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Design, System, Application 

Due to their many tunable characteristics, including size, shape, and composition, small metallic 
nanoclusters are an important material class for a broad range of applications. To date, many 
approaches for identifying minimum energy, or ground-state, structures have been explored in 
the theoretical study of nanoclusters. In this work, we propose that the task of identifying a 
minimal energy nanocluster structure can be handled with design methods and optimization 
algorithms commonly in many other fields, notably including process design. Our approach 
constitutes a rigorous framework for casting the design of mono-metallic nanoclusters as a 
special class of optimization problems called mixed-integer linear programs, which can be solved 
readily and exactly using well-established numerical methods. By contrasting the results of our 
optimization model with density-functional theory calculations, we evaluate the accuracy of our 
solutions and regress corrective factors to improve energy predictions. This approach allows for 
the quick determination of unintuitive, energetically favorable structures that are amenable for 
synthesis and/or can be utilized for further scientific study. Although the focus in this work is on 
mono-metallic, face-centered cubic nanoclusters, the framework can be extended to 
accommodate multi-metallic systems and additional crystal geometries.
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Identification of Optimally Stable Nanocluster Ge-
ometries via Mathematical Optimization and Density-
Functional Theory

Natalie M. Isenberg,a Michael G. Taylor,b Zihao Yan,b Christopher L. Hanselman,a Gian-
nis Mpourmpakis,b and Chrysanthos E. Gounarisa∗

Small nanoparticles, a.k.a. nanoclusters, of transition metals have been studied extensively for a
wide range of applications due to their highly tunable properties dependent on size, structure, and
composition. For these small particles, there has been considerable effort towards theoretically
predicting what is the most energetically favorable arrangement of atoms when forming a nan-
ocluster. In this work, we develop a computational framework that couples density-functional the-
ory calculations with mathematical optimization modeling to identify highly stable, mono-metallic
transition metal nanoclusters at various sizes. This is accomplished by devising and solving a rig-
orous mathematical optimization model that maximizes a general cohesive energy function to ob-
tain nanocluster structures of provably maximal cohesiveness. We then utilize density-functional
theory calculations and error term regression to identify model corrections that are necessary
to account with better accuracy for different transition metals. This allows us to encode metal-
specific, analytical functions for cohesive energy into a mathematical optimization-based frame-
work that can accurately predict which nanocluster geometries will be most cohesive according
to density-functional theory calculations. We employ our framework in the context of Ag, Au, Cu,
Pd and Pt, and we present sequences of highly cohesive nanoclusters for sizes up to 100 atoms,
yielding insights on structures that might be experimentally accessible and/or structures that could
be used as model nanoclusters for further study.

Design, System, Application

Due to their many tunable characteristics, including size, shape,
and composition, small metallic nanoclusters are an important
material class for a broad range of applications. To date, many ap-
proaches for identifying minimum energy, or ground-state, struc-
tures have been explored in the theoretical study of nanoclus-
ters. In this work, we propose that the task of identifying a min-
imal energy nanocluster structure can be handled with design
methods and optimization algorithms commonly in many other
fields, notably including process design. Our approach constitutes
a rigorous framework for casting the design of mono-metallic
nanoclusters as a special class of optimization problems called
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∗ Corresponding author: gounaris@cmu.edu
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mixed-integer linear programs, which can be solved readily and
exactly using well-established numerical methods. By contrasting
the results of our optimization model with density-functional the-
ory calculations, we evaluate the accuracy of our solutions and
regress corrective factors to improve energy predictions. This ap-
proach allows for the quick determination of unintuitive, energet-
ically favorable structures that are amenable for synthesis and/or
can be utilized for further scientific study. Although the focus in
this work is on mono-metallic, face-centered cubic nanoclusters,
the framework can be extended to accommodate multi-metallic
systems and additional crystal geometries.

1 Introduction
Small transition metal nanoclusters possess properties that are
highly dependent on size, shape, and composition. Optimizing
these material parameters can lead to drastically improved mate-
rial performance for application in catalysis,1–4 electronics,5 and
biological systems.6 One key research question in the study of
small transition metal nanoclusters is to identify the most stable
morphology for a nanocluster of exactly N metal atoms.7 While
it is possible to determine stable sizes of small nanoclusters ex-
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perimentally by measuring the frequency in which those sizes ap-
pear during synthesis, morphological trends in small clusters are 
difficult t o e lucidate s ince small particles cannot be observed in 
high enough resolution to discern specific atomic arrangements.8 

Therefore, understanding small nanocluster morphology requires 
complimentary theoretical calculations and predictions.

