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Abstract

The ability to reproduce the experimental structure of water around the sodium

and potassium ions is a key test of the quality of interaction potentials due to the

central importance of these ions in a wide range of important phenomena. Here, we

simulate the Na+ and K+ ions in bulk water using three density functional theory func-

tionals: 1) The generalized gradient approximation (GGA) based dispersion corrected

revised Perdew, Burke, and Ernzerhof functional (revPBE-D3) 2) The recently devel-

oped strongly constrained and appropriately normed (SCAN) functional 3) The random

phase approximation (RPA) functional for potassium. We compare with experimental

X-ray diffraction (XRD) and X-ray absorption fine structure (EXAFS) measurements

to demonstrate that SCAN accurately reproduces key structural details of the hydra-

tion structure around the sodium and potassium cations, whereas revPBE-D3 fails

to do so. However, we show that SCAN provides a worse description of pure water

in comparison with revPBE-D3. RPA also shows an improvement for K+, but slow

convergence prevents rigorous comparison. Finally, we analyse cluster energetics to

show SCAN and RPA have smaller fluctuations of the mean error of ion-water cluster

binding energies compared with revPBE-D3.

Introduction

The sodium and potassium ions play a central role in a large range of important industrial

and biological processes. For example, the sodium and potassium ions are considered to

be promising candidates to replace lithium ions in the next generation of energy storage

devices.1–5 Additionally, the flow of potassium and sodium ions through cell membranes is

used to control important biological processes.6 In both of these systems, an important step

is the partial desolvation of the ion as it passes through a small channel. For example,

the ions must desolvate to intercalate into electrode materials or to pass through the ion

pump in the cell membrane. This desolvation can determine the rates and mechanisms
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of these processes. A recent demonstration of this point is provided by Peng et al. 7 who

demonstrate that interfacial sodium ion diffusion is highly sensitive to the hydration number.

It is therefore very important to build an accurate and detailed understanding of the structure

of solvent around these ions.

Many attempts have been made to simulate the properties of these ions in water.8–21

Classical forcefield molecular dynamics can reproduce a variety structural properties such

as the peak position in the radial distribution function (RDF) but the parameters for the

Lennard-Jones and polarisability interactions have to be explicitly adjusted to do so. These

models have limited predictive power as new parameters are usually needed to model the ion

in different environments such as inside an electrode material. A promising approach is to

build force fields based on exhaustive fitting to reproduce cluster energies.22–24 However, this

approach requires extensive human and computational time to develop the new potentials.

Hybrid quantum mechanical/molecular mechanics (QM/MM) is an alternative approach14,21

to the problem. However, it is unclear how large the QM region needs to be to accurately

capture the full solvent structure. Moreover, significant challenges arise associated with the

treatment of the interface between the classical and quantum regions.

A promising and increasingly widely used approach is to use molecular dynamics simu-

lations with a full quantum mechanical density functional theory treatment of the system.25

The dispersion corrected generalized gradient approximation (GGA) functionals are by far

the most widely used in the context of condensed phase simulation due to their low compu-

tational demand. Of these functionals the revised Perdew, Burke, and Ernzerhof functional

with Grimme dispersion correction (revPBE-D3)26–28 has been demonstrated to reasonably

accurately reproduce the structure of bulk water.29 However, the predictions of this approach

often depends sensitively on the specific functional chosen and can therefore fail to reproduce

experimental measurements quantitatively. For example, Galib et al. 20,30 demonstrated that

standard GGA functionals cannot reproduce the experimentally determined water structure

around the sodium cation as determined by x-ray diffraction (XRD) and X-ray absorption
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fine structure measurements (EXAFS). In the case of monovalent ions in solution, the details

of the aqueous response to an ion can be shown to be a necessary component to predicting

the single-ion free energies.31–34

Obviously, all density functional theory (DFT) functionals involve significant approxima-

tions and therefore no one functional can be expected to work perfectly for all applications.

However, it is important to identify which functionals perform best for a given property of in-

terest. Where the accuracy is determined to be sufficient we can gain useful physicochemical

insight. The focus of this study is to move toward an understanding of what representations

of interaction are necessary to obtain quantitative agreement with measurements probing

local solvation structure. We will demonstrate that monovalent cations can be simulated at

significantly higher accuracy using higher rungs of the so-called “Jacobs Ladder” of DFT

functionals.35

Interestingly, for the cations considered in this study, no significant change in agreement

between simulation and experiment occurs when moving from the GGA functional PBE to

the hybrid functional PBE0,17 indicating that hybrid functionals are unlikely to contain the

correct physics to describe ion solvation. The strongly constrained and appropriately normed

(SCAN) meta-GGA functional has recently been developed in hope of obtaining chemical

accuracy for complex condensed phase systems. Taking this single step up the Jacobs Ladder

has the advantage that the computational costs are not too much higher than for standard

GGA functionals. SCAN has been developed to satisfy 17 known constraints that a general

exchange-correlation functional should satisfy. It can accurately reproduce binding energies

and structures of a variety of molecules without empirical dispersion corrections.36,37 This

functional has also recently been applied to calculate the potential of mean force of the NaCl

dimer in water.38

Additionally, the random phase approximation (RPA) to electron correlation has recently

been implemented in CP2K39 for condensed phase calculations.40,41 This level of theory

represents the highest (fifth) rung of the Jacobs ladder and provides an accurate description
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of bulk liquid water.41 The RPA method comes with additional computational costs over

standard functionals due to the explicit treatment of electron correlation and the requirement

of larger basis sets. This study will provide an important step forward towards quantitatively

determining whether more sophisticated treatments of electron correlation can overcome the

limitations of the GGA based description of ion solvation.

