

(MRO) in amorphous GST. Figure 1(c) shows the coordination numbers (CNs) of 

different type of atoms in GST with a cutoff distance of 3.2 Å. With the decreasing 

temperature, total CNs of Ge, Sb and Te atoms slightly increase to 3.88, 3.36 and 2.64 

at 300 K, respectively, probably because that the liquid has low Peierls distortion and 

a uniform distance cutoff has excluded more atoms in liquid.50 These values, closing 

to the previous report,48 follow the “8 – N rule”.51-53 By analyzing the partial CNs, it 

is found that Ge and Sb atoms tend to connect with Te atoms, indicating an ABAB 

arrangement17, 18 in the amorphous GST. Figure 1(d) shows the bond-angle 

distributions (BAD) of GST during the quenching process with a cutoff distance of 

3.2 Å. In agreement with the previous studies,24, 25, 27, 28, 45, 48, 54 the notable peaks of 

BADs for Ge, Sb and Te atoms locate at the vicinity of 90°, reminding us of the 

octahedral structures. As the temperature decreases, the peaks become stronger, 

indicating an increase in local octahedral order. The small peaks at the vicinity of 170° 

of BAD for Ge and Sb atoms reveal the distorted octahedral-like structure. As for the 

small shoulder at the vicinity of 60° of BAD, it suggests a triangular configuration25 

which tends to disappear eventually with the decreasing temperature.  

  To explore the short-range structure of GST, the ACA method,30 which is utilized to 

explore the average structure in liquids and glasses by describing the local atomic 

packing, is applied. Collective alignment is the first part of the ACA method, here 

3000 clusters, each consists of one center atom and six nearest atoms, are randomly 

selected from the simulation trajectories and are aligned with each other to minimize 

the overall mean-square distances between different clusters by rigid rotation and 

relative translation. By classifying the clusters according to the chemical constituent 

of the center atom in cluster, the common structural motifs describing the local 

environment of a given chemical constituent are obtained. For example, the common 

structures centered Ge, Sb and Te atoms at 1273, 773 and 300 K are shown in Figure 

2, respectively. At 1273 K, all Ge-, Sb- and Te-centered clusters are in the disordered 

configurations, suggesting that there are no uniform SROs in the nearest-neighbor 

shells for liquid GST. In the supercooled liquid at 773 K, both the atomic-density 
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contours of Ge- and Sb-centered clusters present the octahedral patterns, indicating 

that Ge- and Sb-centered clusters begin to form octahedral configurations, but that of 

Te-centered cluster still presents a disorder state, illustrating Te atoms are more fragile 

when they connect with neighboring atoms and form local structure. When the 

temperature decreases to 300 K, the contours of Ge- and Sb-centered clusters become 

larger, demonstrating that more octahedral configurations have formed. Eventually, 

the contour of Te-centered cluster changes to an octahedral structure as well. We note 

that although all of the clusters tend to adopt the octahedral configurations at 300 K, 

the size and shape of atomic-density contour after alignment is different in different 

centered clusters, suggesting that there are some defects in the clusters such as 

vacancies and distortions.   

Template alignment is the other part of ACA method, which can quantitatively 

determine the proportions of the SROs by comparing the similarity between template 

structure and selected clusters.30 In previous studies,22, 28 it is demonstrated that 

amorphous GST is composed of tetrahedral- and octahedral-like motifs, and 

amorphous and liquid GST have a similar SRO. In collective alignment part, we 

realize that the existence of vacancies may lead to defective octahedral-like SRO. 

Therefore, in our work, we build five templates (i.e., tetrahedron and 3-fold, 4-fold, 

5-fold and 6-fold octahedrons) to explore the changes of tetrahedral- and 

octahedral-like SROs in the cooling process. In most of the previous studies in 

literatures,25, 27, 48 bonding atoms (usually within a fixed cutoff distance) are mainly 

focused on exploring the SRO of GST. The clusters used in ACA analysis can reach 

neighbors beyond first neighboring shell so that it can better detect the changes of 

SRO or even MRO. Therefore, template alignment is an effective tool to explore the 

changes of short-range structures in GST during the cooling process. 