In order to determine the most stable structure for a nanoclus-
ter, one must identify the configuration of atoms with the lowest 
total energy, as assessed with some empirical or semi-empirical 
function, or some ab initio calculation for the potential energy.9 

However, determining the global minimum energy structure for a 
nanocluster of N atoms is a highly combinatorial problem that is 
a member of the NP-hard complexity class of computational prob-
lems.10 This means that, in principle, one might be required to 
evaluate the energy of each possible arrangement of atoms, which 
is generally an intractable task. Despite such challenges, sophis-
ticated meta-heuristic search algorithms have been employed to 
search for minimum energy mono- and bi-metallic nanocluster 
morphologies.11,12 Approaches of this type include genetic algo-
rithms,13 basin-hopping,14 and simulated annealing.15 While the 
reported structures are in general highly stable, and may indeed 
be ground state geometries, they are not provably optimal against 
the stability metric used because meta-heuristic search algorithms 
use arbitrary termination criteria that lack guarantees of search-
ing the entire solution space. Without a proof of optimality upon 
completion, such algorithms might converge to a local minimum, 
as opposed to the true, global minimum. In this work, we pro-
pose a complementary approach that is based on a mathemat-
ical optimization-based framework, and we formulate a mixed-
integer linear programming (MILP) model for determining mini-
mum energy structures of three-dimensional, mono-metallic nan-
oclusters. The distinctive feature of our approach is that, when 
solved to algorithmic termination by an appropriate MILP numer-
ical solver, the model returns a low energy nanocluster that is 
guaranteed to be globally optimal up to the accuracy of the en-
ergy functional used and the flexibility afforded by the explicitly 
encoded lattice.

The geometry of a minimum energy nanocluster of a given size 
is assumed in this work to be the one that attains the maximum 
cohesive energy (Ecoh). The cohesive energy is chosen as a good 
proxy for the particle’s overall stability because it measures the 
cumulative strength of interatomic bonding between atoms. As 
a first pass, our mathematical model utilizes an analytical cohe-
sive energy function first p roposed b y Tománek e t al. 16 ,  which 
stipulates that the contribution of each atom to the total cohe-
sive energy of a particle depends only on its coordination num-
ber (CN), i.e., the number of neighbors surrounding this atom 
within the lattice. Previous work has successfully utilized CN as 
a catalytic site descriptor to design transition metal surfaces via 
mixed-integer linear programming techniques.17 The work pre-
sented here extends such techniques towards the design of three-
dimensional nanoclusters. Notably, the rigorous optimality guar-
antees afforded to us by the MILP-based approach often allow us 
to identify unintuitive and previously unconsidered designs that 
complement the breadth of existing results in the identification 
of low-energy small nanoclusters. It should be noted, however,

that the new approach only seeks structures on a predefined, dis-
crete lattice. This means that only structures that conform to the 
chosen lattice can be identified as optimal, highlighting the need 
for the user to provide a lattice input that can accommodate rea-
sonable expectations about the geometry of highly cohesive struc-
tures.

The contributions of the present work are three-fold. First, we 
use rigorous mathematical modeling and optimization to iden-
tify highly cohesive nanocluster geometries. Next, we use high-
accuracy, computational chemistry methods to regress metal-
specific m odels f or n anocluster c ohesive e nergy. A nd finally, 
we conduct a comprehensive computational study to identify se-
quences of minimum energy structures unique to different metals 
and for a wide range of sizes (number of atoms). The remainder 
of the manuscript is structured as follows. In Section 2, we discuss 
a model for cohesive energy that solely depends on the coordina-
tion number of a nanoparticle’s atoms. In Section 3, we utilize 
this cohesive energy function to derive and solve a mathematical 
optimization model for identifying highly cohesive mono-metallic 
nanoclusters at given sizes. Utilizing density-functional theory, 
in Section 4 we calculate the exact cohesive energies of our nan-
ocluster structures, and we use these results to regress more ac-
curate, metal-specific m odels o f c ohesive e nergy. We t hen em-
bed these more accurate functions within the optimization model 
and re-solve it to identify optimally cohesive structures for various 
metals of interest. Finally, we conclude with some final remarks 
in Section 5.

2 Square Root Bond-cutting Model of Cohe-
sive Energy

The cohesive energy, Ecoh, of a material represents the energetic 
benefit imparted when neutral metal atoms come together from 
infinite separation to form a crystalline solid. It has been shown 
that the moment expansion method for determining the electron 
density-of-states can accurately describe cohesion in transition 
metals.18,19 Based on this result, a transition metal atom con-
tributes to the cohesiveness of a nanocluster proportionally to the 
square root of its coordination number.16,18,19 Therefore, the av-
erage (per atom) cohesive energy of a transition metal nanoclus-
ter can be represented as a function of the coordination numbers 
of all its N atoms according to Equation 1.

Ecoh =
EBULK

coh
N

N

∑
i=1

√
CNi

CNmax
+ER (1)

In the above equation, CNi refers to the coordination number at-
tained by the ith atom, CNmax is an integer parameter specifying
the maximum attainable coordination number for a given crystal
lattice, EBULK

coh is the cohesive energy of the bulk material, and
ER is a residual energy term. The residual term ER represents
repulsive interactions between atoms in a nanocluster at non-
equilibrium interatomic distances. Whereas this term is especially
prevalent at small sizes N,20 there generally exists no closed-form
representation for it. Hence, we shall initially neglect it by as-
suming ER=0. This model with no residual energy term is also
referred to as the Square Root Bond-cutting (SRB) model for cohe-

2

Page 3 of 14 Molecular Systems Design & Engineering



sive energy.21 Importantly, the SRB model is MILP-representable
via standard modeling methods described in the following sec-
tions, opening up interesting possibilities for its inclusion as the
basis of a tractable optimization model for nanocluster design.

From this point onwards, when we refer to cohesive energy,
we will be referring to its dimensionless form, which is the above
defined quantity (Ecoh) normalized to (divided by) the value of
EBULK

coh , and which can thus attain values between 0 and 1, irre-
spective of the identity of the material involved.

