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Real-time ab initio simulation of inelastic electron scattering using
the exact, density functional, and alternative approaches†

Yeonghun Lee,a Xiaolong Yao,a Massimo V. Fischetti,a and Kyeongjae Cho∗a

To investigate inelastic electron scattering, which is ubiquitous in various fields of study, we carry out
ab initio study of the real-time dynamics of a one-dimensional electron wave packet scattered by a
hydrogen atom using different methods: the exact solution, the solution provided by time-dependent
density functional theory (TDDFT), and the solutions given by alternative approaches. This research
not only sheds light on inelastic scattering processes but also verifies the capability of TDDFT in
describing inelastic electron scattering. We revisit the adiabatic local-density approximation (ALDA)
in describing the excitation of the target during the scattering process along with a self-interaction
correction and spin-polarized calculations. Our results reveal that the ALDA severely underestimates
the energy transferred in the regime of low incident energy particularly for a spin-singlet system.
After demonstrating alternative approaches, we propose a hybrid ab initio method to deal with the
kinetic correlation alongside TDDFT. This hybrid method would facilitate first-principles studies of
systems in which the correlation of a few electrons among many others is of interest.

1 Introduction
Scattering theory is one of the most fundamental and useful tools
in physics. Indeed, inelastic electron scattering by target atoms,
molecules, or solids is a demanding problem due to its many-body
nature along with the internal degrees of freedom of the excited
target. Inelastic electron scattering plays an important role in
a wide variety of research fields: electron-beam-induced depo-
sition,1–3 electron microscopies,4,5 electron radiation damage in
semiconductors and metals,6,7 hot electron inelastic scattering in
devices8–10, DNA damaged by electron scattering,11–16 electron
therapy,17,18 etc. (see Fig. 1). Although it is crucial to understand
the electronic excitation of the targets during all those inelastic
scattering processes, the inherent complexity of the many-body
problems hinders a clear interpretation and a proper computation
of the dynamics. Moreover, in order for the low-energy scattering
measurement to resolve and explain reactivity as well as optical
and material properties, it is necessary to develop such compu-
tational tools including more representative descriptions of low-
energy electron scattering.

Density functional theory (DFT)19,20 has been extensively used
in the field of computational physics and chemistry, dealing with
many-body problems in an approximate way by replacing the
many-electron system with an auxiliary non-interacting Kohn-
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of time-evolving electron density of an incident wave packet and a bound electron.
See DOI: 10.1039/cXCP00000x/

Sham (KS) system. Subsequently, the time evolution of the KS
system can be obtained using time-dependent density functional
theory (TDDFT).21,22 The linear-response formalism of TDDFT
has been used to obtain the phase shift with respect to an inci-
dent electron, focusing on elastic scattering.23–26 In contrast to
elastic scattering, an inelastic scattering process is nonlinear, and
so it is necessary to account for the time-resolved dynamics. In
this regard, real-time TDDFT exhibits a better description of the
interaction between an energetic electron and matter; moreover,
real-time TDDFT has been utilized to simulate the dynamics of
inelastic electron scattering events, resulting in the electronic ex-
citation of a target.27–30

For a practical use of TDDFT, the adiabatic local-density ap-
proximation (ALDA)22 has been adopted reluctantly without suf-
ficient validation as a first-order approximation for the exchange-
correlation (XC) functional. However, the ALDA cannot fully cap-
ture the nonlinear dynamics of an excited system that does not
return to the ground state at each time step. Furthermore, the
ALDA is more problematic when dealing with the scattered elec-
tron because its energy is far from its ground state. Therefore,
efforts have been made to validate the ALDA when describing
electron scattering. It has been confirmed that the ALDA XC func-
tional deviates from the exact XC functional.26,31 This results in
the emergence of a nonphysical reflection probability and phase
shift of the scattered electron. However, there is no information
available about the ability of the ALDA to provide reliable infor-
mation on the energy transferred during the scattering process.
The internal excitation of the target contains critical information,
directly connected to subsequent dynamics of the system, such as
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Fig. 1 Schematic representation of an inelastic electron scattering process
along with an energetic electron hitting a sample.

chemical reactions. Moreover, a systematic validation in a wide
range of the incident energy is yet to be obtained.

