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Creating Glasswing Butterfly-Inspired Durable Antifogging Su-
peromniphobic Supertransmissive, Superclear Nanostructured Glass
Through Bayesian Learning and Optimization†

Sajad Haghanifar,a Michael McCourt,b Bolong Cheng,bJeffrey Wuenschell,cPaul
Ohodnicki,cand Paul W Leu∗a,d,e

The creation of durable superomniphobic surfaces with optical
functionality has been extremely challenging. Major challenges
have included low optical transmission, low optical clarity, lack of
scalable fabrication, condensation failure, and inability to self-heal.
Inspired by recent research on the transmission advantages of the
random nanostructures on the glasswing butterfly, we report on a
strategy to create self-healing, random re-entrant nanostructured
glass with high liquid repellency and antifogging properties with
supertransmission (99.5% at 550 nm wavelength for double-sided
glass) and superclarity (haze under 0.1%). Our approach to
creating these random nanostructures is to utilize a multiobjective
learning and Bayesian optimization approach to guide the exper-
iments of glass substrate fabrication. The surface demonstrates
static water and ethylene glycol contact angles of 162.1±2.0◦ and
155.2± 2.2◦, respectively. The glass exhibits resistance to conden-
sation or antifogging properties with an antifogging efficiency more
than 90% and demonstrates the departure of water droplets smaller
than 2 µm. The surface can restore liquid-repellency after physical
damage through heating for 15 minutes. We envision that these
surfaces will be useful in a variety of optical applications where self-
cleaning, antifouling, and antifogging functionalities are important.

Introduction
Natural surfaces such as lotus leaves, moth eyes, and butterfly
wings have evolved over millions of years to optimize different

a Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261,
USA; E-mail: pleu@pitt.edu
b SigOpt, San Francisco, USA.
c National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA
15236, USA
d Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA
15261, USA.
e Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261,
USA.

surface functionalities related to survival and adaptation in differ-
ent environments. Various unique micro- and nanostructures may
be found in these natural surfaces that provide for functionalities
such as antisoiling, self-cleaning, bacterial resistance, antifogging,
and water harvesting1–6. Inspired by nature, researchers have
sought to understand how different micro- and nanostructures
provide for desired functionalities and utilized this knowledge to
demonstrate a multitude of synthetic surfaces with novel func-
tionalities7–11.

Many self-cleaning surfaces have been demonstrated 12–14 that
are inspired by the superhydrophobic leaves of the Nelumbo nu-
cifera (sacred lotus), which exhibit both high wetting contact
angle (superhydrophobicity) and low contact angle hysteresis
(adhesion) due to the combination of hierarchical surface mor-
phology and hydrophobic epitcuticular wax 15. Superhydropho-
bic surfaces may be created through low-surface energy micro-
/nanostructures which promote Cassie-Baxter wetting 16, where
the water droplet contacts a small fraction of the surface due to
air being trapped with the structures. This is in contrast to Wenzel
wetting, where the water homogeneously contacts the surface 17.
Water droplets easily roll or bounce off superhydrophobic sur-
faces, while removing dust particles with them.

While these surfaces effectively repel water, there is also great
interest in surfaces that repel more types of liquids than just wa-
ter. The ability to repel many liquids is referred to as superom-
niphobicity, where surfaces demonstrate a static contact angle
greater than 150◦ and low contact angle hysteresis for a vari-
ety of liquids 18–22. Creating surfaces that are superomniphobic
is significantly more challenging than creating ones that are su-
perhydrophobic. This is because the surface tensions of oil and
other organic liquids are lower than water and thus, they tend to
spontaneously spread across surfaces and past trapped air 23–27.
Springtail insects are the only known surface in nature that dis-
play apparent wetting contact angles θ > 150◦ and low hysteresis
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for a wide range of fluids 27. Recent research has suggested that
the key to obtaining superomniphobicity is re-entrant structures
or surfaces with concave topographic features, which provide for
robust metastable trapped air interfaces 22.

While many synthetic superomniphobic surfaces have been
demonstrated 28,29, major challenges exist in the creation of super-
omniphobic surfaces with high transparency or optical function-
ality. Current barriers to realizing superomniphobic optical mate-
rials include (i) low optical transmission, (ii) poor optical clarity
due to light scattering, (iii) lack of process scalability, (iv) con-
densation failure, and (v) poor abrasion resistance. Many of the
superomniphobic coatings in the literature have no regard for
optical transparency 18,19,30. Additionally, various re-entrant mi-
crostructures that have been demonstrated for superomniphobic-
ity24,27,31 are far too large to provide for antireflection. Subwave-
length structures such as the 200 to 300 nm sized pillars in moth
eyes are needed for antireflection 32. Poor optical clarity due to
high haze is also a major issue. The large difference in refrac-
tive index at the solid–air interface of these surfaces results in
significant light scattering 12,33–35. While light scattering is desir-
able in some optoelectronic applications such as solar cells and
LEDs36–39, the scattering of light contributes to the blurriness of
text and images viewed in displays 25,40.