3 Mathematical Optimization-based Design

We shall now propose a mathematical optimization modeling
framework for determining the minimum cohesive energy struc-
tures of three-dimensional, mono-metallic nanoclusters. In this
framework, sites on a crystal lattice are indexed via the set i ∈ I.
We refer to this set as a canvas, as it constitutes the space wherein
an allotment of N atoms can be placed to design the nanoclusters.
For each lattice site i, we introduce a binary design variable, Yi, to
indicate the presence or not of an atom on this site. If Yi = 1, an
atom exists at canvas location i, while if Yi = 0, the canvas site is
devoid of an atom. Using this framework, it is possible to repre-
sent any nanocluster design as a collection of “0/1” values for all
design variables in the canvas.

The size and shape of the canvas should be carefully selected by
the modeler. For example, if one wishes to design a face-centered
cubic (FCC) nanocluster with N = 100 atoms, a possible canvas to
use would be a cuboctahedral geometry and 561 lattice sites (i.e.,
5 shells of a perfect cuboctahedron). However, one should keep
in mind that the difficulty of solving the nanocluster optimization
model depends upon the size of the canvas (degrees of freedom)
in relation to how much of the canvas should be occupied (size of
nanocluster), and that there exists a trade-off between numerical
tractability and flexibility to accommodate any conceivable nan-
ocluster design of a particular size N. Finally, it should be noted
that, although we focus this study on FCC nanoclusters, the con-
cept of a canvas, and thus our proposed optimization model, can
be easily extended for the design of nanoclusters with any crys-
talline geometry.

3.1 Basic Optimization Model

Given degrees of freedom Yi to indicate placement of atoms as
well as auxiliary variables CNi to encode the coordination number
at every canvas location i ∈ I,† the basic optimization model to
identify maximally cohesive transition-metal nanoclusters is given

† In this context, the “coordination number of an unoccupied location is regarded to
be equal to 0.

below in Equations 2 through 10.

max
Yi,CNi

1
N
√

CNmax
∑
i∈I

√
CNi (2)

s.t. ∑
i∈I

Yi = N (3)

{Yi = 1}⇒

{
CNi ≤ ∑

j∈Li

Y j

}
∀i ∈ I (4)

{Yi = 1}⇒ {CNi ≥CNmin} ∀i ∈ I (5)

{Yi = 0}⇒ {CNi ≤ 0} ∀i ∈ I (6)

0≤CNi ≤CNmax ∀i ∈ I (7)

Yi ∈ {0,1} ∀i ∈ I (8)

All atoms are connected (9)

Nanoclusters are non-hollow (10)

The model’s objective function, Equation 2, consists of the (di-
mensionless) SRB cohesive energy function, which we seek to 
maximize. Equation 3 defines t he n anocluster’s s ize (number 
of atoms), where N is an integer parameter of the model to be 
provided as a constant. For occupied canvas locations, Equa-
tions 4 set the auxiliary variables CNi to their applicable values,‡ 

where the sets Li have been defined to represent the neighbor-
ing sites to each location i. At the same time, Equations 5 ensure 
that all atoms adhere to some minimum value, CNmin, which is 
provided to avoid low-coordinated, unrealistic atom placement. 
Equations 6 enforce that, if no atom is placed at a location i, then 
the corresponding CNi variable attains the value of 0, and hence, 
prohibit unoccupied locations from contributing to the objective 
function. Note that the implication constraints 4 through 6 can be 
transformed to standard linear equations using well-known MILP 
modeling techniques, such as the so-called big-M reformulation, 
which is what we used in our implementation.

Equations 7 declare the non-negativity of the coordination 
number variables, as well as enforce applicable upper bounds on 
their possible values. Here, the upper bound of CNmax is cho-
sen as the maximum achievable coordination number in a given 
canvas, as determined by the applicable lattice. Finally, Equa-
tion 8 explicitly enforces the integrality constraint for the binary 
variables Yi.§ We remark that, for the FCC geometry used in this 
study, we use constant values CNmin = 3 and CNmax = 12, mean-
ing that any given atom is allowed to have at least three and at 
most twelve nearest neighbors. For other crystalline geometries, 
other appropriate values should be used (e.g., for body-centered

‡ We remark that coordination numbers are defined here via ≤ inequality constraints 
(as opposed to strict equalities) at the interest of yielding an MILP model with 
tighter LP relaxations. Due to the direct maximization of variables CNi in the 
objective function, the coordination number evaluations will be exact at any 
optimal solution.

§ Note how the integrality of variables CNi need not be explicitly declared, as it is
implied by the integrality of variables Yi.
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cubic, CNmax=8).

There also exist two additional requirements on our nanoclus-
ter designs, namely those of connectivity and non-hollowness. The
purpose of requiring connectedness is to avoid presumed solu-
tions where the N atoms have been divided into two or more
smaller nanoclusters. The requirement for non-hollowness is im-
posed to avoid nanocluster designs that feature void enclosed vol-
ume. Because it is not straightforward to represent such require-
ments as explicit constraints on our model’s decision variables,
we are only presenting them conceptually in Equations 9 and 10,
respectively. These two constraints are enforced dynamically dur-
ing the solution procedure via a lazy-constraint interface, which
is available in modern MILP solvers. Omitting many details at
the interest of brevity, the main idea is to inspect every design
as soon as it is returned by the numerical solver, and if found to
be either disconnected or hollow, to add an integer cut constraint
to the model so as to explicitly render this specific design infeasi-
ble, eliminating the possibility that this design persists as the final
optimal solution identified by the framework.