Structural analysis

Pure water structure

One difference between this study and the studies of Chen et al. 42 and Zheng et al. 43 is the

present work performs simulations at 300 K rather than 330K. In addition, newly optimized

pseudo potentials for the oxygen atom are used. We use the standard PBE pseudo potentials

for hydrogen.44 Chen et al. 42 also use the isothermal-isobaric ensemble (constant NpT) in

contrast with the canonical (NVT) ensemble used here and by Zheng et al..43

The resulting oxygen-oxygen RDFs are shown in Figure 1 for both revPBE-D3 and SCAN

and compared with experimental XRD data.45 As has been reported before it is clear that

the revPBE-D3 RDF is closer to experiment.29,46 This is partially the result of a small can-

cellation of errors associated with the neglect of nuclear quantum effects and errors in the

revPBE-D3 functional.46 The structure is significantly more enhanced for the SCAN func-

tional compared with experiment. It resembles47 the structure produced with the GGA

functional of Becke48 and Lee, Yang and Parr49 (BLYP) with the Grimme dispersion correc-

tion (D2).50 The origin of the discrepancy in comparison with previous SCAN studies42,43

is likely due to the 30 K higher temperature used in these studies. This higher temperature

was used to account for the effect of nuclear quantum effects. The effects associated with

quantum nuclear effects on the oxygen-oxygen RDF for water have been shown to be quite

small for high quality interaction potentials.51–53 The slightly over-structured behaviour of

SCAN observed here is consistent with the work of Wiktor et al. 54 and Yao and Kanai 38,55

who also simulated at 300 K. Yao and Kanai 38,55 also used both CP2K56 and CPMD57 demon-
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strating good agreement between the two basis set approaches, namely gaussian functions

and plane-waves. Simulation of 20 ps utilizing SCAN water in a slab configuration at 300 K

using the protocol discussed herein is consistent with the density of 1.05 g/cm3 calculated

by Chen et al. 42 and Wiktor et al..54 This density is larger than the experimental density

(0.997 g/cm3). These results suggest some caution is appropriate in the use of SCAN to

describe pure water.
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Figure 1: Oxygen-oxygen RDFs with the revPBE-D3 and SCAN functionals compared with
experimental XRD data.45
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Figure 2: RDFs of solvated sodium and potassium ions in water with the revPBE-D3 and
SCAN functionals demonstrating that the SCAN functional reproduces the experimentally
observed peak position (Na+, K+) and peak shape (Na+) much more accurately.
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Table 1: RDF peak positions for different DFT functionals compared with ex-
periment demonstrating that the SCAN functional provides closer agreement to
that measured by X-ray diffraction and EXAFS.20,58 Units are in Å, error are ±

0.05 Å for theoretical values and ± 0.02 Å for experimental the values.

revPBE-D3 RPA SCAN Experiment
Na+ 2.51 - 2.36 2.38
K+ 2.98 2.86 2.78 2.76

Cation hydration structure

Figure 2 depicts the RDF for the sodium and potassium ions utilizing both revPBE-D3 and

SCAN functionals. Significant differences are apparent. For Na+ we compared with the

rescaled Na+-O peak extracted from XRD of NaCl at 6M20 and for K+ we compare with the

experimentally determined peak position.58–60

As shown in Table 1, the experimental cation-oxygen peak position is reproduced much

more accurately with the SCAN functional than with the GGA functional. The inability

to reproduce this peak position has been problematic with other GGA functionals such as

BLYP-D2.20 To the best of our knowledge, this is the first demonstration that the SCAN

functional significantly outperforms standard GGA functionals in reproducing bulk struc-

tural properties of ions in the condensed phase. As previously stated, earlier research has

argued that SCAN can accurately reproduce bulk water structure42,43 but this appears to

require unphysically elevating the temperature by + 30 K. Similarly, the Na-Cl potential

of mean force (PMF) in water has been computed with SCAN.38 SCAN doesn’t appear to

reproduce the NaCl dimer binding energy in vacuum as accurately as the wB97X-V func-

tional.38 However, relatively small differences are observed when SCAN is compared to other

traditional DFT functionals and there are no direct comparisons of the outcomes of the PMF

with experimental results to demonstrate any improvement. Although, we have previously

demonstrated that the PMF calculated with the BLYP-D2 functional leads to reasonably

good agreement with experimental osmotic/activity coefficients.61

Different functionals may describe anion-water and cation-water interactions with signif-
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icantly different accuracy.24 GGAs appear to already adequately reproduce the structure of

halide ions such as iodide.62 But the accuracy of SCAN when applied to anions should be

tested in future work.

One possibility is that there is a substantial cancellation of errors for example between

cation-water and water-water interactions leading to the good agreement with hydration

structure. We consider this to be unlikely as we demonstrate below using a new measure

of the accuracy of the ion-water interactions that SCAN accurately reproduces ion-water

interactions with the errors being below kBT . However, given the larger error for the pure

water structure, this remains a possible issue with the SCAN functional.