Creating superomniphobic surfaces through scalable manufac-
turing processes is a challenge due to the more demanding re-
quirements for re-entrant micro-/nanostructures that are needed
to achieve omniphobicity. Re-entrant structures have gener-
ally been achieved by complex micropatterning of a mask fol-
lowed by some isotropic etch to provide for undercutting 24,27,29,31.
However, the need for patterning limits the scalability of these
methodologies. There is much interest in maskless or pattern-
free processing methods 12,33–35, that are generally more scalable
to larger areas.

Condensation on glass or so-called fogging can result in poor
visibility 7 and destroy the superhydrophobicity of surfaces 8.
Nanostructures with high height over pitch aspect ratios as well as
close spacing are desirable for stable Cassie-Baxter wetting 35,41.
However, the need for high aspect ratio structures leads to poor
abrasion resistance as tall, thin nanostructures can be easily
scratched off. Indeed, many natural surfaces such as insect wings
or eyes tend to be very fragile under abrasion 42.

Identifying a fabrication process for a high performance and
multifunctionalized substrate with random nanostructures re-
quires allowing great freedom in the possible fabrication pro-
cess. Consequently, the number of process parameters for cre-
ating these nanostructures is often high-dimensional, with many
etching and deposition process parameters that may be varied.
Searching this space of possible fabrication strategies is often lim-
ited to grid-like search methods where a particular process pa-
rameter is systematically varied based on physical intuition. That
research approach is only effective to very small localized regions
of the input parameter space and only in low dimensional spaces.

In this paper, we address these challenges by combining a
Bayesian machine learning procedure with our physical intuition
to create a new high performance glass. To create this new glass,
we demonstrate a design process that utilizes Bayesian learning

and optimization43–45 to facilitate an efficient search of this multi-
dimensional fabrication space. To balance the photon manage-
ment and wettability properties, we posed a multiobjective opti-
mization problem, where a subset of the Pareto efficient frontier
is explored subject to pre-defined threshold values (as stated us-
ing expert physical intuition). Gaussian processes are built using
existing experimental data, and then updated after each 5 experi-
mental fabrications (which are conducted in parallel batches of 5
to facilitate a faster search). These batches of 5 fabrication strate-
gies were devised to maximize a modified form of expected im-
provement, which defines the utility of identifying high perform-
ing fabrication parameters subject to their viability of satisfying
the thresholds.

Using this approach, we demonstrate the successful creation
of a new self-healing, durable superomniphobic glass with ultra-
high transparency and ultralow haze. Inspired by recent analy-
sis of glasswing butterfly wings 3, this research focuses on ran-
dom nanostructures as opposed to highly ordered sub-wavelength
structure arrays that may exhibit undesirable optical diffraction
patterns. The glass is demonstrated through a simple, scalable
two-step maskless reactive ion etching and fluorination process,
which we demonstrate on 4 inch diameter glass wafers. Single-
side nanostructured glass exhibits 97.0% total transparency while
double-side nanostructured glass exhibits 99.5% at 550 nm wave-
length and less than 0.1% haze for both at the same wavelength.
The glass shows broadband antireflection (< 20%) even at high
incidence angles of 70◦. The specular reflection for single-side
nanostructured glass and double-side nanostructured glass are
5.8% and 4.4% at 45◦ incident angle, respectively, while nor-
mal glass shows 8.3% reflection at the same incident angle.
In addition, static water and ethylene glycol contact angles of
162.1 ± 2.0◦ and 155.2 ± 2.2◦, respectively, for fused silica glass
were demonstrated. The glass exhibits resistance to condensa-
tion or antifogging properties. The glass we reported here shows
antifogging efficiency 7 more than 90% and demonstrates water
departure of droplets smaller than 2 µm. The glass shows self-
healing behavior after 500 mechanical abrasion cycles with an
abrasive pad and pressure of 1225N/m2. The abraded glass can
recover its high water and oil contact angle after heating for 15
minutes.

Fabrication Strategy
The nanofabrication process is performed in two steps: (a) re-
active ion etching (RIE) and (b) plasma enhanced chemical va-
por deposition (PECVD) and surface treatment with fluorination.
This fabrication process scalably creates the nanostructures di-
rectly into the fused silica glass without the need for patterning
or an external mask 33,34. Fig. 1 depicts the input and output pa-
rameters under analysis, and suggests how we efficiently optimize
this process (which we discuss in greater detail later in this arti-
cle). Nine input process parameters were considered: (1) the
CHF3 flow rate, (2) the Ar flow rate, (3) the O2 flow rate, (4) the
CF43 flow rate, (5) the SF6 flow rate, (6) the etching time, (7) the
radio frequency (RF) power, (8) the pressure of the etch chamber,
and (9) the SiO2 deposition time. The first eight parameters are
associated with the first processing step, while the last parameter
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is associated with the second processing step.
The first fabrication step focuses on RIE to create sub-

wavelength nanostructures in the fused silica in order to maxi-
mize the total transparency and minimize the haze at the wave-
length of 550 nm. In the RIE process, the etch chamber is pumped
down to high vacuum and then an etching gas is flowed into the
chamber. Next, a 13.56 MHz radio-frequency (RF) power is ap-
plied to a pair of parallel electrodes which generates a plasma.
Reactive species, such as ions and radicals, and monomers are
formed when the etch gas is dissociated in this plasma. These re-
active species and monomers are transported onto the substrate
surface by the electric field and react with the etch target ma-
terial and competitive reactions of etching and deposition take
place near the surface46. The morphology of the etched nanos-
tructures depend strongly on the RIE process parameters such as
the pressure, gas chemistry, and RF power.