3.2 Concave Objective Function

We remark that the objective function is a non-linear, concave
function in variables CNi. Whereas at first glance this equation
appears incompatible with an MILP model, we can reformulate it
into an MILP-representable form due to the special mathematical
structure of the model, namely the integrality of variables CNi and
the fact that we seek to maximize such a concave function. More
specifically, we introduce a new set of auxiliary variables, CNRi,
to represent the square root value of the coordination number
at each canvas location i ∈ I, adding also the following bound
definitions.

0≤CNRi ≤
√

CNmax ∀i ∈ I (11)

We can now choose to model the square root of the coordina-
tion number not as a smooth function, rather as a set of secant
lines passing through points on the curve

√
CNi at integer values

of CNi, as shown in Figure 1 for the case of an FCC lattice. Note
how this approximation of the square root function is exact at
all locations of interest, namely the integer values of CN. The
secant-line definition of CNRi is then imposed in the model via
Equations 12, where α` and β` are appropriate constants to rep-
resent the slope and intercept, respectively, of each consecutive
secant line `.

CNRi ≤ α`CNi +β` ∀i ∈ I,∀` ∈ {1,2, . . . ,CNmax} (12)

Finally, the objective function is then replaced with Equation 13.
Note that, because we are maximizing the cohesive energy, the
optimizer has the incentive to choose the exact value of the appli-
cable (intersection of) secant lines, as it is the maximally attain-
able value permitted by the inequalities 12. Hence, this substitu-
tion models the SRB cohesive energy not only in a linear form,
but also exactly (i.e., without approximation error).

1
N
√

CNmax
∑
i∈I

CNRi (13)

CNi

√
C

N
i/
√

12

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 1 Square Root Bond-cutting model for cohesive energy (dimension-
less) of an FCC atom i, plotted against CNi. Also shown are the secant
lines used to exactly represent the evaluations of cohesive energy at in-
tegral CNi values.

3.3 Symmetry Breaking
Due to the highly symmetric nature of crystallographic spaces,
there exist many isomorphically equivalent ways to represent the
same nanocluster in a canvas, by means of rotation, translation
and reflection operations. More specifically, the FCC lattice is
close-packed and has two-, three- and four-fold axes of symme-
try. Symmetry of this form makes the MILP model more diffi-
cult to solve to optimality due to the large number of equiva-
lent, feasible solutions. In order to mitigate this effect, Equa-
tions 14 and 15 were added to the model as symmetry-breaking
constraints. These constraints aim to eliminate some isomor-
phic solutions from the design space, while guaranteeing that at
least one representative solution remains feasible in the resulting
model, and hence, that at least one isomorphic equivalent of the
optimal nanocluster is accessible from the design space induced
by the model.

∑
i∈I+s

Yi− ∑
i∈I−s

Yi ≥ 0 ∀s ∈ {1,2,3} (14)

∑
i∈I+s

Yi− ∑
i∈I−s

Yi ≤ ∑
i∈I0

s

Yi ∀s ∈ {1,2,3} (15)

The sets I+s , I−s and I0
s in the symmetry-breaking constraints rep-

resent suitable partitions of the canvas, as dictated by three inter-
secting crystallographic planes, s. Any lattice site i in the canvas
can be viewed as either being “above” plane s, i ∈ I+s , “below”
plane s, i ∈ I−s , or “on” plane s, i ∈ I0

s . By restricting the distribu-
tion of atoms in the canvas to be approximately balanced, many
isomorphically equivalent solutions are removed from the set of
feasible solutions.

3.4 Improving Numerical Tractability
The mathematical optimization model presented in the previous
section can be addressed by any off-the-shelf MILP solver. How-
ever, the latter being a form of numerical software, it is subject to
numerical tractability issues when applied on models that feature
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large feasible spaces, such as those that arise when we use large
values of N. In order to improve solution performance at all N
values we wish to consider in this study, we choose to apply our
model sequentially, increasing the value of N one at a time. As
we do so, we adapt the canvas for optimizing the N-atom nan-
ocluster based on the shape of the optimal (N− 1)-atom design.
In addition, recognizing that in large clusters there is a signifi-
cant amount of bulk atom sites, we fix certain binary variables in
central locations of the canvas, again being informed by optimal
solutions preceding in the sequence. Below we elaborate further
on these algorithmic enhancements to our framework.