In this work, we investigate the underlying physics of the
energy-transfer process driven by inelastic scattering and, at the
same time, to validate the ALDA for the dynamics. To do so,
we deal exactly with the real-time dynamics of electron-hydrogen
scattering in one dimension (1D e-H scattering);26,31,32 the ex-
act solution is then compared with the results obtained using the
ALDA in TDDFT. The system contains only two electrons and a
proton. Although a two-electron system is the extreme limit of
a many-electron system, DFT or TDDFT remains effective even
for this simplest case of a many-electron system, as illustrated
by an example of the helium atom.33,34 Furthermore, the exact
solution of a simple 1D system, consisting of a very few elec-
trons and atoms, has been exploited to verify nuclear quantum
effects35,36 and the ALDA26,31,37,38 in terms of TDDFT. Hence,
the 1D system consisting of an incoming electron and a station-
ary hydrogen atom would also permit us to validate the ALDA
in treating scattering processes. To compare the exact solution
with the ALDA in a proper way, spin polarization is considered
using the local spin density approximation (LSDA),39 whereas
Refs. [26, 31] pay less attention to the spin polarization. We also
discuss the intricacies originating from a fictitious single-electron
KS system, such as the time-evolving KS orbital energy level and
the final electronic configuration. At the end, we benchmark
alternative approaches to simulate electron scattering and pro-
pose a hybrid method that may overcome the limitation of the
ALDA in treating the inelastic electron scattering. Despite the
simplicity of the 1D e-H scattering, the interpretation obtained
through this work can be extended to even larger systems with
heavier atoms and more electrons while ab initio studies investi-
gate low-energy inelastic scattering phenomena in a wide range
of (bio)chemical/physical/materials interests.

2 The exact solution

To study real-time dynamics of 1D e-H scattering, the two-body
time-dependent Schrödinger equation (TDSE) i∂Ψ(x1,x2, t)/∂ t =
Ĥ(x1,x2)Ψ(x1,x2, t) is solved exactly in a numerical way.26,31,32,40

We use atomic units hereafter unless otherwise stated. The

Hamiltonian of a two-electron system is given by

Ĥ (x1,x2) = −1
2

∂ 2

∂x2
1
− 1

2
∂ 2

∂x2
2
+ vext (x1)

+vext (x2)+wee (x1,x2) , (1)

where wee (x1,x2) = 1/
√

(x1− x2)
2 +1 is the soft-Coulomb inter-

action and vext (x) = −1/
√

(x− xH)
2 +1 is the soft-Coulomb po-

tential induced by the stationary hydrogen nucleus at xH . In the
soft-Coulomb potential, cusps disappear with removing the singu-
larity at zero separation. Ref. [41] has constructed an exponential
interaction, which takes into account cusp of the potential at the
origin. Although compared with the soft-Coulomb form, the expo-
nential interaction greatly reduces computational cost for calcu-
lating accurate quantities with the density matrix renormalization
group, they exhibit a similar quality in terms of energy compo-
nents for various systems. The softness parameter in the denomi-
nator can be determined according to the particular application of
study. The soft-Coulomb interaction with the softness parameter
of unity has been verified in terms of the local-density approx-
imation (LDA), where 1D molecules with this softness parame-
ter qualitatively mimic three-dimensional (3D) molecules well.42

Hence, the 1D soft-Coulomb interaction adopted here is expected
to capture the essential physics of 1D e-H scattering.

Having determined the initial wavefunction, we let it evolve
according to the TDSE in order to study the dynamics. The ini-
tial wavefunction Ψ(x1,x2, t = 0) can be chosen as the spin-singlet
or spin-triplet state given by the Slater determinant of the hy-
drogen ground state ψ1(x) and a Gaussian wave packet ψWP (x),
expressed as

Ψ(x1,x2, t0) =
1√
2

[ψ1 (x1)ψWP (x2)

±ψWP (x1)ψ1 (x2)] , (2)

where the + and − signs correspond to singlet and triplet states,
respectively. The Gaussian wave packet ψWP (x) is given by

ψWP (x) =
(

1
πσ2

)1/4

×exp

[
− (x− x0)

2

2σ2 + ip(x− x0)

]
, (3)

with momentum p, position x0, and width σ . Throughout this
paper, we use xH = 0 a.u., x0 = −20 a.u., and σ = 2.236 a.u. that
is equivalent to α = 0.1 in Refs. [26, 31] (see Fig. S1 in ESI† for
results with different values of σ).