The second processing step focuses on creating re-entrant
structures and a low energy surface. In this processing step, we
consider the deposition of silicon dioxide (SiO2) by PECVD on top
of the sub-wavelength nanostructures in order to make the struc-
ture re-entrant followed by flourination 35. We focus on varying
the deposition time, which affects the amount of SiO2 deposited,
while all the other processing parameters are fixed. Previous
research has demonstrated that a concave (re-entrant) surface
formed by roughness upon microscale features results in local en-
ergy minimization and these surfaces are capable of pinning the
liquid-air interface. These structures stabilize the Cassie-Baxter
wetting state, which results in high contact angle for different liq-
uids with various surface energy 22,47. In PECVD, the pressure of
the chamber and the power were set at 900 mTorr and 60 Watt,
respectively. The flow rate of silane/nitrogen (SiH4/N2) and dini-
trogen monoxide (N2O) were both 140 sccm. The thickness of
the SiO2 layer can be controlled by the deposition time. In our
process, the deposition rate was approximately 110 nm/min The
temperature of the PECVD chamber was fixed at 400 ◦C.

The structures were modified with flourosilane after SiO2

deposition to create a low surface energy surface by spin
coating method. Tridecafluorooctyl triethoxysilane (FAS, Dy-
nasylan F 8261) was mixed with trimethoxy(1H,1H,2H,2H-
heptadecafluorodecyl) silane (with ratio of 5:1 vol %) and the
solution was dispersed in ethanol (5:1 vol %)22. The final solu-
tion was spin coated on the glass substrates for 60 s at 1500 rpm,
followed by annealing at 95 ◦C for 10 min. The substrates were
then cleaned with acetone and and dried with nitrogen.

We focused on optimizing three output parameters: (1) maxi-
mize transparency, (2) minimize haze, and (3) maximize oil static
contact angle. The optical properties were characterized using a
spectrophotometer (PerkinElmer, Lambda 750), equipped with a
60 mm integrating sphere. The angle-resolved reflection spectra
was measured on an Agilent UV-Vis-NIR Cary-series spectropho-
tometer system. A large (6◦) detector aperture was used to ensure
all light was collected from the narrow source beam (1◦ aper-
tures) at high incident angle. At each angle the reflection spectra
was collected in a narrow band around 550 nm (±5 nm) in 1-nm
increments and averaged. This process was performed for both
TE- and TM-polarizations. The unpolarized spectra were calcu-

lated from the average of the TE and TM polarized light.

The liquid contact angles were measured using an Attension
Theta optical tensiometer. For the condensation test, a humidifier
and dehumidifier were used to control and set the humidity of
the system to specific values. Samples were held vertically, while
a humidity control was used to set the humidity of the surround-
ing area to 80%. The Attension Theta optical tensiometer was
used to observe the formation of droplets on the substrates. The
relative humidity was sustained for 45 minutes while a video was
recorded at 1 frame per second.

Experimental design methodology
We consider the fabrication of nanostructured substrates as de-
fined in the previous section, where we simultaneously want
high performance photon management and wetting properties
(Fig. 1), as a multiobjective optimization problem with solution
x∗,

x∗ satisfies


x∗ = arg maxx∈X Ttotal(x),

x∗ = arg minx∈X H(x), and

x∗ = arg maxx∈X θo(x)

(1)

where X is the space of all possible choices of the process pa-
rameters. We denote x to be both the fabrication process parame-
ters and the resulting nanostructure from using those parameters.
Ttotal is the total transmission, H is the haze, and θo(x) is the oil
contact angle.

The total transmission and haze are optimized for wavelength
λ = 550 nm, which is in the middle of the visible spectrum, and
ethylene glycol was chosen as the oil. The wavelength-dependent
haze H(λ) is defined as

H(λ) =

[
Tscattered(λ)

Ttotal(λ)

]
× 100%, (2)

where Ttotal(λ) is the total transmission and Ttotal(λ) =

Tscattered(λ) + Tspecular(λ), where Tscattered is the scattered transmis-
sion and Tspecular is the specular or direct transmission.

In general, there is no unique structure x? that is simultane-
ously optimal in all the objectives in Eqn. (1). In lieu of such a
point, the solution to such a multiobjective problem is often de-
fined as the Pareto-optimal set, or Pareto-efficient frontier P ∈ X .
Pareto optimal parameters x ∈ P evince a “balance” between
objective function values, such that no x′ ∈ X can yield better
performance across all objective functions; any improvements in
one metric would necessitate a loss in performance in at least one
other metric (thus the sense of balance). A more thorough expla-
nation of the topic can be found in multicriteria literature 48.