Different from the analysis method with a fixed cutoff distance (as shown in 

Figures 1(c) and (d)), ACA method can study the local structure in a larger scale, so it 

provides us a new perspective on the SROs. Figure 3(a) displays the five templates 

(tetrahedron, 3-, 4- and 5-fold defective octahedrons and 6-fold octahedron) used to 

identify the types of SROs. Figures 3(b)-(e) show the fractions of total, Ge-, Sb- and 
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Te-centered SROs at different temperatures. Changes in the fractions of SROs are 

relative small from 1273 K to 900 K and 623 K to 300 K whereas they become 

notable from 900 K to 623 K, indicating that the structural changes primarily take 

place in this temperature range. In Figure 3(b), GST consists of mainly 3-, 4- and 

5-fold defective octahedrons and tetrahedrons at 1273 K, with the fractions of 27.6%, 

49.5%, 12.2% and 7.3%, respectively, indicating that defective octahedrons are the 

major theme in liquid GST and these octahedral motifs are mainly low-coordinated 

such as 3- and 4-fold ones. As the temperature decreases from 1273 K to 300 K, the 

fractions of 3- and 4-fold defective octahedrons are decreased to 13.1% and 39.7%, 

whereas the fractions of 5- and 6-fold octahedrons are increased to 25.1% and 13.0%, 

respectively, showing that the low-coordinated (3- and 4-fold) octahedrons present a 

tendency to become to the high-coordinated (5- and 6-fold) ones. As for tetrahedrons, 

the fraction reaches 8.4% at 300 K. In the whole cooling process, the fraction of total 

octahedral structures (sum of 3-, 4-, 5- and 6-fold octahedrons) remains ~90.5% and 

that of tetrahedrons stays around 8.0%, revealing that both liquid and amorphous GST 

are mainly composed of octahedral structures with only a small fraction of tetrahedron. 

Local structures other than octahedrons and tetrahedrons also exist, but they make up 

less than 2%. 

  The fractions of Ge-centered SROs with temperatures are shown in Figure 3(c). In 

the cooling process from 1273 K to 300 K, the fraction of 3-fold octahedron 

disappears gradually and that of 4-fold octahedron is decreased from 49.4% to 16.4%, 

while that of 5-fold octahedron is increased from 14.8% to 31.1% and that of 6-fold 

octahedron is increased to 26%. As a whole, the fraction of total Ge-centered 

octahedrons is decreased from 82.5% to 74.1%. As for the tetrahedrons, the fraction is 

increased from 16.7% to 25.9%, which is close to the value (27%) reported by 

Caravati45 but a little smaller than his previous report with a value of 33%.28 Then it is 

inferred that some Ge-centered octahedral clusters transform to Ge-centered 

tetrahedrons during the amorphization process.  

  Figure 3(d) shows the fractions of Sb-centered SROs at different temperatures. As 

the temperature decreases from 1273 K to 300 K, only the fraction of tetrahedron 
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presents a decreasing tendency in contrast to the increasing trend presented in 

Ge-centered SROs, the evolution trends of other four Sb-centered SROs show the 

similar tendencies to those of Ge-centered SROs. 3-fold octahedrons disappear 

gradually, the fraction of 4-fold octahedron is decreased from 52.7% to 27.3% with an 

abruptly decrease between 773 K and 623 K, while that of 5-fold octahedron is 

increased from 17.1% to 38.7% and that of 6-fold octahedron is increased to 28.9% 

with a notable increase between 773 K and 623 K, demonstrating that many 4-fold 

octahedrons change to 5- and 6-fold octahedrons in this stage. As for tetrahedrons, the 

fraction is decreased from 7.4% to zero, indicating that there is no Sb-centered 

tetrahedron in amorphous GST, in line with the previous study.28 At the same time, the 

fraction of total Sb-centered octahedrons is increased from 92.1% to 97.5%, 

illustrating that Sb-centered tetrahedrons change to octahedral structures in the fast 

cooling process.  

  The fractions of Te-centered SROs from 1273 K to 300 K are shown in Figure 3(e). 

Only the fractions of 3- and 5-fold octahedrons present a similar evolution 

phenomenon to those of Ge- and Sb-centered configurations, the fraction of 3-fold 

octahedron is decreased from 35% to 22.2% while that of 5-fold octahedron is 

increased from 9.1% to 17.2%. Contrary to the trend in Ge- and Sb-centered SROs, 

the fraction of 4-fold octahedron is increased from 48.2% to 53.9%. As for 

tetrahedron and 6-fold octahedron, both of the fractions are close to zero in the 

cooling process. The fraction of total Te-centered octahedrons is of ~93% during the 

whole cooling process, indicating that 3-fold octahedral structures change to 4- and 

5-fold octahedral structures with the decreasing temperature.  