Figure 2(a) presents the time-evolving electron density of the
incomming wave pacekt and the bound electron under the exter-
nal potential shown in Fig. 2(b) (the corresponding animation is
given in ESI†). Given a two-electron wavefunction, the electron
density is calculated by using

ρ (x, t) =
∫

dx′
∣∣Ψ(x,x′, t)∣∣2 +∫ dx′

∣∣Ψ(x′,x, t)∣∣2. (4)
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Fig. 2 Real-time dynamics as obtained from the exact solution. (a) Time
evolution of electron density (t = 0.322,0.645,0.968 fs). At the initial time,
peaks on the left- and right-hand sides indicate the incoming electron
wave packet and the electron bounded by the proton, respectively. (b)
External potential induced by the proton, assumed to be stationary at the
origin. (c) Time evolution of the occupation number for each hydrogen
orbital n. In (a–c), the initial momentum of the incident electron is 1.5
a.u., which corresponds to a kinetic energy of 30.6 eV, and the spin state
of the initial wavefunction is set to the singlet state. (d) Transferred
energy as a function of the incident energy when the initial spin state is
the singlet (solid line), triplet (dashed line), or unpolarized state (dotted
line).

As time evolves, the wave packet broadens and splits into trans-
mitted and reflected waves, and the bound-electron density also
broadens and exhibits oscillations. The broadening of the bound-
electron density is evidence of the energy transfer from the inci-
dent electron to the bound electron. This is caused by an electron
transition from the ground state to the first or higher excited state.
Figure 2(c) illustrates the time-evolving occupation numbers dur-
ing the inelastic scattering process. The occupation number of the
n-th energy level can be calculated by using

|cn (t)|2 =
∫

dx1

∣∣∣∣∫ dx2ψ
∗
n (x2)Ψ(x1,x2, t)

∣∣∣∣2

+
∫

dx2

∣∣∣∣∫ dx1ψ
∗
n (x1)Ψ(x1,x2, t)

∣∣∣∣2. (5)

where ψn is the n-th hydrogen orbital. Obviously, such a definition
is not rigorous, since the incident electron and the bound electron
are indistinguishable and Ψ(x1,x2, t) contains both. Nonetheless,
we can approximately distinguish them in energy space. Appro-
priately choosing the upper limit of n enables us to extract infor-
mation about the bound electrons from the two-electron wave-
function. Combining Figs. 2(a, c), it can be observed that inter-
nal excitation of the target hydrogen atom occurs when the two-
electron densities spatially overlap (this occurs for times approxi-
mately between 0.2 and 0.7 fs). An interesting event is observed
from the real-time dynamics. The second excited state (n = 3) be-
comes occupied after the first excited state (n = 2) is populated.
This stems from the fact that the transition from the first to sec-

ond excited state is a primary process for populating the second
excited state.

An important phenomenon seen during inelastic scattering is
the transfer of energy. Taking into account the electronic excita-
tion of the hydrogen atom, the amount of energy transferred is
given by an average weighted by the occupation numbers:

Etrans = ∑
n=2
|cn (t)|2 (εn− ε1), (6)

where εn is the n-th energy level of the target hydrogen atom.
We perform spin-singlet, spin-triplet, and spin-unpolarized calcu-
lations. The spin-unpolarized results are obtained by combining
the singlet and triplet results in a ratio of 1:3. It is known that
the 2s state of parahelium (singlet) exhibits a higher energy level
than that of orthohelium (triplet) because the spatially symmet-
ric wavefunction of the singlet state gives rise to strong Coulomb
repulsion. In the same manner, the energy transfer for the singlet
state is more significant than that of the triplet state due to the
stronger Coulomb interaction [Fig. 2(d)]. It is also shown that
peaks of the transferred energy appear around the incident en-
ergy of 35 eV. These transferred-energy peaks can be explained
as follows: An incident energy that is too low cannot excite the
target in any significant way; on the contrary, at a very high inci-
dent energy interacting time decreases, because of the high speed
of the incoming electron. This dependence on the incident energy
can also be found by looking at the dependence of the scattering
cross-section on the initial and final electron wavenumbers, k and
k′, as seen in the pre-factor on the right-hand side of Eq. (13) in
the section IV. When exciting molecules to accelerate chemical
reactions, it seems problematic that only a small portion of inci-
dent energy is transferred to a target molecule regardless of how
high the energy of the incident electron is. For example, the maxi-
mum transferred-energy seen in 1D e-H scattering when perform-
ing spin-unpolarized calculations reaches only 2 eV [Fig. 2(d)],
which is smaller than the energy gap between the ground and the
first excited states (see Fig. 3(a) for the energy gap). Considering
the transferred energy we calculate is a probabilistic expectation
value of all possible outcomes, any excitation can occur with some
probability corresponding to the occupation number displayed in
Fig. 2(c). Although the probability is small, the scattering process
provides excitation high enough to facilitate subsequent chemical
reactions.