Standard Bayesian optimization

Bayesian optimization is a sample-efficient iterative search frame-
work, where the relationship between process parameters and ob-
jective function values is unknown, and function evaluations (ex-
ecuting the fabrication and characterizing the resulting substrate)
are expensive or time consuming. Standard Bayesian optimiza-
tion consists of two components: a probabilistic surrogate model,
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Build surrogate models of
the output parameters

Define acquistion function
to measure utility of future
proposed experiments 

Maximize acquistion function
for the next best experiment
parameters

Input Parameters

Bare Glass Nanostructured Glass

Input Parameters, x Output Parameters, y

•    CHF₃ flow rate
•    Ar flow rate
•    O₂ flow rate
•    CF₄ flow rate
•    SF₆ flow rate
•    Etching time
•    Power
•    Pressure
•    SiO₂ deposition time

•    Total transmission
•    Haze
•    Oil contact angle

Characterization Bayesian Model

New Experiment Parameters

Functionality

•    Antifogging
•    Durability

Fig. 1 Schematic of experimental fabrication and Bayesian learning optimization process for nanostructured glass.

to model the objective function f , and an acquisition function, to
determine which x parameters to next sample.

In a typical single objective Bayesian optimization setting, the
objective function f is assumed to be a realization of a Gaussian
process (GP) with mean function µ and a positive definite covari-
ance kernel K, i.e., f ∼ GP(µ,K)49,50. After k observed function
evaluations have taken place, the resulting data may be denoted
as Dk = {(x1, y1), . . . , (xk, yk)}; we write |Dk| ≡ k to say that k
observations comprise our data. The mean and covariance func-
tions are often defined to have certain free parameters which are
fit to the data Dk using strategies such as maximum likelihood es-
timation (MLE, which was our strategy of choice in this process).
In all of our modeling, we assume our GPs to have µ ≡ 0 and a
square-exponential K with independent length-scales in each di-
mension. A Tikhonov parameter is fixed to be 10−3, primarily to
ease ill-conditioning concerns.

An acquisition function is a utility function that measures the
value of sampling at different points within X , given what data
has already been observed. Acquisition functions balance the
trade-off between exploitation, suggesting input parameters near
where we have the best results so far, and exploration, suggesting
input parameter in regions where we have not tried out. After
k different input parameters have been tested, the kth surrogate
model can be created, which allows the formation of the acqui-
sition function, which is then maximized to determine the xk+1

input parameter selection at which to run the fabrication process.

Modifications to Bayesian optimization

We describe our adaptation of Bayesian optimization to efficiently
search for input parameters which address Eqn. (1). The strategy
has some decisions unique to this scenario, but can be generalized
to an arbitrary number of objectives.

The first modification to note is that, unlike the traditional se-
quential nature of Bayesian optimization, we chose to run 5 si-
multaneous fabrication processes. This allowed us to accelerate
the parameter search, which was valuable because the fabrication
process can take more than a couple hours. The specifics of this

parallel Bayesian optimization 51 are explained later.
The strategy is derived from the ε-constraint method 52. We

transform the multiobjective optimization problem Eqn. (1) to
three constrained scalar optimization problems:

max
x∈X

Ttotal(x), s.t. H(x) ≤ Ĥ and θo(x) ≥ θ̂o, (3a)

min
x∈X

H(x), s.t. Ttotal(x) ≥ T̂total and θo(x) ≥ θ̂o, (3b)

max
x∈X

θo(x), s.t. Ttotal(x) ≥ T̂total and H(x) ≤ Ĥ, (3c)

where T̂total, Ĥ and θ̂o are pre-defined thresholds. These quanti-
ties define viability for this experimental setting – we only con-
sider parameter choices x to be viable if all three constraints are
satisfied, i.e.,

Ttotal(x) ≥ T̂total,H(x) ≤ Ĥ, andθo(x) ≥ θ̂o (4)

For the parameter search conducted here, T̂total = 88.5%, Ĥ =

1.1%, and θ̂o = 60◦.
Another modification to the standard Bayesian optimization

methodology accounts for the physical limitations in the preci-
sion of executing a proposed fabrication strategy. The parameters
defining X are fundamentally continuous (e.g., the etching time
can be any positive real number), but the actual tooling and ma-
chinery used in the fabrication process have limited precision and
small changes in the input parameters do not result in quantifi-
able differences in the created structure. As a result, the actual
domain under analysis is a discrete domain designed to account
for a minimum difference (distance in parameter space) between
proposed fabrication strategies. That space is:

• CHF3 flow rate: {0, 5, . . . , 80} sccm,

• Ar flow rate: {0, 5, . . . , 100} sccm,

• O2 flow rate: {0, 5, . . . , 100} sccm,

• CF4 flow rate: {0, 5, . . . , 80} sccm,

• SF6 flow rate: {0, 5, . . . , 80} sccm,

• Etching time: {0, 60, . . . , 5400} seconds,

4 | 1–10Journal Name, [year], [vol.],

Page 4 of 12Materials Horizons



• Power: {20, 30, . . . , 300} watts,

• Pressure: {50, 100, . . . , 250} mTorr,

• SiO2 deposition time: {8, 10, . . . 500} seconds.