  By comparing the evolution of Ge-, Sb- and Te-centered SROs shown in Figures 

3(c), (d) and (e) in the fast cooling process, we find that 3- and 4-fold octahedrons in 

Ge- and Sb-centered clusters change to 5- and 6-fold octahedrons, and 3-fold 

octahedrons in Te-centered clusters change to 4- and 5-fold octahedrons. It is revealed 

that the low-coordinated octahedrons present a trend to change to high-coordinated 

octahedrons under the amorphization process. Additionally, total Ge-centered 

octahedrons decrease due to formation of tetrahedron, total Sb-centered octahedrons 
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increase due to disappearance of tetrahedron, while total Te-centered octahedrons 

maintain a stable proportion. The most notable feature is that substantial Ge-centered 

octahedral sites transform to Ge-centered tetrahedrons while Sb-centered tetrahedrons 

change to Sb-centered octahedral-like structures during the amorphization process. 

  Figure 4 displays the spatial distribution of tetrahedrons and 6-fold octahedrons (i.e., 

intact octahedrons without vacancies) obtained from ACA method at different 

temperatures. At 1273 K, most Ge-centered tetrahedrons consist of one center Ge 

atom and four neighboring Te atoms, presenting sp3 hybridization. There is a large 

probability that Te atoms are replaced by Ge and Sb atoms, forming the so called 

“wrong bonds” (Ge-Ge, Sb-Sb, Ge-Sb and Te-Te bonds).51, 55, 56 Interestingly, a few 

Sb-centered clusters also present the tetrahedral-like structure, in which the center Sb 

atoms tend to bond to Ge or Sb atoms, in line with the model proposed by Lee 

recently.29 At 773 K, apart from Ge- and Sb-centered tetrahedrons, Ge- and 

Sb-centered 6-fold octahedrons are also obtained, they tend to bond to Te atoms with 

few wrong bonds. At 300 K, Sb-centered tetrahedrons disappear and only a few 

Ge-centered tetrahedrons survive, very similar to the results from previous study.28 

This is because the Ge-Te bonds with sp3 hybridization is relative stable. In 6-fold 

octahedral structures, wrong bonds still exist, and apparently they play an important 

role in SRO and MRO in GST.   

  As the Peierls-like distortion (PLD) is one of the major structural features in phase 

change materials,57-59 we also study it in the 6-fold octahedrons with different cutoff 

values of structure fitting scores, as shown in Figure 5. Here the PLD factor is 

obtained by averaging the differences of long- and short-bonds in the diagonal lines of 

each octahedron (e.g. a PLD factor of 0.5 Å means that the 6-fold octahedron is 

distorted to the extent that the “long bonds” are averagely longer than the collinear 

“short bonds” by 0.5 Å), and then the average PLD factor is used to characterize the 

distortion of each 6-fold octahedral cluster. Larger PLD factor indicates more severe 

distortion of central atoms in the clusters. As the cutoff value of structure fitting score 

increases, more 6-fold octahedral clusters are counted, and these newly included 

clusters resemble less to the perfect octahedral template. Interestingly, both the 
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distortion factors of Ge- and Sb-centered 6-fold octahedral structures concentrate at 

the vicinity of 0.45 Å, in line with the previous reports.57, 58 This indicates that even 

though the shape of octahedral clusters may vary (characterized by different structure 

fitting scores), the intrinsic PLD remains at the same level and thus they may equally 

contribute to a similar band gap. Therefore, the PLD factor derived from ACA method 

can effectively reflect the distortion of local structure in amorphous GST and its 

electronic structure.   

  Traditionally, a fixed distance cutoff is used to determine the chemical environment 

for each atom. Very differently, the ACA method innovatively uses some standard 

templates to match with the clusters in atomic models. The selected clusters are 

allowed to bear some differences from the templates by setting a threshold of the 

structure fitting score. The selection of this threshold cutoff is very important, yet 

quite artificial. Despite of this drawback, ACA method is still an effective and 

innovative tool to analyze the structure of materials, particularly the liquid and 

amorphous systems. 

  To explore the evolution of medium-range order in GST upon quenching, Figures 

6(a)-(c) show the connectivity of the center atoms of tetrahedrons and 6-fold 

octahedrons, with a cutoff distance of 5.2 Å which is at the vicinity of second valley 

of total pair correlation function. Figures 6(d)-(f) present the relationship of clusters 

corresponding to Figures 6(a)-(c), respectively. At 1273 K, there is no 6-fold 

octahedron, only tetrahedral clusters are observed in the simulation cell and most of 

them connect with each other to form a longer chain, indicating an obvious 

aggregation phenomenon, as seen in Figure 6(a). The tetrahedrons are connected by 

two ways: sharing a vertex or an edge (two vertices), and a larger MRO structure is 

formed by random combination of these two connecting ways, as shown in Figure 

6(d). At 773 K, although the positions of tetrahedrons are different from the case at 

1273 K, the clusters are still aggregated, and a few of 6-fold octahedrons are formed 

around the tetrahedral clusters, as seen in Figure 6(b). Among the MRO structures, 

tetrahedrons are connected by sharing a vertex, center atom or an edge, octahedrons 

are connected by sharing a vertex or an edge, and tetrahedrons and octahedrons are 
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connected by sharing central atom, a vertex or an edge, as shown in Figure 6(e). 