3.4.1 Adaptively select the canvas size and shape

In order to ensure that the MILP solver has enough degrees of
freedom to enumerate and identify the optimal nanocluster at a
given size, a sufficiently large canvas must be used. Ideally, this
size of the canvas should be as large as possible, so that the MILP
solver has access to a design space that is guaranteed to include
the optimal nanocluster geometry. However, the tractability of the
problem scales inversely with the size of the canvas. In order to
alleviate this issue, the shape and size of the canvas is determined
by the optimal solution of the (N−1)-atom nanocluster. Starting
with N = 4, where the optimal solution is easily determined (e.g.,
using the unenhanced framework) to be a tetrahedron,¶ all fol-
lowing canvases can be constructed by taking the (N−1)-atom op-
timal nanocluster and expanding it by two complete shells around
that particle. We have empirically determined that this procedure
leads to sufficiently large design spaces, as maximizing cohesive
energy will tend toward centralized, roughly spherical shapes. It
also ensures that the canvas is not excessively large at smaller
values of N.‖

3.4.2 Simplify by fixing select atom positions

Another enhancement we have applied in order to improve our
framework’s numerical tractability is the fixing (to the value of
1) of certain Yi variables based on optimal solutions at smaller N
values. This decreases the complexity of the optimization prob-
lem by decreasing its degrees of freedom (number of the unfixed
binary decision variables). Physically, this forces some lattice po-
sitions to be occupied by an atom in all solutions considered in
the design space.

The algorithm for selecting which atoms to fix is as follows.
If N ≥ m, consider the set of the previous m optimal nanoclus-
ters, O = {N − 1,N − 2, . . . ,N −m}. Enumerate all rotations of
each of the nanoclusters in O that satisfy the symmetry-breaking
constraints of Equations 14 and 15, and denote the set of these
transformed nanoclusters as O∗. The atoms that will be fixed at
lattice locations i are those that appear in all nanoclusters in the
set O∗. In other words, if a particular atom is present in the m
previous optimal solutions, we expect it to arise again in the cur-

¶The design problem is technically infeasible for values of N ≤ 3, due to the require-
ment for minimum coordination equal to 3 for all atoms.

‖ In practice, canvases designed this way will not be regular cuboctahedra, though
this poses no concern in terms of defining the optimization model, which can be cast
for any irregularly shaped canvas I.

rent solution. In this work, m = 6 was used at all N sizes, because
that setting was found to provide sufficiently conservative sets
of lattice locations to fix, while also significantly improving the
tractability at all N.

4 Results and Discussion
The nanocluster optimization model was solved with and with-
out the numerical enhancements of canvas sizing and atom fix-
ing. In the model instances solved without enhancements, the
canvas was taken to be the 561 lattice site cuboctahedron. Re-
sulting cohesive energies at consecutive sizes N are shown in Fig-
ures 2a and 2b. Each model was solved using the MILP solver
CPLEX 12.8,22 using a one hour time limit and four threads in
parallel mode. Additionally, each run was provided with an ini-
tial solution via the MIP start feature of this solver. The initial
solution used at a given N was generated by taking the (N− 1)-
atom nanocluster solution and attaching on its surface a single
atom in the most favorable (out of all feasible options) position.

0 10 20 30 40 50 60 70 80 90 100
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0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

N

E
co

h

Best integer solution
Best bound (no enhancements)

(a)

0 10 20 30 40 50 60 70 80 90 100
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0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

N

E
co

h

Best integer solution
Best bound (with enhancements)

(b)

Fig. 2 Best solutions and best upper bounds at termination for N =

4−100, using the MILP model without (2a) and with (2b) algorithmic en-
hancements.

First, it should be noted that, as N increases, the best integer
solutions asymptotically approach the value of 1; that is, the op-
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timal cohesive energies approach the bulk cohesive energy of the 
material, which is consistent with the expected behavior of the 
SRB function. However, there are some instances where the co-
hesive energy does not trend monotonically as N increases. This 
has been observed in the literature and can be explained via the 
concept of magic number effects.23

It is also clear that, without enhancements, the solver fails to 
prove the optimality of its best identified d esigns ( red d ots) for 
cases as low as N = 10. This is likely due to poor LP relaxations 
that are observed while integrality is relaxed, as the mass of all N 
atoms is diffused across all sites in the canvas.It is also clear that, 
without enhancements, the solver fails to prove the optimality of 
its best identified designs (red dots) for cases as low as N = 10.

On the other hand, once the proposed enhancements are en-
abled, the performance of the MILP solver drastically improves, 
and the solver is able to close the optimality gap in all cases ex-
cept the regimes N = 54 − 64 and N = 70 − 80, where some very 
small gaps remain. This can be explained by inspecting how the 
set of central fixed a toms e volves o ver N . I n t he r anges where 
the upper and lower bound are not equal at termination, there 
are approximately ten fewer fixed b inary v ariables, w hen com-
pared to the following and preceding sequences. This increase in 
free binary variables decreases the tractability of these instances, 
as compared to those with fewer degrees of freedom, leading to 
non-zero, yet small, gaps after the imposed time limit.

Table 1 shows some representative optimal solutions. We ob-
serve that these generally possess a somewhat octahedral shape, 
in accordance with empirical expectation. Furthermore, it is wor-
thy to note that there was never a case when, by solver termina-
tion, the unenhanced framework had identified an integral solu-
tion that was better that the one having been identified by the en-
hanced framework. To this end, we believe that the algorithmic 
enhancements do not cause optimal solutions to be eliminated 
from the design spaces, and hence, they are welcome to adopt 
moving forward inasmuch as they improve tractability without 
any deterioration in solution optimality. Schematics of all opti-
mal structures are plotted in the Appendix, while the exact atomic 
coordinates are provided as XYZ files in the ESI.†

4.1 Metal-specific Model Corrections
The SRB model for cohesive energy is known to be an approx-
imation for the true cohesive energy of small metallic clusters. 
Firstly, the SRB cohesive energy model neglects the residual en-
ergy term for non-ideal interatomic interactions proposed by 
Tománek et al. 16 Secondly, the SRB cohesive energy model has no 
metal-specific considerations, essentially assuming that all metals 
will form bonds in the same way, which is a poor assumption for 
small nanoclusters where quantum effects are prominent. Thus, 
there exists a need to develop more accurate, metal-specific, yet 
still MILP-representable, formulas for cohesive energy that correct 
the SRB model.