The substrate fabrication process described above is time-
consuming, which necessitates an effective experimental design
so as to quickly search the space X for input parameters which
perform well for all three objective functions. The entire 9-
dimensional space consists of over 7×1012 experiments. Each
single experiment can take 2-3 hours to complete, in addition to
requiring the use of various resources, which makes it practically
impossible to search through whole space to find the optimum
values.

Because the circumstances of Eqn. Eqn. (3) are more compli-
cated than a standard Bayesian optimization setting, we require
more complicated models and a modified acquisition function.
We adapt methods from constrained Bayesian optimization liter-
ature53. After k fabrications have been conducted, the available
data for each of the objectives, denoted DT,k, DH,k and Dθ,k, al-
lows us to create Gaussian process models sT,k, sH,k and sθ,k for
the transmission, haze and contact angles, respectively. These are
modeled independently, though in future work we could consider
a joint model. For conciseness, we will represent the accumula-
tion of all three data objects with a single symbol, Dk.

Using these models, an acquisition function is defined for each
component of Eqn. (3). This acquisition function is modified from
the expected parallel improvement 54 to account for the desire for
viability. Considering, at first, only the solution to Eqn. (3a), im-
posing the viability requires us to consider not only the distribu-
tion of t ∼ sT,k(x) (a Gaussian distribution), but the joint distri-
bution t, h, z ∼ sT,k(x), sH,k(x), sθ,k(x), more succinctly denoted
by t, h, z ∼ sk(x). The acquisition function (without parallel sug-
gestions) would be defined as

aT,k(x) = Et,h,z∼sk(x)[(t− t̃k)+Ih<Ĥ∩z>θ̂o ], (5)

where t̃k is the highest Ttotal value observed thus far, (ξ)+ de-
notes max(ξ, 0), and Iν = 1 if the condition ν is satisfied and 0
otherwise (the indicator function). This is semantically equiva-
lent to maximizing the expected improvement attainable for viable
points; points which do not satisfy our thresholds contribute zero
improvement.

To account for the desire for 5 parallel suggested parameters,
we expand on the base structure of Eqn. (5). We further expand
our notation by using xk,` to denote the `th of 5 points to be si-
multaneously tested, xk,1, . . . , xk,5 ∈ X , given the data Dk which
has already been accumulated. Distributions of the t, h, z values
at each of these 5 points is denoted with the shorthand notation

t,h, z ∼ sk(x) ⇐⇒

t1, h1, z1, . . . , t5, h5, z5, ∼ sk(xk,1), . . . , sk(xk,5).

This allows us to write the expected parallel improvement, atten-
uated by viability, for transmission with ` parallel suggestions as

aT,k,`


xk,1

...
xk,`

=Et,h,z∼sk(x)

[
max
1≤i≤`

(ti − t̃k)+Ihi<Ĥ∩zi>θ̂o

]
, (6a)

with analogous acquisition functions for the haze,

aH,k,`


xk,1

...
xk,`

=Et,h,z∼sk(x)

[
max
1≤i≤`

(hi − h̃k)+Iti>T̂total∩zi>θ̂o

]
,

(6b)

and oil contact angle,

aθ,k,`


xk,1

...
xk,`

=Et,h,z∼sk(x)

[
max
1≤i≤`

(θi − θ̃k)+Iti>T̂total∩hi<Ĥ

]
.

(6c)

In lieu of a standard mechanism to merge these acquisition
functions, which does not exist in the literature, we executed the
following strategy. We identify the next points at which to fabri-
cate, xk,1 through xk,5, sequentially by randomly choosing one of
Eqn. (6a), Eqn. (6b) and Eqn. (6c) to optimize for each point. For
example, we could randomly choose to optimize for transmission
with xk,1, which means that we would maximize aT,k,1. After
that, we could choose to maximize Eqn. (6c), aθ,k,2, with xk,1

fixed to find xk,2; this process is repeated up to xk,5.

Our full strategy is explained in Algorithm 1. We explicitly state
the potential for initial data Dbi in the algorithm, but no initial
data is required. In the experiment we conducted, 79 previous
fabrications comprised Dbi .

To prevent fabrication time being spent on suggested parame-
ters x which we believe will perform poorly, we allow ourselves
the opportunity to immediately reject parameters. To record such
a failed suggestion for a given location x, we append the worst val-
ues ever observed for Ttotal, H and θo, denoted TF , HF and θF , to
the current data; these values can be updated if worse values are
observed in the future. Other strategies, such as maintaining an
explicit model of viability, could be used—this strategy is utilized
because it requires no additional modeling hyperparameters.

In practice, the acquisition functions are estimated through
4000 Monte Carlo iterations, utilizing our ability to independenty
draw from the Gaussian distributions sT,k(x), sH,k(x), sθ,k(x);
the probability of viability only impacts Eqn. (6a), Eqn. (6b) and
Eqn. (6c) implicitly through the indicator function, and thus no
explicit model of viability probability is required. We used the
CMA-ES 55 optimization strategy (adapted to the aforementioned
discrete parameter domain) to maximize all acquisition functions;
the evolutionary population is 25, with 100 full iterations and 10
uniform random restarts.