Previous studies have determined that the solvation structure of the potassium ion is

one of the most challenging cases to reproduce using GGA functionals.16 To explore this

problem we have also simulated the potassium ion treating electron correlation at the level

of the RPA employing PBE orbitals as input.40,41 Due to the significant computational costs

of this functional we have not yet attempted the simulation of the sodium ion with this

method. Figure 2 suggests that the RPA functional performs substantially better than the

GGA in comparison with the experimental peak position. The K–O distance is somewhat

larger than the experimental value, although this may be due to a limited trajectory size.

Nevertheless, given that we used the converged GGA simulation to generate the initial

conditions it is clear that the RPA is producing much better results more in line with EXAFS

experiment. Interestingly the RPA is also more structured than both the GGA or the meta-

GGA. Given the excellent agreement of RPA results for water under bulk homogeneous

conditions,63 overall the performance of the RPA is satisfactory and hints that properly

converged correlated wavefunction methods may well out-perform lower rungs of Jacob’s

Ladder but at a large computational overhead.

An additional key structural property that is relevant to our understanding of solvation

thermodynamics is the hydration number of the ion. However, this quantity is not well

defined for ions having interstitial water molecules that lie between the first and second
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Figure 3: Incremental RDFs of the sodium and potassium ions in water with the SCAN,
revPBE-D3 and RPA functional. Black gives the distribution of the closest molecule, red
the second closest etc.
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hydration shells. The best way to understand the ion hydration and its model dependencies

is through the examination of the incremental RDFs that separate the pair distribution into

contributions from the closest set of water molecules. Figure 3 shows this quantity for the

sodium and potassium ions using the three different functionals. It demonstrates that the

seventh water molecule for sodium almost always occupies the second hydration shell. For

potassium the sixth, seventh and eight water molecules bridge the first and second hydration

shells blurring the distinction between hydration layers.

2 3 4 5 6
〈r〉 [Å]

0

0.05

0.1

0.15

σ
2

Figure 4: Analysis of the incremental RDFs for sodium (black) and potassium (red) with
the SCAN functional. Each point gives the average position and fluctuation in the position
(the Debye-Waller factor) of one water molecule in the incremental RDF.

Figure 4 provides an analysis of the average position and spread of individual water

molecules about the ions using the SCAN functional. There are substantial similarities

between the two ions. For instance, it is clear that both ions have five relatively tightly

bound water molecules and a more diffuse sixth water molecule that occupies both the

first and second hydration shells.20 In contrast, water molecules beyond the first shell show

qualitatively different behaviour for the two ions. With the seventh being more localised for

sodium whereas the sixth, seventh and eighth are all less localised for potassium.

The hydration number, which is defined as the integral of the RDF from zero to the first

minima, gives values of 5.6±0.2 for Na+ and 7.5±0.8 for K+ with the SCAN functional. The

large uncertainty in the potassium ion coordination number is due to the broad and flat
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minimum of the RDF and is the result of the fact that this ion has less well differentiated

hydration layers. These results are consistent with XAFS and XRD data which gives a

sodium hydration number of 5.4 to 5.9.20

EXAFS analysis

From an implicit set of molecular interactions, an associated ensemble of configurations is

generated from an MD trajectory. From this ensemble, the collective properties and responses

of the system can be determined. In particular, it is possible to quantitatively generate the

X-ray absorption fine structure spectra which is a unique spectral signature associated with

the generated ensemble. (In this work we concentrate on the ‘extended’ region of the signal,

referred to as EXAFS.) This provides a comprehensible benchmark of our description of

molecular interactions, giving us confidence in its ability to generate accurate ensembles and

predict phenomena that are not directly measurable.

EXAFS is an effective probe of the local solvent structure about a solute photo-electron

source. The signal is most sensitive to the solute - nearest solvent distance and its fluctuations

which are commonly defined by the Debye-Waller factor of the solute-solvent vibrations or

σ2. In Fig. 4, the waters at the first five distances with the smallest σ2’s contribute the most

to the signal. Although the trajectory ensemble also includes weaker EXAFS contributions

for water beyond the fifth.

In order to connect to experimental measurements, we take configurations from a canon-

ical ensemble, corresponding to the density and temperature of the measurement that is

determined from the SCAN description of the molecular interaction. For each of the more

than 3000 individual configurations, we generate an EXAFS signal using the feff9 code devel-

oped by Rehr and coworkers.64 We take the mean of this set of configurations to generate a

signal corresponding to the ensemble. In Figure 5 we compare the k2 weighted fine structure,

k2 χ(k), vs. k (in Å−1), generated in this manner to the experimental measurement.20,58

For both K+ and Na+ we observe nearly quantitive agreement with the measured signal.
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For the ∣χ(r)∣’s we recover both the main peak position at 2 Å and the width. In addition,

we recover the multiple scattering contributions between 3 Å and 5 Å. The k2χ(k) agreement

in amplitude and frequency from 1.5 to 9 Å−1 gives us confidence in the consistency between

measurement and simulation.

For Na+ the mean square variation in the distance obtained from the full width at half

maximum of the Gaussian fit can be determined accurately from experimental XRD to be

0.020 Å2. This agrees perfectly with the value determined from the simulation data of SCAN.

This can be clearly seen in Figure 2.