4.1.1 Collection of nanocluster structures for comparison

First, the enhanced optimization framework, in its original form 
using the SRB model as its objective, was utilized to identify a set 
of highly cohesive nanocluster geometries at a range of sizes. For

this, we used the solution pool of the CPLEX solver, which allows 
us to identify the k-best integral solutions to an MILP model at 
a computational cost that is only marginally higher than that of 
a standard run to identify just the (one) optimal solution. More 
specifically, for sizes N  = 13 − 25, the best k = 10 nanocluster ge-
ometries were collected, with an additional data point at N = 20 
to include a perfect tetrahedron. For N = 26 − 40, we collected 
the best k = 3 nanocluster geometries, while for N = 41 − 100, 
only the optimal nanocluster was collected. This led to a total 
of 236 highly cohesive nanoclusters, with most of the data in the 
N = 13 − 40 size regime. With all values of N, a four hour time 
limit was imposed to collect such solution pools.

4.1.2 Comparison with DFT-predicted energies

The identified o ptimal a nd n ear-optimal s tructures w ere then 
evaluated with density function theory (DFT) for their “true” co-
hesive energies in the context of five transition metals of interest, 
namely silver (Ag), gold (Au), copper (Cu), palladium (Pd) and 
platinum (Pt). These metals were chosen due to their array of 
applications in catalysis and alternative energy applications.24–26 

All DFT calculations were performed in the CP2K computational 
package27 with the PBE functional28, DZVP basis set29, and GTH 
pseudopotentials.30 These methods have been successfully used 
in the past to evaluate the energetics of metal clusters.21 Note 
that we used the MILP-predicted optimal clusters as input struc-
tures for the DFT calculations, with their interatomic distances 
being set to those in the bulk. The bulk cohesive energy, as cal-
culated by PBE, was used as a consistent energy reference for our 
comparisons with DFT. Single-point energy evaluations were per-
formed on the interatomic scaled monometallic clusters.31

Parity plots between the energies predicted by the SRB cohesive 
energy function and by DFT are shown in Figure 3 (black dots). 
From the parity plots of Figure 3, it is clear that the SRB cohesive 
energy is over-estimating the cohesive energy in all cases. This is 
likely due to (metal) group-dependent effects such as stresses and 
surface relaxations,32,33 which are not considered by the metal-
agnostic SRB function and which may be the source of the pre-
diction errors observed. We remark that, in our DFT calculations, 
metal-specific stresses are present because we do not relax the 
nanoclusters and rather constrain the atoms to sit on perfect lat-
tices with set bulk interatomic spacings. The latter can deviate 
from DFT-calculated spacings and can also change in a metal-
dependent fashion at the nanoscale.

The degree of error varies across metals. In fact, the SRB func-
tion estimates the cohesive energy of the Group 11 metals (Au, 
Ag, Cu) significantly better than the Group 10 metals (Pd, Pt). In 
general, the approximation is poorer at lower cluster sizes, and 
better at larger sizes. Indeed, the SRB approximation is known 
to increase in accuracy for all metals as nanoclusters approach 
bulk material size. Finally, it should be noted that the outlier in 
each plot of parity is the N = 20 tetrahedron. This structure is 
known to exhibit special quantum effects that enhance its stabil-
ity in DFT calculations for Group 10 metals like Au.34,35 Hence, it 
is not surprising that the SRB model, which ignores such effects, 
does a poor job at predicting its cohesive energy.
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Table 1 Representative optimally-cohesive nanocluster geometries, as predicted by the MILP-model maximizing the SRB cohesive energy.

N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=80 N=90 N=100

4.1.3 Regression of corrective terms

Using the parity plots from the previous analysis as a guide,
metal-specific corrective terms in the coordination-dependent
function for cohesive energy can now be identified using a con-
strained regression process. The focus has been on deriving cor-
rections that are MILP-representable, so that they can be embed-
ded in our MILP-based nanocluster design framework. Further-
more, it is desirable for these corrections to reference quantities
already encoded in our optimization formulation (e.g., the coor-
dination numbers CNi), so as not to further increase its complex-
ity. To achieve this, a linear regression was performed, the details
of which are deferred to the Appendix. The general form for the
corrected dimensionless cohesive energy models (Em

coh, where the
superscript m stands in for a specific metal) is shown in Equa-
tion 16. The basis functions–or features–we used to determine
the regression coefficients γm

k are the fractions, fCNk, of atoms in
the nanocluster that attain a specific coordination number k (be-
tween the admissible values CNmin and CNmax), as per the defini-
tion of Equation 17. Conceptually, this selected functional form of
Em

coh captures metal-specific cohesive energies via an “offset” from
the SRB model prediction.