Fig. 2 depicts the Bayesian optimization process in a sample
problem reduced to one dimension for ease of understanding. In
the first row, 6 locations have already been sampled of the three
objectives. In the second row we demonstrate the Gaussian pro-
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Algorithm 1 Our Three Objective Bayesian Optimization

1: input: pre-evaluated data Dbi , experiment budget b
2: Place a GP prior on f
3: Initialize Dk with Dbi , fabrication counter β with 0
4: while β < b do
5: Fit GP hyperparameters to Dk with MLE
6: for ` = 1, . . . , 5 do
7: Choose ak,` randomly from Eqn. (6a), Eqn. (6b),

Eqn. (6c)
8: Fit GP models in sk to Dk with MLE
9: Optimize ak,` with xk,1, . . . , xk,`−1 fixed to find x′

10: if x′ is deemed a failed suggestion then
11: Set Dk ← Dk ∪ (x′, TF , HF , θF )
12: Repeat Fit and Optimize steps above
13: else
14: Set xk,` ← x′

15: Simultaneously fabricate glass with xk,1, . . . , xk,5
16: Measure Ttotal, H, θo for each fabrication
17: SetDk ← Dk∪{(xk,1, Ttotal, H, θo), . . . , (xk,`, Ttotal, H, θo)}
18: Set β ← β + 5

19: return All results in Dk on the Pareto frontier of Eqn. (1)

cess models that have been built, and the resulting predictions.
In the third row, we show the acquisition functions Eqn. (6a),
Eqn. (6b) and Eqn. (6c) and the maximum of each; for graphing
simplicity we omit the parallel suggestion aspect and plot only
aT,6,1, aH,6,1 and aθ,6,1. We also show the explicit probability
of viability estimated through Monte Carlo sampling (which is
presented simply for display and is not required to compute the
acquisition functions). In the final row, we show the Gaussian
process models after being updated with data sampled at the 3
suggested points, which would then be used to generate 3 new
points at which to sample.

Results and Discussion

Fig. 3 plots a summary of the experimental design and Bayesian
optimization process. Sixty four experimental runs were con-
ducted in total, of which four were immediately reported as fail-
ures as described in Algorithm 1. The left component of Fig. 3
shows the three 2D plots depicting the objective values observed
during the Bayesian optimization. In the optimization of the pho-
ton management properties (direct transmission vs. haze), only a
single process condition or structure was determined to be Pareto
efficient (the blue star). This indicates that the total transmission
and haze are strongly correlated 36.

As a baseline, smooth glass has 93.5% transmission and 1.5%
haze at 550 nm wavelength. After our experimental runs, the
transparency increased to 97.0% while the haze value was re-
duced to 0.1% while improving oil contact angle beyond 150◦. In
total, five sets of input parameters were identified which are con-
sidered viable (satisfy the stated constraints) and Pareto efficient.
The trade-off between the objectives is depicted in the rightmost
graph of Fig. 3.
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Fig. 2 Sample depiction of our proposed Bayesian optimization process;
each column represents one of the three output parameters under con-
sideration. These are artificial profiles in one dimension for explanatory
purposes only.
First row : The “true” output parameter to be optimized.
Second row : Statistical models built from the observed data.
Third row : The probability of an input parameter being viable (satisfying
the constraints for the other two output parameters) and the associated
acquisition function values along with the points which maximize that
acquisition function (without any parallel considerations).
Fourth row : The new observations achieved by sampling at the “next
test parameters” and the new models which result from this new data.

Characterizing the nanostructured glass properties
We further characterize the optimally performing nanostructured
glass identified from our parameter search. We focus on char-
acterizing the nanostructured glass associated with the blue star
in Fig. 3, which has the best optical properties compared with
other Pareto efficient datapoints. This specific sample with high-
est transmission and lowest haze was etched by CHF3, SF6, and
Ar at 10, 5, and 100 sccm flow rates, respectively. The flow rates
for both the CF4 and O2 were 0 sccm. The total pressure of the
chamber was maintained at 250 mTorr, and the power was set at
120 W. The etch and PECVD times were 2940 and 12 seconds,
respectively.