Discussion and Error Analysis

SCAN has a more sophisticated description of exchange and correlation than revPBE-D3

and so in principle we should expect it to give more accurate structural agreement. This

appears to be true for the cation’s hydration structure but apparently this comes at the

expense of the quality of the pure water oxygen-oxygen RDF. It is important to understand

the underlying reasons for this discrepancy. It is not uncommon for DFT functionals at

similar levels of theory to predict substantially different structural details.29,38 This is also a

challenge in the area of classical force field development where force field dependence remains

a significant issue.

Obviously, the structures are determined by the energetics and so it should be possible to

relate the structural performance of a given functional to how accurately it matches high-level

correlated quantum mechanical calculations. However, there are two challenges to doing this.

First, higher level methods cannot feasibly be applied to the larger sized systems examined

here so energies of small clusters must be used as a proxy and it is not obvious which clusters

are the best for comparison. Second, it is not clear which energy metric is best suited to

capture the performance of a functional, as there are various choices of how to define the

error in the energies. Identifying a reliable and inexpensive method that can predict the

ability of a DFT functional to reproduce structural properties would be extremely useful in
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Figure 5: EXAFS calculations compared with experiment for sodium (left) and potassium
(right). Experimental data for potassium is from Ref. 58 . Experimental data for sodium is
from Ref. 20 after revision for self-absorption (see Experimental Details).
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order to avoid wasting substantial amounts of computational time simulating large systems

with functionals that will not work.

A standard method used in the development of forcefield parameters is to fit to ion-

water binding energies calculated with a high-level of quantum mechanical theory.11,22,65,66

Similarly, it is common to use ion-water binding energies to benchmark and compare different

levels of DFT theory.22,66

Often only very small clusters are considered such as dimers or trimers and the struc-

tures of these clusters are minimum energy structures or artificial perturbations about this

minimum. In our view this is not the best choice, as the minimum energy structure of an

ion-water dimer, for instance, will also be very different from the typical structures that

water molecules occupy around ions under the conditions of bulk solvation, which can be

quite far from an energy minima. Therefore, it is preferable to extract from the simulation

a set of clusters representing the closest n waters about the ion. Larger water clusters than

dimers and trimers will be more relevant as they will incorporate the desired ion-water and

water-water many-body effects. For these reasons we therefore evaluate clusters of water

molecules surrounding a central ion or water molecule that have been extracted from the

simulation.

The second issue is selection of the most appropriate energy value. The most commonly

used value is simply the total binding energy of the cluster relative to its monomers separated

in vacuum. For the case of a pure water cluster this is given by:

Emon = (H2O)n+1 − (n + 1)EH2O (1)

For the case of the cation cluster it is given by:

Emon = EC+(H2O)n −EC+ − nEH2O (2)

The “mon” subscript indicates that the monomer energies are used for the separated molecules.
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This quantity will depend on the cluster size.

When comparing with multiple structures, it is customary to calculate the RMSD of this

binding energy between the DFT functional and a higher level of theory such as MP2. This

is given by:

RMSDmon =

√
1

N
∑
N

(EMP2
mon −EDFT

mon )
2

(3)

where the sum is over N frames extracted from the simulation and EMP2
mon and EDFT

mon are Emon

calculated at the MP2 and DFT level of theory respectively. We use the MP2 level of theory

with augmented correlation consistent quadruple-zeta basis sets.

Table 2: RMSD error in cluster binding energies (Emon) for DFT compared with
MP2 (aug-cc-pVQZ). Units are in kJmol−1. All structures are extracted from
simulation with the SCAN functional.

Cluster DFT functional RMSDmon ⟨Emon⟩

(H2O)9 revPBE-D3 10.8 -91.1
(H2O)9 SCAN 27.6 -109.3
(H2O)9 MP2 0 -82.0

Na+(H2O)8 revPBE-D3 17.2 -356.8
Na+(H2O)8 SCAN 25.3 -368.2
Na+(H2O)8 MP2 0 -343.1
K+(H2O)8 revPBE-D3 14.3 -277.7
K+(H2O)8 SCAN 13.0 -279.9
K+(H2O)8 RPA 13.6 -254.0
K+(H2O)8 MP2 0 -267.2

Table 2 shows the results of calculating this RMSDmon quantity. For the pure water

cluster, revPBE-D3 outperforms SCAN significantly with an error of only 10.8 kJmol−1 or

about 1 kJmol−1 per water molecule. This error for SCAN is substantially larger at 27.6

kJmol−1. This over-binding of the pure water clusters is consistent with previous work67

and is a potential explanation for the over-structuring of water observed with the SCAN

functional (See Figure 1).

Table 2 also shows that the RMSDmon totally fails to explain why SCAN is better for

describing the hydration structure around the cation clusters. It predicts very similar errors

for the potassium clusters for the three different choices and actually slightly larger errors for
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the sodium cluster with SCAN. The reason for this is likely that RMSDmon depends mostly

on the error in the water-water interactions but not on the cation-water interactions. We

propose that the cation-water interactions are more important for correctly reproducing the

hydration structure around an ion than the water-water interactions. This is because ion-

water interactions are significantly stronger than water-water interactions due to the strong

charge dipole interaction. An additional issue is that RMSDmon will increase as the number

of water molecules in the extracted cluster is increased.