When the temperature decreases to 300 K, many more 6-fold octahedrons emerge and 

their size is still growing. The left-over tetrahedrons tend to connect with the larger 

clusters in a random distribution, as displayed in Figure 6(c). Further analysis of the 

relationship of tetrahedrons and 6-fold octahedrons at 300 K demonstrates: (1) 

tetrahedrons connect with each other only by vertices, (2) octahedrons connect with 

other octahedrons by sharing a vertex, an edge or a surface (three vertices), and (3) 

tetrahedrons connect with octahedrons by sharing a vertex, an edge or center atom, as 

shown in Figure 6(f). Same to the previous simulations,25, 28, 45 the element 

aggregation is not observed, it is probably due to the limitation of supercell and 

simulation time. To summarize, we observe a large aggregation of tetrahedrons in the 

high temperature liquid (1273 K) and supercooled liquid (773 K) by sharing the 

vertex, edge or center atom, but these tetrahedrons are sparsely distributed in the 

amorphous state. In contrast, the number of 6-fold octahedrons grows fast upon 

cooling and they tend to connect with each other to complete the nucleation process.     

To further explore the MRO structure in GST upon quenching, ring statistics are 

analyzed using a cutoff distance of 3.2 Å. Figure 7(a) shows the evolution of ABAB 

ring with temperature, where 4- and 6-membered rings are found to be dominated, 

suggesting that heteropolar bonds tend to form the specific short-range structure, 

similar to the previous report.25 To investigate the effect of wrong bonds on the MRO 

in the disorder GST, irreducible rings at 1273 K, 773 K and 300 K are also studied 

using the ring statistics analysis code,60 as the results are shown in Figures 7(b), (c) 

and (d), respectively. It can be seen that rings vary from 3-membered ring to 

20-membered ring regardless of temperature, indicating the existence of short- and 

medium-range orders. Compare the irreducible rings to ABAB rings, apart from the 

short rings, many large rings (such as 9- to 20-membered rings) are also observed, 

suggesting that homopolar bonds play an inevitable role in MRO. At 1273 K, rings 

from 3-membered to 5-membered are in a large weight while the fractions of rings 

from 6- to 20-membered are relative small, as seen in Figure 7(b). When the 

temperature decreases to 773 K, the number of 3-membered rings decreases while that 
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of 6-membered rings increases notably. At this temperature, the fractions of 4-, 5- and 

6-membered rings are the largest ones while that of 7- to 20-membered rings are very 

small, as shown in Figure 7(c). As the temperature decreases to 300 K, 3-membered 

rings almost disappear, while 4- to 6-membered rings possess an even larger weight. 

More interestingly, there is a small spike for the 15- to 17-membered rings, as shown 

in Figure 7(d). A similar phenomenon is also observed in a previous literature,61 and 

this is probably due to the presence of nanocavities.24, 62 Hence, the irreducible rings 

present two opposite trends under amorphization process, i.e., to become smaller rings 

or to change into larger ones. Additionally, it is noticed that 5-membered rings always 

have a large weight in the cooling process, indicating that wrong bonds also play an 

importance role in SROs.25, 63  

  Mean square displacement (MSD) is usually utilized to characterize atomic 

mobility. The MSD as a function of time is defined as follows: 

( ) 22
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where Nα is the number of α atoms, Riα are the coordinates of atom i, and τ is the 

arbitrary origin of time. The MSD of total, Ge, Sb and Te atoms at different 

temperatures are shown in Figure 8, and all of them exhibit a nearly linear behavior in 

the liquid and supercooled liquid states. As the temperature decreases, the slope of 

MSD decreases, indicating that atomic mobility is reduced in cooling process. By 

comparing the MSD of Ge, Sb and Te atoms, we find that Ge atom moves fastest in 

liquid (above 900 K) and supercooled liquid (from 623 K to 900 K) GST, and Sb is 

the slowest in liquid whereas Te becomes the slowest in supercooled liquid. The 

diffusion coefficients are computed by the Einstein formula as follows: 

( )21
lim

6 t
D R t

t
α→∞

∂
=

∂
                            (4) 

Furthermore, diffusion coefficients also follow the Arrhenius equation:   