Fig. 4(a) shows a scanning electron microscopy (SEM) images
of the sub-wavelength, re-entrant structure. Fig. 4(a)(i) shows
20◦ tilted SEM image and Fig. 4(a)(ii) and Fig. 4(a)(iii) show
cross sectional SEM images with different magnifications. The
height of the pillars are approximately 100-500 nm and the dis-
tance between the pillars are between 20-100 nm. The diame-
ter of the pillars are between 30-40 nm at top and 10-20 nm at
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Fig. 3 Depictions of the experimental design driven by our Bayesian optimization methodology. left: Three 2D feasible region plots of the three
objectives under consideration. right: Radar plot of the 5 viable efficient outcomes identified during the parameter search (plot qualitatively exaggerated
to account for the different scales of the three objectives).
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Fig. 4 (a) shows (i) 20◦ tilted, (ii) and (iii) cross sectional SEM images of fabricated glass with different magnifications. (b) shows the droplet of
different liquids on (i) normal and (ii) our superomniphobic glass. (c) (i) show transmission and (ii) haze plots as a function of wavelength for bare,
single side and double side etched glass (d) Angle-resolved spectra for reflection at 550 nm wavelength for bare, single side and double side etched
glass.

bottom. The randomness in the height and spacing provide for
broadband and omnidirectional antireflection like the glasswing
butterfly wings 3. Furthermore, this randomness also provides for
robustness against abrasion as will be discussed later. By deposit-
ing the SiO2, the surface area at the top of the pillars increase
which provide the re-entrant structures required for omniphobic-
ity.

To investigate the omniphobic property, we deposited drops
of different liquids with different surface tensions, from water
(72.8 mN/m) to ethylene glycol (47.7 mN/m), on both bare and

nanostructured substrates. The volume of droplets was 5 µl.
Three measurements were made for each sample and the mean
and standard deviation for each sample are reported. Fig. 4(b)(i)
shows the static contact angle of a variety of liquids on top of nor-
mal glass. The bare fused silica has 42.9 ± 1.1◦ and 18.7 ± 0.7◦

contact angle for water and oil, respectively, with 35.5± 2.7◦ hys-
teresis value for water. The hysteresis value for oil is not mea-
surable, because it is very close to the contact angle. By creating
re-entrant structure on the bare fused silica, the water and contact
angles increase significantly to 162.1± 2.0◦ and 155.2± 2.2◦ with
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3.2 ± 0.7◦ and 9.4 ± 3.6◦ hysteresis, respectively (Fig. 4(b)(ii)).
The contact angle for milk, coffee, blood, cranberry juice, orange
juice, and water are all more than 158.0±3.0◦ with hysteresis less
than 8.0± 2.0◦. Also, as shown in Fig. 4(b)(ii), the transparency
of the nanostructured glass is high with no observable reflection
and the text beneath the substrate is clearly visible.

Fig. 4(c)(i) and Fig. 4(c)(ii) show the total transmission and
haze results for glass as a function of wavelength. As shown in
Fig. 4(c)(i), the total transmission for bare fused silica is 93.5%

and increases to 97.0% at 550 nm. The transmission spectra for
both the bare glass and single-side nanostructured glass are fairly
flat across the entire range of 280 to 1000 nm wavelength. The
total transmission for the bare glass is between 93.1% to 94.0%,
and the total transmission for the nanostructured glass is between
95.9% to 97.1%. The same nanostructures were also created on
both sides of the glass and the total transmission of double-side
nanostructured glass at 550 nm is 99.5%. The transmission spec-
tra for the double-sided glass are also fairly flat with total trans-
mission between 98.1% to 99.9%. The corresponding values for
haze are shown in Fig. 4(c)(ii). In both single-side and double-
side nanostructured glass, the haze value reduces to less than
0.1% across a broadband range of wavelength. For normal glass
the haze value is between 2.2% and 0.9%; however, for nanos-
tructured glass the haze value is fairly flat for the spectrum.

Angle-resolved spectra of specular reflection was recorded at
550 nm wavelength. Fig. 4(d) shows the angle dependent specu-
lar reflection for normal glass, single side, and double side nanos-
tructured glass. All the values of reflection for etched glass are
less than 5% for both single side and double side etched glass up
to 45◦. However the reflection values are always less than glass
even for a high incidence angle of 70◦, which reveals the high om-
nidirectional, antireflective performance of our fabricated glass.

Characterizing the nanostructured glass functionality

We characterized the water-repellency of the nanostructured
glass when exposed to fog. The nucleation of small droplets in
the structure may destroy the superhydrophobicity of the sur-
face56. However, nanostructured texturing as well as reentrant
structures may provide for efficient antifogging by preventing nu-
cleating droplets from growing within the structure and transition
to a Wenzel state of wetting 7,8. To produce condensation, we dis-
pense water at an elevated temperature TL compared to a con-
stant surface temperature TS . Water evaporates and condenses
on the surface. By increasing the difference between the temper-
ature of the water and surface (∆T = TL − TS , where TL and
TS are the temperature of liquid and surface, respectively), the
amount of condensation increases. Fig. 5(a) shows water jets dis-
pensed with different ∆T on our nanostructured glass (the rate of
dispense estimated as 20 ml/min) (Video S1 supplemental files).
The results shows that by increasing the ∆T , when the jet reaches
the sample, the wetting area increases (Fig. 5(a)(i)) and a num-
ber of small water nuclei form (Fig. 5(a)(ii)). However, even with
∆T = 70, the surface retains its superrepelency of water as the
droplet can move easily by blowing it off, even without tilting the
sample (video S2 in supplemental file). The small water nuclei

retain their spherical shape even as they evaporate and easily roll
along the surface even at the minimum observable diameter of
5± 1.0 µm. The corresponding breakthrough pressure associated
with this diameter is 30± 6.0 kPa27.