A better metric for predicting how well water structure is reproduced specifically around

the ion may be:

Eclust = EC+(H2O)n −EC+ −E(H2O)n . (4)

Here the E(H2O)n is computed by simply removing the ion and recomputing the energy. This

expression gives the binding energy of the ion to the water, with no contribution from the

water-water interaction. It is denoted with the “clust” subscript to indicate that the water

molecules are kept together in a cluster. This is also a very important quantity as it is the

definition of the energy used in the potential distribution theorem to determine the single

ion solvation free energy.32

The RMSD error in the cluster binding energy can be expressed in the same way as in

the monomer case (Eq. 3). However, this is not the optimal choice for defining the error if

the goal is to accurately reproduce the structural properties of the ion in water using DFT.

It is possible to have large average errors in the total binding energy and still accurately

reproduce the structural details. This is because the water structure is actually determined

by forces (derivatives of the energy) rather than the pure energies and thus a large error in

the total binding energy will not affect the structural properties directly if there is not a

significant variation in the error of the binding energies from structure to structure.

There are several reasons why there could be large relatively fixed errors in the absolute

binding energy which do not degrade the structural agreement significantly. One example,

is basis set superposition error (BSSE). Standard basis sets used in condensed phase sim-
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ulation are not at the complete basis set limit as running simulations at the BSSE limit is

too computationally expensive. BSSE is known to be a substantial issue when calculating

absolute binding free energies of clusters. However, this effect is much less significant when

evaluating the relative difference in energy between similar clusters due to cancellation of

error. Because it is these relative energy changes that determine the structural distributions,

structural properties will be much less susceptible to BSSE.39

Therefore, assuming the ions are never isolated in vacuum, the average error in the total

binding energy will not be the best indicator of a DFT functionals ability to reproduce

structural details. An alternative way of seeing this is that the relative probability of two

states (A and B) is given by the ratio of the Boltzmann factors which will not be altered by

large constant error terms. That is:

e−βEA+Eerror

e−βEB+Eerror
=
e−βEA

e−βEB
(5)

We suggest that a more effective quantity to compare the quality of the DFT results is

the standard deviation of the mean signed error. This is given by:

SD-MEclust =

√
1

N − 1
∑
N

((EMP2
clust −E

DFT
clust ) − ⟨EMP2

clust −E
DFT
clust ⟩)

2
(6)

The angle brackets term is the average error in the DFT binding energy compared with

MP2 over the N structures sampled. This expression captures the variation of the error

from structure-to-structure. If this quantity is very small throughout the entire simulation,

then the structural details should be perfectly reproduced regardless of whether the total

binding energy is accurate or not.

It is true that many properties, such as single ion solvation free energies, are sensitive

to the accuracy of the absolute binding free energy not just the variation in the error.

However, once accurate structures are obtained, standard perturbative methods can be used

to estimate absolute binding energies in situations where this quantity is of importance. See
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Ref. 32 for an example of this.

Table 3 shows computed values for various estimates of the error. If we compute the stan-

dard deviation of the mean signed error using the Eclust quantity given above (SD-MEclust).

We can see that the error going from revPBE-D3 to SCAN is reduced by a factor of 3 (6.7

kJmol−1 to 2.0 kJmol−1) for Na(H2O)8 clusters and by a factor of 5 (7.9 kJmol−1 to 1.6

kJmol−1) for K(H2O)8 clusters.

Table 3: Mean unsigned error in the cluster binding energies and fluctuations
in the mean error. RMSD indicates the root mean squared deviation error
estimate, whereas SD-ME indicates the standard deviation in the mean signed
error. The DZ or QZ indicates whether double zeta or quadruple zeta basis sets
were used for the MP2 level calculation. Units are in kJmol−1.

Cluster Theory MP2 BS RMSDclust SD-MEclust RMSDmon SD-MEmon

Na+(H2O)8 revPBE-D3 DZ 5.8 5.8 9.4 7.8
Na+(H2O)8 SCAN DZ 9.0 2.2 7.7 4.6
Na+(H2O)8 revPBE-D3 QZ 7.3 6.7 17.2 10.5
Na+(H2O)8 SCAN QZ 11.0 2.0 25.3 3.2
Na+(H2O)32 revPBE-D3 DZ 14.7 6.1 77.4 18.0
Na+(H2O)32 SCAN DZ 9.2 2.5 30.7 12.3
K+(H2O)8 revPBE-D3 DZ 10.1 6.3 8.4 7.2
K+(H2O)8 SCAN DZ 9.7 1.9 7.8 4.0
K+(H2O)8 RPA DZ 6.4 1.8 19.5 2.7
K+(H2O)8 revPBE-D3 QZ 8.0 7.9 14.3 9.7
K+(H2O)8 SCAN QZ 1.8 1.6 13.0 2.9
K+(H2O)8 RPA QZ 14.8 2.1 13.6 3.1
K+(H2O)32 revPBE-D3 DZ 22.9 7.2 49.5 26.4
K+(H2O)32 SCAN DZ 6.6 2.1 39.0 23.3
K+(H2O)32 RPA DZ 15.3 2.8 93.4 26.2

The resulting variation with the SCAN is reduced below “chemical accuracy” (4.2 kJmol−1)

and even thermal noise (2.4 kJmol−1) levels. In contrast, it is larger than both of these

thresholds for revPBE-D3 explaining the difference in performance in comparison with ex-

perimental structural properties. The RMSDclust error for the Na+(H2O)8(QZ) case actually

goes up from revPBE-D3 to SCAN demonstrating that this is not a good estimate of the

error if reproducing structural properties is the aim. It is clear that the error using the

double zeta level of theory for the MP2 calculations shows a less dramatic shift which is
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not surprising considering there will be error associated with the smaller basis set. 32 water

molecule clusters were also computed showing that SD-MEclust does not change significantly

for larger cluster sizes. SD-MEclust is quite similar between RPA and SCAN. This suggests

that the differences in hydration structure are likely due to convergence issues as conjectured

earlier instead of an inherent problem with the RPA energy calculations.