3 Time-dependent density functional theory

Based on TDDFT, we solve the time-dependent KS equation
i∂φ (x, t)/∂ t = ĤKSφ (x, t) for each KS orbital, describing the dy-
namics of the incident electron and the bound hydrogen electron.
The KS Hamiltonian is given by

ĤKS =−
1
2

∂ 2

∂x2 + vext (x)+ vHartree [ρ]+ vxc [ρ] , (7)

where vHartree [ρ] is the Hartree potential, vxc [ρ] =

δExc [ρ]/δρ (x, t) is the XC potential, and ρ (x, t) =

|φH (x, t)|2 + |φWP (x, t)|2 is the electron density. The ALDA
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the external potential. The dotted line in (b) indicates the effective KS
potential vKS = vext + vHartree + vxc. Since deviation in the KS system
originates from self-interaction, the SIC corrects KS orbitals to the exact
ones.

XC potential is expressed as

vxc
[
ρ
(
x′, t ′

)]
(x, t) = vLDA

xc (ρ(x, t))

= εxc (ρ(x, t))+
∂εxc (ρ (x, t))

∂ρ (x, t)
, (8)

where εxc is a 1D XC energy density.42,43 Note that the ALDA
washes out the memory at t ′ < t. The initial KS states are set to
φH (x, t0) = ψ1 (x) and φWP (x, t0) = ψWP (x). When trying to com-
pare the results of the exact and TDDFT approaches, in principle
we face the issue of determining the initial state of the hydro-
gen electron, since the KS orbital is not the exact ground state
(Fig. 3). However, we have verified that the use of two differ-
ent initial ground states—the exact 1D hydrogen orbital and the
corresponding KS orbital—has resulted in a very similar inelastic
scattering behavior, thanks to the fact that the electron density
given by the exact orbital is almost identical to the density asso-
ciated with the KS orbital (see Fig. S2 in ESI†).

The conservation of energy implied by a time-invariant Hamil-
tonian is a fundamental concept of physics. Despite the fact that
the KS Hamiltonian of each electron depends on a time-evolving
density, the total energy of the KS system is conserved when the
XC functional is adiabatic and local as in the ALDA.44 The total
energy of a KS system for 1D e-H scattering is given by

Etot = εH + εWP +EHartree [ρ]+Exc [ρ]

−
∫

vxc [ρ]ρ (x, t)dx. (9)

The fact that the total energy shown in Fig. 4 is constant addition-
ally shows that the real-time integration for the time-dependent
KS system is numerically stable and accurate. In addition, Fig. 4
shows the time evolution of the KS orbital energies, εH and
εWP, which are expectation values of the KS Hamiltonian on
the states corresponding to the hydrogen atom and to the in-
cident wave packet, respectively: εH =

〈
φH
∣∣ĤKS

∣∣φH
〉

and εWP =〈
φWP

∣∣ĤKS
∣∣φWP

〉
. It is known that the KS orbital energy level does

not have any physical meaning; therefore, the energy change of

Etot
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Fig. 4 Time evolution of energy terms pertaining to the KS system:
total energy Etot (thicker solid line), KS orbital energies for the bound
hydrogen electron εH (thinner solid line) and electron wave packet εWP
(dashed line), Hartree energy EHartree (dotted line), exchange-correlation
energy Exc (dash-single dotted line), and exchange-correlation potential
integral (dash-double dotted line). Note that the KS orbital energies
are expectation values of the KS Hamiltonian for those time-evolving KS
orbitals. Spin-unpolarized calculation is adopted all the way through.

the KS orbital over time is not equal to the energy change of each
system, even when the incident electron and the hydrogen are
sufficiently separated in space, as it happens at late times. Hence,
the final εH can be lower than the initial εH , although obviously,
the hydrogen atom gains some energy from the incident electron.

Figures 5(a,b) show that the ALDA largely underestimates the
transferred energy, whereas the ionization probability is overes-
timated by the ALDA. The ionization probability is evaluated by
counting the number of bound electrons that occupy the orbitals
below the vacuum level. The deviations are caused by the fact
that the ALDA does not properly reproduce correlation, which
plays a crucial role especially in describing the low-energy scat-
tering.26,31,32,37 In most XC functionals for the DFT, the self-
interaction error originating from the spurious interaction of an
electron with its own mean-field is one of the major sources of
error. The self-interaction error can be cured by implementing
the self-interaction correction (SIC), where the contribution of an
electron interacting with itself is subtracted from the vHartree [ρ]

and vxc [ρ].48 It turns out that the overestimation of ionization
probability largely originates from a fewer number of bound
states induced by the self-interaction error (see Fig. 3 for shal-
lower bound states induced by the self-interaction error for the
ALDA). As we expected, the result from the SIC is in a better
agreement with the exact solution than the ALDA, concerning the
ionization probability [Fig. 5(b)]. The SIC also repairs the poor
delocalization of the wave packet caused by the self-interaction
error (see Fig. S3 in ESI†). However, the underestimation of
transferred energy is still not corrected by the SIC. The SIC does
not properly capture kinetic correlation, which is missing in the
ALDA.