0 exp
B

E
D D

k T

α 
= − 

 
                             (5) 

where D0 is denoted as the pre-exponential factor, Eα is the activation energy, and kB is 
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the Boltzmann constant. The relation between lnD and 1/T is shown in Figure 9. lnD 

decreases with 1/T, implying that calculated diffusion coefficient decreases with the 

decreasing temperature. Using the linear fitting, we obtain the pre-exponential factors 

and activation energies of liquid GST, respectively. The calculated pre-exponential 

factor and activation energy are 1.42×10-7 m2/s and 0.33 eV between 1273 K and 523 

K, respectively. As the temperature decreases continuously, the calculated 

pre-exponential factor and activation energy become 0.009×10-7 m2/s and 0.08 eV, 

respectively, indicating the liquid turns into glass eventually. 

 

Conclusions 

  In conclusion, by using first-principles calculations with the ACA analysis method, 

we have investigated changes of short- and medium-range structures in phase change 

material GST upon rapid cooling. Different from previous studies, the clusters 

selected for ACA analysis go beyond the first neighboring shell atoms, so that the 

SRO in GST can be better characterized. As the temperature decreases, we find that 

the low-coordinated octahedrons tend to become the high-coordinated ones upon 

cooling. It is also found that Ge-centered octahedral structures change to tetrahedron 

while Sb-centered tetrahedrons transfer to octahedral structures in the formation 

process of amorphous GST, and Ge-centered tetrahedrons in amorphous GST possess 

a fraction of 25.9% in Ge-centered configurations. Furthermore, we find that 

tetrahedrons show an aggregation in liquid and supercooled liquid but exhibit a 

random distribution in amorphous. By contrast, 6-fold octahedrons show a random 

distribution in supercooled liquid but an obvious aggregation in amorphous state. 

Specifically, tetrahedrons connect with each other directly in many ways to form a 

larger cluster in both liquid and supercooled liquid. While in the amorphous state, 

6-fold octahedrons are connected with each other and also connected with 

tetrahedrons. Finally, the ABAB and irreducible rings are investigated in the fast 

cooling process, we realize that wrong bonds can promote the formation of large rings, 

and irreducible rings tend to decomposed into both smaller and larger rings as the 
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temperature is decreased. Our study can promote the knowledge of the formation 

process and structure of amorphous GST, and the analysis method can be applied to 

more phase change materials.   
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Figure 1. (a) The experimental and calculated structure factors at 300 K. (b) Total PCFs, (c) 

CNs and (d) BADs of GST when it is quenched from liquid to glass.  
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Figure 2. Atomic-density contour plot of GST from the cluster alignment method at selected three 

temperatures of 1273, 773 and 300 K, respectively, with the iso-surface value of 0.25 Å-3. Cyan, 

yellow and green contour plots represent the SROs of Ge-, Sb- and Te-centered clusters. 
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Figure 3. (a) Five templates: tetrahedron, 3-, 4- and 5-fold octahedrons (defective octahedrons) 

and 6-fold octahedron. (b) - (e) the fractions of the five templates at different temperatures.   
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Figure 4. Distributions of tetrahedron and 6-fold octahedron centered Ge and Sb atoms at 

different temperatures. Blue, green and orange spheres denote Ge, Sb and Te atoms.  
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Figure 5. The distribution of Ge- and Sb-centered 6-fold octahedrons at different PLD factors 

when we choose different cutoff values of structure fitting scores at 300 K.

Page 22 of 27Journal of Materials Chemistry C



6 

 

 

Figure 6. Distribution and connectivity of tetrahedrons and 6-fold octahedrons. Only the central 

atom of each cluster is depicted. Dark and red spheres denote the center atoms forming 

tetrahedrons and 6-fold octahedrons at (a) 1273 K, (b) 773 K and (c) 300 K, respectively. (d), (e) 

and (f) correspond to (a), (b) and (c), presenting the connectivity of clusters. A square, a dashed 

line and a triangle represent that clusters connect by sharing one, two and three vertices, 

respectively. Ellipse represents the central atoms of two clusters connect with each other. Solid red 

line denotes clusters connect by the bonding of vertices.  
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Figure 7. (a) Distributions of ABAB rings at different temperatures. Distributions of irreducible 

rings in GST at (b) 1273 K, (c) 773 K and (d) 300 K. 
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Figure 8. The MSD of GST at different temperatures. 
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Figure 9. The diffusion coefficient D of GST at different temperatures 
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Graphical and textual abstract 

 

 
Five structures (tetrahedron and 3-, 4-, 5- and 6-fold octahedrons) are shown in the upper panels of 

the figure. Figures in the lower panels show the fractions of the five structures in Ge- and 

Sb-centered clusters with temperature. 
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