Applying the SCAN functional to examine other cations such as Cs+ and comparing with

many body molecular models as carried out in Ref. 68 are important future generalisations

of this work.

Conclusion

In summary, we have demonstrated that the newly developed SCAN functional can accu-

rately reproduce fundamental structural properties of water around the sodium and potas-

sium ions that standard GGA functionals fail to reproduce. However, the inability of SCAN

to perfectly reproduce the structural properties of bulk water is highlighted. We present

evidence that higher level wavefunction-based methods such as RPA provide the correct

physics to reproduce experimental measurements considered herein. However, the hydration

structure cannot be accurately reproduced using standard computational resources. We have

argued that the fluctuation of the mean signed error of the ion-water cluster binding energy

should be used to assess the quality of a DFT functional or forcefield and that this quantity

explains the improved performance of the SCAN functional over revPBE-D3 in describing

the hydration structure are Na+ and K+.
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Computational Details

Ab initio Simulations

For the revPBE and SCAN functionals, Born-Oppenheimer ab initio molecular dynamics

simulations within the NVT (at 300 K) ensemble using periodic boundary conditions are

performed within the CP2K simulation suite (http:www.cp2k.org) containing the QuickStep

module for the DFT calculations.39 The D3 dispersion correction due to Grimme28 was used

for revPBE. A 0.5 fs time step was used. We used a double ζ basis set that has been optimized

for the condensed phase69 in conjunction with GTH pseudopotentials44 using a 400 Ry cutoff

for the auxiliary plane wave basis for the revPBE-D3 simulations and a 1200 Ry cutoff for the

SCAN simulations.38,70 The pseudopotentials for the oxygen atom were reoptimized for the

SCAN functional using the ATOM code of CP2K. A Nosé-Hoover thermostat was attached to

every degree of freedom to ensure equilibration.71 The energies were accumulated for ≈ 12 ps

after 3 ps of equilibration. The sodium and potassium simulations for revPBE-D3 and SCAN

consisted of one ion in a box of 96 water molecules of dimensions 14.33 Å3 corresponding to

a water density of 1 gcm−3.

For the RPA simulations of potassium the procedure outlined by Del Ben et al. 40,41 was

used. The simulation box consisted of 63 water molecules and a single potassium ion with

dimensions of 12.423Å3. Basis sets of correlation consistent triple zeta quality were used

including new basis sets for the potassium. The cutoff is set to 800 Ry. Core electrons

are replaced by pseudopotentials that have been parametrized for the PBE functional. The

Kohn-Sham PBE orbitals were used as input for the RPA calculation. The Monte Carlo

(MC) simulations have been performed employing the same setup as given in Ref. 63, with

T = 295 K and p = 1 bar. The MC efficiency is improved with the presampling of moves, the

approximated potential is calculated using the revPBE-D3 functional. The initial configura-

tion has been equilibrated with a 15 ps NVT-MD run at the experimental density using the

revPBE-D3 level. The statistics from the MC simulations were accumulated for 6100 frames
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after equilibration for 500.

ORCA72 was used to calculate the cluster energies at the MP2 level of theory. Clusters

of 8 and 32 water molecules were used in the cluster correction calculation with 50 frames

extracted from the 15ps trajectory with the SCAN functional. The aug-cc-pVxZ basis set

was used for the oxygen and hydrogen atoms.73 Similarly, the cc-pCVxZ basis set was used

for the sodium ion74 and the cc-pwCVxZ basis set for the potassium ion.75 x was either D

or Q. Frozen cores were used for the MP2 calculations. RI-MP2 was used for the 32 water

cluster calculations using automatically generated auxiliary basis functions. For the revPBE-

D3 and SCAN cluster energy calculations CP2K was used with the periodicity none option

and a larger cell size to remove any box size dependence. Otherwise, the same parameters,

basis sets etc. as the simulation were used.

Experimental Details

EXAFS

The sodium K-edge (1070.8 eV) EXAFS experiments were carried out at the Phoenix II,

elliptical undulator beamline at the Swiss Light Source (SLS) at the Paul Scherrer Institute

(PSI), Switzerland20 while the potassium K-edge EXAFS measurements were taken at the

Sector 20 bending-magnet beamline of the Advanced Photon Source at Argonne National

Laboratory.58

The measurements for K+ include a correction of the multi-electron features. (see Ref.