Whereas so far we have discussed only spin-unpolarized cal-
culations, now we employ the adiabatic local spin density ap-
proximation (ALSDA) to account for a spin-polarized system. Fig-
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Fig. 5 TDDFT results of the spin-unpolarized and spin-polarized calcu-
lations. (a) Transferred energy and (b) ionization probability calculated
using the exact solution (solid line), TDDFT with the ALDA (dashed
line), and TDDFT with SIC (dotted line). The results shown in (a,
b) have been obtained using spin-unpolarized calculations. (c) Trans-
ferred energy among different spin states shown in (d). An equal mixture
(50:50) of the singlet and triplet states in the exact solution corresponds
to antiparallel spin states in the ALSDA.45–47 (d) Possible spin states of
a two-electron system. The upper and lower states are for the incident
wave packet electron (WP) and bound electron in the hydrogen atom
(H), respectively.

ure 5(d) shows a schematic diagram of the different spin states of
a two-electron system, in which the two electrons occupy differ-
ent energy levels. The parallel spins in the ALSDA correspond to
the triplet state in the exact solution, and the antiparallel spins in
the ALSDA correspond to an equal mixture (50:50) of the singlet
and the triplet states in the exact solution.45–47 The equal mixture
can also be regarded as a virtual system of distinguishable elec-
trons. The antiparallel-spin corresponding to the artificial system
brings about so-called spin contamination, in which the Slater
determinant formed by the KS wavefunctions is not an eigenstate
with respect to the square of the total spin angular momentum
Ŝ2.47 This is an inherent error of the conventional DFT. Even
when ignoring the spin contamination, the antiparallel-spin state
is adopted to compare the ALSDA with the exact solution. Fig-
ure 5(c) shows that while the exact solution differentiates clearly
the antiparallel- and the parallel-spin states, the difference almost
disappears in the ALSDA using the equal mixture of the singlet
and triplet states. This means that the adiabatic XC functional
cannot capture correctly the strong interaction present in the sin-
glet state but can capture relatively well the moderate interaction
that is present in the triplet state.

Regarding the problem of estimating the energy transferred in
the collision, on the one hand, in analyzing the exact solution, it
is straightforward to extract transferred energy between the inci-
dent electron and the hydrogen atom by simply projecting the ini-
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Fig. 6 Transferred energy calculated using different approaches for the
ALDA. The solid line corresponds to the change of the total energy of the
hydrogen, ∆EH . The dashed line shows the difference between the initial
and final KS orbital energies of the hydrogen electron, ∆εH . To obtain the
final electronic configuration, we can also use the initial ground-state KS
orbitals for projection, and the dotted line represents the energy change
of the hydrogen in terms of the initial ground-state KS orbitals, ∆ε initial

H .

tial and the final wavefunctions onto the exact hydrogen orbitals.
Moreover, the projection readily provides information about the
electronic occupation of the final state induced by the inelastic
scattering. On the other hand, when using the KS approximation,
we use a different way to calculate the transferred energy, since
an absolute value of the KS orbital-energy does not correspond di-
rectly to the energy of the system. When the interaction between
the two electrons is negligible, we can describe them separately
in the KS Hamiltonian by excluding one electron. This technique
is valid when considering the initial state and the final state, in
which the bound and the incident electrons are separated spa-
tially; therefore, we can just remove the incident wave packet
from the system to calculate the energy of the KS hydrogen sys-
tem, EH (t). Note that the energy of the KS system, EH (t) is not
identical to the KS orbital energy level, εH (t). Hence, transferred
energy is defined as the difference between the initial and final
energies,

Etrans = ∆EH = EH
(
t f
)
−EH (t0) . (10)

The results obtained using Eq. (10) are shown in Fig. 5.