Em
coh = ESRB

coh +
CNmax

∑
k=CNmin

γ
m
k fCNk (16)

fCNk :=
1
N

(
N

∑
i=1

1{CNi=k}

)
∀k ∈ {CNmin, . . . ,CNmax} (17)

After solving the regression model discussed in the Appendix, we
obtain metal-specific variations of the cohesive energy from the
SRB model, as shown in Figure 4. The most dramatic shifts in the
per-atom energy contributions are exhibited for the case of Pd,
which reflects the fact that the SRB function over-estimates the
DFT-predicted energies the most. Interestingly, for the cases of
Pd, Cu and Au, there are consistent decreases in energetic contri-
butions from all CN values, while the Pt and Ag models promote
contributions (i.e., impart cohesive energy greater than the SRB
model) from highly-coordinated atoms. We note that these results
may, in part, be due to the fact that transition metals are well-
known to possess metal-dependent nanoscale strain,9,32 which
could be captured here through the metal-specific deviations from
the SRB function.

4.2 Metal-specific Cohesive Energy Optimization

Using the collected DFT data and methods outlined previously,
metal-specific functions for nanocluster cohesive energy were re-
gressed to predict nanocluster cohesive energies with greater ac-

curacy. The same set of highly cohesive nanoclusters is evalu-
ated with the metal-specific cohesive energy models and plotted
against the DFT predictions in Figure 3. It is clear that the new
cohesive energy function predicts the cohesive energies of these
nanoclusters much better than the original SRB function.

In fact, because of the shifts in per-CN cohesive energy contri-
butions in the surrogate models for each metal m, Em

coh, it is possi-
ble that the optimal, most cohesive structures at a certain size N 
might change from what was determined previously using merely 
the SRB function. In order to design transition metal nanoclusters 
that are guaranteed to possess maximal cohesive energies against 
the more accurate, DFT-based evaluation, the surrogate cohesive 
energy functions were embedded in the formulation of our math-
ematical optimization model. More specifically, t he o riginal ob-
jective function (Eqn. 2) of the optimization model was replaced 
with the surrogate models by simply shifting the set-points of the 
secant lines (Fig. 1). Apart from this change in the objective func-
tion, the rest of the optimization model remained unchanged. Ex-
amples of new optima determined this way are shown in Table 2. 
New optima identified for all sizes N and metals m we considered 
in this study are depicted in the Appendix, while corresponding 
structure files are provided in the ESI.†

It should be noted that the nature of the canvas used in this 
study (FCC lattice) means that only FCC structures are identi-
fied h ere a s o ptimally c ohesive. T his c an b e a  v alid assump-
tion for certain regimes, such as in the case of smaller Pd clus-
ters that have been shown to trend toward FCC structures over 
non-crystalline alternatives.36 Furthermore, the modified octa-
hedral shape of many of the optimal nanoclusters predicted by 
our framework at intermediate sizes are in agreement with some 
previously reported results.37–39 However, we should acknowl-
edge that non-FCC structures featuring decahedral40 or icosahe-
dral9,41 geometries can also arise in transition metal nanoclus-
ters. This is due to the fact that such 5-fold symmetric structures 
maximize the coordination of surface atoms, which is especially 
favored at small N where the strain induced by this surface pack-
ing is not prohibitive. Whereas the current study did not search 
over the space of non-FCC geometries, and thus could not ob-
tain results reflecting the above cases, our framework could be 
modified to do so via the use of appropriately defined canvases 
that can accommodate all reasonably expected possibilities re-
garding non-FCC placements, including 5-fold symmetric lattices. 
In addition, we could introduce additional terms to our objective 
function of cohesive energy so as to reproduce special cases of 
enhanced stability that arise due magic number phenomena via 
electronic shell closures23 (e.g., the N = 20 Au tetrahedron33,34) 
or relativistic effects42 (e.g., planar Au nanoclusters41,43–45). In 
any case, it should be highlighted that, once optimal FCC struc-
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Fig. 3 Parity plots between cohesive energies calculated by the SRB model (y-axis), with and without metal-specific corrections, and by DFT (x-axis)
for various metals.

N=19 N=22 N=36 N=42 N=83

SR
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fic

Pd19 Ag22 Au36 Cu42 Pt83

Table 2 Comparison of a few optimal nanocluster structures as determined by the SRB function (first row) and the new optimal structures determined
by the corrected models for different metals (second row).

tures are obtained under the current model setup, it is advisable 
to subject them to local energetic relaxation using any appropri-
ate, sophisticated functional of choice, in order to determine the 
precise off-lattice placement, whenever applicable.