58). In addition, a single E0 shift is universally applied to the ensemble in order to account

for small errors in the absolute edge energy (± 0.2 %, or 2 ev) calculated by FEFF. This

is accomplished by adjusting E0 to assure the convergence of the oscillations (as k → 0

Å−1) between the predicted and the experimental spectra (for example, the peak at about

1.5 Å−1 in Figure 5). In Figure 5 we Fourier transform the χ(k) to construct χ(r). The

transform range and settings are applied consistently to both the measurement and the
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simulation. The EXAFS χ(r) consists of a distribution of scattering distances in which the

true distances have been shifted by the interaction of the scattered photoelectron with the

underlying charge density on the nearby atom. This interaction is accounted for exactly in

the multiple scattering code, FEFF. Experimental measurement of these systems is often

complicated due to issues associated with multi electron-electron excitations.58

In the current work, we carve out clusters of the nearest 10 water molecules to the cation

to use as input for EXAFS calculation using default settings of the FEFF9 code. For the

K+ and Na+ systems, every 10th configuration was chosen to make up the ensemble, this

gives 3055 configurations for K+ and 3029 configurations for Na+. The ensemble averaged

χ(k) signal is recovered from this average of configurations. Next, we take the Fourier trans-

form of the k2 χ(k) signal to generate the ∣χ(R)∣ and Im[χ(R)] signals. The Na+ EXAFS

spectrum in Figure 5 was a modified version from an uncorrected spectrum previously re-

ported.20 The absorption edge for Na (1071 eV) is quite low and achieving a linear response

of the EXAFS detectors and the sample over the entire energy span (+300 eV) is quite

challenging. The factors affecting the energy-dependent response were extensively evaluated

including responses of the incident beam detector, I0, the fluorescence detector, IF, and the

attenuation length of the sample. These factors were approximately corrected by applying

an energy-dependent normalization using the pre- and post-edge normalization lines rather

than division by a constant edge-step value at the absorption edge. This methodology has

been previously described.76

When compared to DFT simulations of simple anions and doubly charged cations, where

the accuracy is quite high, it is has been a challenge to identify the correct combination of

molecular interaction and statistical mechanical sampling to reproduce the measured EXAFS

signals for the monovalent Na+ and K+ cations in aqueous solvation. It is a challenge to find

a balance between the (i) strong cation-water interaction, (ii) the solvent-solvent interaction

in the presence of the cation that disrupts the hydrogen-bonding network and (iii) the long-

range interactions defining the bulk structure and response of water. The use of a single
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molecular framework to consistently describe each of these molecular responses remains a

challenge.

Acknowledgements

TTD, MG, GKS and CJM were supported by the U.S. Department of Energy, Office of

Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and

Biosciences. MD Baer was supported by MS3 (Materials Synthesis and Simulation Across

Scales) Initiative, a Laboratory Directed Research and Development Program PNNL. PNNL

is a multiprogram national laboratory operated by Battelle for the U.S. Department of En-

ergy. The RPA and SCAN calculation used resources of the National Energy Research

Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User

Facility operated under Contract No. DE-AC02-05CH11231. Calculations were also per-

formed on PNNL’s Institutional Computing resource. The Na XAFS measurements were

performed at the PHOENIX beamline of the Swiss Light Source, Paul Scherrer Institute,

Villigen, Switzerland. JW and JH are supported by The National Centre of Competence

in Research (NCCR) Materials Revolution: Computational Design and Discovery of Novel

Materials (MARVEL) of the Swiss National Science Foundation (SNSF). XSZ and TTD ac-

knowledge the Australian Research Council (ARC) funding via project number FL170100101.

MDB is supported by the Center for Computational Study of Excited-State Phenomena in

Energy Materials (C2SEPEM) and by the SciDAC Program on Excited State Phenomena

in Energy Materials at the Lawrence Berkeley National Laboratory, which is funded by

the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sci-

ences and Engineering Division under Contract No. DE-AC02-05CH11231, as part of the

Computational Materials Sciences Program. This research used resources of the Advanced

Photon Source, an Office of Science User Facility operated for the U.S. Department of En-

ergy (DOE) Office of Science by Argonne National Laboratory and was supported under

23

Page 23 of 33 Physical Chemistry Chemical Physics



DOE under Contract No. DE-AC02-06CH11357, and the Canadian Light Source and its

funding partners. This research was undertaken with the assistance of resources from QCIF

(http://www.qcif.edu.au).

References

(1) Kubota, K.; Komaba, S. Review–practical issues and future perspective for Na-ion

batteries. J. Electrochem. Soc. 2015, 162, A2538–A2550.

(2) Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y. Nickel hexacyanoferrate

nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett.

2011, 11, 5421–5425.

(3) Liu, Y.; Fan, F.; Wang, J.; Liu, Y.; Chen, H.; Jungjohann, K. L.; Xu, Y.; Zhu, Y.; Bi-

gio, D.; Zhu, T. et al. In situ transmission electron microscopy study of electrochemical

sodiation and potassiation of carbon nanofibers. Nano Lett. 2014, 14, 3445–3452.

(4) Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Hard carbon microspheres: potassium-ion

anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.
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(41) Del Ben, M.; Schütt, O.; Wentz, T.; Messmer, P.; Hutter, J.; VandeVondele, J. Enabling

simulation at the fifth rung of DFT: large scale RPA calculations with excellent time

to solution. Comput. Phys. Commun. 2015, 187, 120–129.

(42) Chen, M.; Ko, H.-y.; Remsing, R. C.; Calegari, M. F.; Santra, B.; Sun, Z. Ab initio

theory and modeling of water. Proc. Natl. Acad. Sci. 2017, 24–26.

(43) Zheng, L.; Chen, M.; Sun, Z.; Ko, H.-Y.; Santra, B.; Dhuvad, P.; Wu, X. Structural,

electronic, and dynamical properties of liquid water by ab initio molecular dynamics

28

Page 28 of 33Physical Chemistry Chemical Physics



based on SCAN functional within the canonical ensemble. J. Chem. Phys. 2018, 148,

164505.