The final electronic configuration is of interest because it is
crucial for the subsequent dynamics driven by the scattering pro-
cess. There could be two available basis sets expressing electronic
structure: KS eigenstates of the final excited state or KS eigen-
states of the initial ground state. According to the basis set, one
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can extract the energy change of the target:

∆εH = εH
(
t f
)
− εH (t0)

= ∑
n

∣∣〈ψn
(
t f
)∣∣φH

(
t f
)〉∣∣2 εn

(
t f
)

−∑
n
|〈ψn (t0)|φH (t0)〉|2 εn (t0), (11)

∆ε
initial
H = ∑

n=2

∣∣〈ψn (t0)
∣∣φH

(
t f
)〉∣∣2 [εn (t0)− ε1 (t0)],

(12)

where ∆εH is the difference between the initial and final KS or-
bital energies of the hydrogen electron, and ∆ε initial

H is the energy
change of the hydrogen, projecting onto the initial ground-state
KS orbitals. The eigenvalues εn (t) and hydrogen orbital basis
ψn (t) are obtained by diagonalizing KS Hamiltonian at a given
time. Although the change of KS orbital energies at different
moments, ∆εH , hardly gives useful information (dashed line in
Fig. 6), the relative level of the KS orbital energy at a given time
can still survive as useful information. A similar argument has
been made for bandgap or ionization potential.49 In this sense,
the time-evolving wavefunctions even at different times can be
projected onto the initial ground-state KS orbital basis to keep
track of change in the electronic configuration. Figure 6 shows
that the energy change of the hydrogen atom given by the pro-
jection onto the initial KS orbitals, ∆ε initial

H , is in good agreement
with the transferred energy ∆EH . This is due to the fact that the
basis set of the initial KS orbitals describes well the final electronic
configuration along with excitation. Even if the ions were free to
move, the ionic position would hardly change during the electron
scattering process that lasts only a femtosecond or so. Therefore,
the projection onto the initial ground-state KS orbital basis is not
only simpler than using the basis at later times but also able to
capture the final electronic configuration.

4 Alternative approaches

The exact solution is practically intractable for a realistic system
and, as aforementioned, the ALDA underestimates substantially
the energy transferred at low incident energy. Other approxima-
tions often fail to reproduce the interaction of a low-energy elec-
tron with a target. Nevertheless, low-energy scattering processes
are of interest in many cases. For instance, electrons at low inci-
dent energies (< 50 eV) are responsible for electron-induced DNA
damage,11–16 and an electron-enhanced atomic layer deposition
technique utilizes low incident energies (25–200 eV) to stimulate
surface reactions.1,3

One may wonder whether or not there is any other way to
estimate the effects of low-energy electron-scattering in a com-
putationally feasible way. The time-dependent Hartree-Fock ap-
proach50 cannot be a solution because of the kinetic correlation
missing in the ALDA.26,31,37 This kinetic correlation cannot be
captured by the Hartree-Fock method either. The R-matrix theory
is a convenient and efficient tool where a system is divided into an
internal region and an external region.51In the internal region,
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Fig. 7 Alternative methods to simulate transferred energy driven by the
inelastic electron scattering. (a) Transferred energy calculated by using
perturbation theory (dashed line), perturbation theory but with plane
waves (PWs) (dotted line), and the exact solution (solid line). In the
exact solution here, the initial two electrons are assumed to be distin-
guishable as the same assumption is introduced in the solution derived
with the perturbation theory. (b) Transferred energy calculated by taking
the classical particle limit with respect to the incoming electron (dashed
line), compared with the spin-unpolarized exact solution (solid line).

short-range interactions are considered as confined; in the ex-
ternal region, the scatteringwave function is approximated by its
asymptotic form. The R-matrix theory can describe elastic and in-
elastic electron scattering from complex large molecules, such as
DNA and RNA, where the theory can be combined with ab initio
methods within static exchange and neglect of correlation.14 The
TDDFT approach enables the incorporation of time-dependent ex-
change and correlation effects as a density functional in a cost-
effective way.24,52 Furthermore, the TDDFT can provide real-time
dynamics, which is not accessible in the R-matrix theory. One can
think of time-dependent perturbation theory or consider the clas-
sical limit of an incident electron, keeping a low computational
cost. Also, we would be able to use the relationship between the
exact and the ALDA results shown in the previous section. We
investigate whether these methods are feasible in describing the
inelastic electron scattering.