5 Conclusions

In this work, we developed a methodology that combines math-
ematical optimization with DFT calculations for designing highly
cohesive transition metal nanoclusters (see Fig. 5). We first fo-
cused on using the SRB cohesive energy function and developed
a mathematical optimization model to identify highly cohesive
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Fig. 4 Metal-specific corrections to the original SRB model for cohesive
energy, identified via constrained regression based on DFT predicted val-
ues.

structures of small, mono-metallic nanoclusters ranging in sizes
from 13 to 100 atoms. We showed that the tractability of this
optimization model can be significantly improved with careful se-
lection of the design canvas and a core part of the latter where
the presence of atoms can be safely assumed. DFT calculations
were then used in the context of constrained regression to quan-
tify required corrections to the SRB function so that the true en-
ergetics of small nanoclusters can be satisfactorily captured. Em-
bedding these corrections into the optimization model led to the
identification of unintuitive, yet optimally cohesive (up to DFT
accuracy), nanocluster designs of gold, silver, copper, palladium,
and platinum. Moving forward, these designs can serve as model
structures for a wide spectrum of computational chemistry studies
involving nanoclusters in fields ranging from catalysis to targeted
delivery.
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Appendix
SRB Function Corrections via Constrained Regression
The constrained regression optimization model used to identify
coefficients for the metal-specific cohesive energy functions is
shown in Equations 18– 21. This regression model, which is
parameterized by the metal type m, was applied separately for
each specific investigated in this study. The objective function
(Eqn. 18) represents the sum of squared errors for each of the
n = 236 nanocluster structures used as input data (see Section
4.1.1 for further details as to the origin of these structures). The
error for a particular nanocluster structure j is calculated as the
difference between its DFT-predicted cohesive energy and its eval-
uation of energy Em

coh from Equation 16. In order to ensure the
same linearization methods can be used on the new objective
function in the context of the MILP optimization model (see dis-
cussion in Section 3.2), constraints for concavity of the new Em

coh
functions are added to the regression via Equations 19. Addition-
ally, a set of hierarchical constraints (Eqns. 20) is added to enforce
that the cohesive energy functions increase monotonically with
CN, while the assertion in Equation 21 enforces that no correc-
tion is required for the contribution of bulk atoms, which always
equals one (in dimensionless terms). Together, these constraints
ensure that no individual atom’s energy contribution surpasses
that of the bulk.

min
γm

k

n

∑
j=1

(
EDFT

coh, j−

(
ESRB, j

coh +
12

∑
k=3

γ
m
k fCNk, j

))2

(18)

s.t.

√
k

12
+ γ

m
k ≥


√

k+1
12 + γm

k+1 +
√

k−1
12 + γm

k−1

2

 ∀k = {4, . . . ,11}

(19)√
k

12
+ γk ≤

√
k+1

12
+ γk+1 ∀k = {3, . . .11}

(20)

γ
m
12 = 0 (21)

Optimal Nanoclusters
We present here the detailed list of nanocluster designs identified
via our optimization framework. Figure 6 depicts the optimal
clusters identified by maximizing the SRB function for cohesive
energy. Figures 7 through 11 show optima identified by maximiz-
ing the metal-specific functions (Em

coh) of cohesive energy. Note
that, at the interest of space, we only present the structures that
differ from the ones predicted by the SRB function.
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N=13 N=14 N=15 N=16 N=17 N=18 N=19 N=20 N=21

N=22 N=23 N=24 N=25 N=26 N=27 N=28 N=29 N=30

N=31 N=32 N=33 N=34 N=35 N=36 N=37 N=38 N=39

N=40 N=41 N=42 N=43 N=44 N=45 N=46 N=47 N=48

N=49 N=50 N=51 N=52 N=53 N=54 N=55 N=56 N=57

N=58 N=59 N=60 N=61 N=62 N=63 N=64 N=65 N=66

N=67 N=68 N=69 N=70 N=71 N=72 N=73 N=74 N=75

N=76 N=77 N=78 N=79 N=80 N=81 N=82 N=83 N=84

N=85 N=86 N=87 N=88 N=89 N=90 N=91 N=92 N=93

N=94 N=95 N=96 N=97 N=98 N=99 N=100

Fig. 6 Most cohesive structure according to the SRB cohesive energy function for every N.
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N=22 N=23 N=28 N=42

N=44 N=49 N=58 N=76

N=81 N=83 N=85 N=87

N=90 N=92 N=93 N=94

N=95 N=97 N=99

Fig. 7 New optima at various N, as determined by the Cu-corrected
function for cohesive energy.

N=19 N=22 N=23 N=28

N=30 N=35 N=36 N=42

N=44 N=46 N=49 N=53

N=58 N=64 N=66 N=74

N=76 N=85 N=90 N=92

N=93 N=94 N=99

Fig. 8 New optima at various N, as determined by the Au-corrected
function for cohesive energy.

N=22 N=23 N=28 N=35

N=36 N=42 N=44 N=49

N=50 N=58 N=73 N=74

N=76 N=82 N=83 N=84

N=85 N=87 N=89 N=90

N=92 N=93 N=94 N=97

N=99

Fig. 9 New optima at various N, as determined by the Ag-corrected
function for cohesive energy.

N=16 N=19 N=22 N=28

N=42 N=49 N=58 N=72

N=74 N=76 N=81 N=85

N=90 N=91 N=92 N=94

N=95 N=96 N=97

Fig. 10 New optima at various N, as determined by the Pd-corrected
function for cohesive energy.
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N=15 N=17 N=19 N=22

N=23 N=26 N=28 N=30

N=34 N=35 N=36 N=42
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N=59 N=70 N=71 N=72

N=73 N=76 N=82 N=83

N=84 N=85 N=89 N=90

N=91 N=92 N=94 N=97

Fig. 11 New optima at various N, as determined by the Pt-corrected
function for cohesive energy.
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