(44) Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials.

Phys. Rev. B 1996, 54, 1703–1710.

(45) Skinner, L. B.; Huang, C.; Schlesinger, D.; Pettersson, L. G. M.; Nilsson, A.; Ben-

more, C. J. Benchmark oxygen-oxygen pair-distribution function of ambient water from

x-ray diffraction measurements with a wide Q-range. J. Chem. Phys. 2013, 138, 074506.

(46) Marsalek, O.; Markland, T. E. Quantum dynamics and spectroscopy of ab initio liquid

water: the interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett.

2017, 8, 1545–1551.

(47) Baer, M. D.; Mundy, C. J.; McGrath, M. J.; Kuo, I.-F. W.; Siepmann, J. I.; Tobias, D. J.

Re-examining the properties of the aqueous vapor–liquid interface using dispersion

corrected density functional theory. J. Chem. Phys. 2011, 135, 124712.

(48) Becke, A. D. Density-functional exchange-energy approximation with correct asymp-

totic behavior. Phys. Rev. A 1988, 38, 3098–3100.

(49) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy

formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

(50) Grimme, S. Accurate cescription of van der Waals complexes by density functional

theory including empirical corrections. J. Comput. Chem. 2004, 25, 1463–1473.

(51) Medders, G. R.; Babin, V.; Paesani, F. Development of a “first-principles” water po-

tential with flexible monomers. III. Liquid phase properties. J. Chem. Theory Comput.

2014, 10, 2906–2910.

(52) Ceriotti, M.; Fang, W.; Kusalik, P. G.; McKenzie, R. H.; Michaelides, A.;

29

Page 29 of 33 Physical Chemistry Chemical Physics



Morales, M. A.; Markland, T. E. Nuclear quantum effects in water and aqueous systems:

experiment, theory, and current challenges. Chem. Rev. 2016, 116, 7529–7550.

(53) Pestana, L. R.; Marsalek, O.; Markland, T. E.; Head-Gordon, T. The quest for accurate

liquid water properties from first principles. J. Phys. Chem. Lett. 2018, 9, 5009–5016.

(54) Wiktor, J.; Ambrosio, F.; Pasquarello, A. Note: Assessment of the SCAN+rVV10

functional for the structure of liquid water. J. Chem. Phys. 2017, 147, 10–12.

(55) Yao, Y. Advancing molecular dynamics simulations of aqueous ionic solutions. Ph.D.

thesis, University of North Carolina, 2018.

(56) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. CP2K: atomistic simulations

of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 15–25.

(57) Car, R.; Parrinello, M. Unified approach for molecular dynamics and density-functional

theory. Phys. Rev. Lett. 1985, 55, 2471–2474.

(58) Glezakou, V. A.; Chen, Y.; Fulton, J. L.; Schenter, G. K.; Dang, L. X. Electronic struc-

ture, statistical mechanical simulations, and EXAFS spectroscopy of aqueous potas-

sium. Theor. Chem. Acc. 2006, 115, 86–99.

(59) Ohtaki, H.; Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 1993,

93, 1157–1204.

(60) Marcus, Y. Effect of ions on the structure of water: structure making and breaking.

Chem. Rev. 2009, 109, 1346–1370.

(61) Duignan, T. T.; Baer, M. D.; Mundy, C. J. Ions interacting in solution: moving from

intrinsic to collective properties. Curr. Opin. Colloid Interface Sci. 2016, 23, 58–65.

(62) Fulton, J. L.; Schenter, G. K.; Baer, M. D.; Mundy, C. J.; Dang, L. X.; Balasubrama-

nian, M. Probing the hydration structure of polarizable halides: A multiedge XAFS and

30

Page 30 of 33Physical Chemistry Chemical Physics



molecular dynamics study of the iodide anion. J. Phys. Chem. B 2010, 114, 12926–

12937.

(63) Del Ben, M.; Schönherr, M.; Hutter, J.; VandeVondele, J. Bulk liquid water at ambient

temperature and pressure from MP2 theory. J. Phys. Chem. Lett. 2013, 4, 3753–3759.

(64) Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; Jorissen, K. Parameter-free calcula-

tions of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503–5513.

(65) Lamoureux, G.; Roux, B. Absolute hydration free energy scale for alkali and halide ions

established from simulations with a polarizable force field. J. Phys. Chem. B 2006, 110,

3308–3322.

(66) Arismendi-Arrieta, D. J.; Riera, M.; Bajaj, P.; Prosmiti, R.; Paesani, F. The i-TTM

model for ab initio-based ion-water interaction potentials. 1. halide-water potential

energy functions. J. Phys. Chem. B 2016, 120, 1822–1832.

(67) Paesani, F. Water: many-body potential from first principles (From the gas to the

liquid phase). Handb. Mater. Model. 2018, 1–25.

(68) Zhuang, D.; Riera, M.; Schenter, G. K.; Fulton, J. L.; Paesani, F. Many-body effects

determine the local hydration structure of Cs + in solution. J. Phys. Chem. Lett. 2019,

10, 406–412.

(69) VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular

systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

(70) Miceli, G.; Hutter, J.; Pasquarello, A. Liquid water through density-functional molecu-

lar dynamics: Plane-wave vs atomic-orbital basis sets. J. Chem. Theory Comput. 2016,

12, 3456–3462.

(71) Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé–Hoover chains: the canonical en-
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