Fermi’s golden rule, which is equivalent to the first-order Born
approximation, can be used to calculate the cross-section of in-
elastic electron-atom scattering.53 Fermi’s golden rule is derived
from the time-dependent perturbation theory. Assuming that the
incident electron is distinguishable from the bound electrons, as
in Ref. [53], and introducing the soft-Coulomb potential, we can
derive the 1D inelastic scattering cross-sections associated with
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an incident plane wave eikx and the n-th excitation of a target as:

σ0→n (k) =
Z2

kk′

{∣∣∣∣[−δn0 +Fn (q+)]
∫ eiq+x
√

x2 +1
dx
∣∣∣∣2

+

∣∣∣∣[−δn0 +Fn (q−)]
∫ eiq−x
√

x2 +1
dx
∣∣∣∣2
}
,

(13)

where Z is the atomic number of the target atom, k′ =√
k2−2(En−E0) is the final-state wave-vector of the incident

plane wave, and q± = k∓ k′ is the difference of wave vector be-
tween the incoming and outgoing waves. The first and second
terms on the right-hand side represent the forward and backward
scattered waves, respectively. Here, Fn (q) is the form factor, ex-
pressed as ZFn (q) =

〈
n
∣∣∑i eiqxi

∣∣0〉, where i is the index of the elec-
trons in the target. The form factor reduces to Fn (q) =

〈
n
∣∣eiqx

∣∣0〉
when dealing with the hydrogen atom. In the e-H scattering, the
target energy En and the target state |n〉 for the n-th excited state
can be simplified to εn+1 and ψn+1 for the (n+1)-th energy level of
the hydrogen atom. It seems impossible to define a cross-sections
in a 1D system, in which every incident particle encounters the
scattering center. However, considering the analogy of the rela-
tionship 1/τ0→n (kkk) = σ | jjj| in a 3D system [1/τ0→n (kkk) is a scatter-
ing rate, σ is a cross-section, and jjj is an electron flux], the 1D
cross-section simply defines a scattering probability rather than a
cross-section per se.54 Finally, we can write the transferred energy
as

Etrans = ∑
n

∫
ψ̃
∗
WP (k)(En−E0)σ0→n (k) ψ̃WP (k)dk,

(14)

where ψ̃WP (k) is the Fourier transform of a Gaussian wave packet
in position space, ψWP (x).

Figure 7(a) shows the transferred energy using time-dependent
perturbation theory. This overestimates severely the energy trans-
ferred by an electron with an incident energy lower than 100 eV.
The perturbation theory assumes a small change of the incoming
wave after scattering. This assumption is fulfilled when incident
electron energy is large compared to the strength of scattering po-
tential. For inelastic scattering channels, the incoming wave can
be modified substantially by losing a large portion of its kinetic
energy, and the assumption fails. As a result, for the inelastic
scattering channels, perturbation theory fails to provide a correct
scattering probability for high-energy excitations, overestimating
their scattering probability. This leads to the overestimation of
the energy transferred in a low incident energy.

Here, we suppose the incident electron is a classical particle
and apply Ehrenfest dynamics55,56 for the incident electron. The
Ehrenfest dynamics is obtained by applying the Ehrenfest theo-
rem to a highly localized state in space. We have confirmed the
conservation of the total energy, consisting of the classical inci-
dent electron and the hydrogen atom, while running the real-time
simulation. Figure 7(b) shows that the classical incident electron
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Fig. 8 (a) The ratio of the transferred energy in the exact solution,
EALDA

trans , to the transferred energy in the ALDA, EALDA
trans (open squares). In

this log-log plot, the dashed line is a function expressed as: y = 150/20
for x < 20; y = 150/x for 20 ≤ x < 150; y = 150/150 for 150 ≤ x. (b) The
relationship displayed in (a) is used to correct the transferred energy
underestimated in the ALDA. The maximum transferred energy and the
incident energy with the maximum point are consistent with the exact
values. Spin-unpolarized calculation is adopted.

gives rise to great overestimation of energy transferred in inci-
dent energy lower than 100 eV. This deviation has to do with the
extremely localized classical electron creating substantially strong
time-dependent field than an electron in a wave packet form. One
may expect that this result could also be reproduced by using a
wave packet with a small enough σ , which makes the initial wave
packet narrow. However, it is not the case because the width of
a free wave packet spreads as

√
σ2 + t2/σ2,57 i.e., an originally

narrow wave packet is rapidly delocalized.
Taking a ratio EExact

trans /EALDA
trans , we measure a degree of kinetic

correlation as a function of incident energy. Figure 8(a) shows
that kinetic correlation plays a crucial role in the deviation of
the energy transferred with the ALDA when the kinetic energy
of an incident electron is smaller than 150 eV. Here, the ratio is
inversely proportional to the incident energy. This inverse pro-
portion is related to overlapping time of two electrons, since the
kinetic correlation is significant when the incoming electron over-
laps with the bound electron. In the regime of incident energy
higher than 150 eV, the correlation time would be too short to
give an emergence of the kinetic correlation. At the turning point
at the incident energy of 20 eV, the ratio saturates and starts to
decrease as incident energy decreases. This is because inelastic
scattering channels open only if the incoming electron energy is
larger than the corresponding excited energy of a target. How-
ever, the incident energy at the turning point is larger than the
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first excited energy of the hydrogen atom, where the excitation
energy required is 10.7 eV in the exact solution and 8.8 eV in
the LDA. Considering a Gaussian incoming wave packet adopted
here, the turning point can be shifted to an energy larger than the
first excited energy of a target because the Gaussian wave packet
is decomposed into plane waves with a certain range of kinetic
energy around the given incident energy.

The expression of the dashed line shown in Fig. 8(a) can be
exploited to correct the transferred energy calculated using the
ALDA [Fig. 8(b)]. Once determining the upper and lower turn-
ing points of incident energy, one can make a correction to the
scattering probability given by the ALDA. The lower turning point
is associated with the first excited energy, and the upper turning
point would be associated with the size of target. Although this
correction is not so accurate, it can be of practical use to have the
quantitatively meaningful scattering probability from the ALDA
(see Fig. S4 in ESI† for effects of the deviation of the parameters
on the correction).

In closing, we propose a hybrid TDDFT-TDSE method to resolve
the severely underestimated scattering probability, which is a fun-
damental limitation imposed by the ALDA. Once we accept that
DFT or TDDFT well captures the electronic structure of the tar-
get, the remaining problem becomes the way of introducing the
effects of the incident electron. In a combined Hamiltonian, we
separately deal with the two interactions: (1) interaction among
bound electrons by using TDDFT; (2) interaction between the in-
cident electron and one of the bound electrons by using TDSE.
The hybrid method might be able to reduce computational cost
without loss of correlation between the incident electron and the
target electrons. The Hamiltonian of this hybrid system is intro-
duced in

Ĥhybrid =
target

∑
i

[
−1

2
∂ 2

∂x2
i
+ vext (xi)+ vHartree

[
ρ
′]

+vxc
[
ρ
′]+wee

(
xi,x j

)]
− 1

2
∂ 2

∂x2
j
+ vext

(
x j
)
,

(15)

where ρ ′ is target electron density without the incident electron
wave packet, given by ρ ′ (x, t) =∑

target
i |φi(x, t)|2. For a special case

where electrons are assumed to be distinguishable, j is an index
only for the incident electron, whereas the incident electron in-
dex j is interchangeable with a target electron index i for a gen-
eral case where the incident electron is indistinguishable from the
target electrons. When we take into account e-H scattering along
with SIC, Eq. (15) is readily reduced to the exact Hamiltonian
shown in Eq. (1). In doing so, the hybrid TDDFT-TDSE method
would facilitate reliable modeling of electron scattering by even
more complex targets in terms of the first-principles calculation.
As well as electron scattering, this approach can be applied to
different systems where we are especially interested in the cor-
relation of particular electrons among many others, for instance,
the entanglement of quantum bits in a bath.

5 Conclusion
We have investigated the real-time dynamics of inelastic electron
scattering using the exact solution, TDDFT, and alternatives. The
exact treatment of the dynamics reveals details in 1D e-H scatter-
ing, such as time-evolving occupation number and peaks of the
energy transferred as a function of incident energy. Compared
with the exact solution, ALDA substantially underestimates the
energy transferred in incident energy lower than 150 eV due to
the lack of strong interaction particularly in a spin-singlet state.
In addition, the SIC is in a better agreement with the exact so-
lution for ionization than the ALDA, whereas it does not correct
the energy transferred at all. Therefore, it is necessary to de-
velop an advanced XC functional capturing kinetic correlation in
order to simulate accurately the inelastic scattering dynamics us-
ing TDDFT.

The standard TDDFT in the ADLA fails to reproduce low-energy
electron scattering. Nevertheless, considering the rapidly growing
importance of scattering research in the physical and chemical sci-
ences, we should make further efforts to overcome this limitation.
It has been demonstrated that the two alternatives—perturbation
theory and the classical limit of the incident electron—are inca-
pable of reproducing the low-energy inelastic scattering. As a sim-
ple solution, we demonstrate a practical use of the relationship
between the exact and ALDA results to correct quantitatively the
ALDA result. Finally, we propose a hybrid TDDFT-TDSE method
that could achieve proper electron correlation and a low com-
putational cost simultaneously. Our work elucidates the micro-
scopic processes in the inelastic electron-target scattering dynam-
ics and paves the way to the study of the low-energy scattering
phenomenon of larger systems with heavier atoms and more elec-
trons in the ab initio calculation.
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