We also characterized the antifogging properties of nanostruc-
tured glass by placing the samples in high relative humidity con-
ditions of 80%. The choice of 80% humidity was based on the
high condensation rate in this humid environment. Fig. 5(b)(i)
and Fig. 5(b)(ii) show the evolution of fog formation on normal
and our nanostructured glass, respectively. In a short time, high
density micro-droplets nucleate on both substrates. The differ-
ence between normal and antifogging glass, however, becomes
apparent after few minutes. While the nucleated droplets grow
and coalescence on the normal glass, without jumping out of the
substrate, the water droplets on the antifogging glass merge to-
gether fast and they jump out of the substrate, which provide new
nucleation sites for new droplets. This process continues for the
whole recorded time (Video S3 in supplemental file). The op-
tical images of normal glass and antifogging glass after 45 min
condensation are shown in Fig. 5(c)(i) and (ii), respectively.

To quantify the antifogging efficiency, we measured the pro-
portion N of drops falling off the glass after coalescence 7. After
approximately 5000 coalescence events, N versus time is plotted
in Fig. 5(d)(i) by counting the jumping droplets in one minute.
For the normal glass, N is essentially zero for all time because
no droplets jump after coalescence. However, for the nanostruc-
tured glass, more than 90% of the coalesced droplets jump off
the surface when the size of droplets becomes large enough. The
antifogging properties of our nanostructured glass is comparable
with the reported values for nanocones with remarkable antifog-
ging abilities7. Fig. 5(d)(ii) shows N as a function of droplet
radius at the moment of jumping. The droplets start to jump as
soon as their size is as small as 2 µm. The percentage of jumping
droplets increase with size of droplet and 99% of droplets above
12 µm jump of the sample. Almost all of the droplets (N ≈ 99%)
with larger size have jumped out of the substrate.

The mechanical durability of our glass surface comes from two
features: its randomness and self-similar structure and ability to
self-heal. A Taber Linear Abraser (model 5750) with weighted
SCOTCHBRITE abrasive pad was used for abrasion of the sam-
ples on a constant surface area of 4× 10−3 m2. Fig. 6(a)(i) shows
the behavior of water and ethylene glycol contact angle during
repeated abrasion cycles with pressure of 1225 N/m2. For both
water and oil, the contact angles decrease to less than 90◦ af-
ter approximately 400 cycles of abrasion. However, the mobility
of fluorine molecules provides a path for self-healing, similar to
that of epitucular wax in plant cuticles 57. Fig. 6(a)(ii) shows how
the water and oil contact angle increase after a heat treatment
at 95◦C. After only 15 minutes of heating, the contact angles for
both liquids recover. Fig. 6(b)(i) and (ii) show SEM images of
tilted and overhead view of the interface between abraded and
non-abraded areas of the sample after 500 cycles of abrasion with
1225 N/m2 of pressure. The height of the nanostructures de-
crease, but their reentrant shape is similar to the structure before
the abrasion. The randomness of the structures and self-similarity
are such that abraded surfaces are similar in texture to the non-
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Fig. 5 (a) (i) shows water jet behaviour as a function of temperature ∆T. (a)(ii) shows the water contact angle at different ∆T on antifogging glass.
Condensation versus time optical images of (b)(i) normal glass and (b) (ii) antifogging glass. (c) shows optical image of (i) normal and (ii) antifogging
glass after 45 min of condensation. (d) (i) plot of percentage of jumping droplets after coalescences versus time. (c)(ii) Relationship of percentage
of coalescences droplets jumping and radius of the droplet at the moment of jumping.
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Fig. 6 (a) Water and oil contact angle versus (i) abrasion cycle and (ii) after heating the abraded samples. (b) Shows SEM images of (i)20◦ tilted
and (ii) overhead view of abraded and non-abraded structure with wider view of (iii) non-abraded and (iv) abraded area.

abraded surfaces. Fig. 6(b)(iii) and (iv) show the uniformity of
the structures over a wide area for non-abraded and abraded sam-
ples.

Conclusion

In conclusion, we report superomniophobic, high transmission
re-entrant nanostructured on glass substrates created using a
Bayesian optimization powered experimental design process. The
antireflective, superomniphobic glass showed 97.0% and 99.5%
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total transparency at 550 nm wavelength, for single side and
double side nanostructured glass, respectively. In addition, static
water and ethylene glycol contact angles of 162.1 ± 2.0◦ and
155.2 ± 2.2◦ for fused silica glass have been achieved. The hys-
teresis for these liquids on glass are 3.2 ± 0.7◦ and 9.4 ± 3.6◦,
respectively. Also, the superomniphobic glass can recover its char-
acteristics and heal itself after abrasion through a brief period of
heating. The nanostructured glass showed N ≈ 99% antifogging
efficiency for broad range of water condensation droplets. In us-
ing Bayesian optimization, we explored a complex input param-
eter space with competing goals to identify and fabricate multi-
functional substrates with a very small number of experiments.
These substrates can be used in large variety of optoelectronic
applications.
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This  paper  demonstrates a design process that combines  Bayesian learning and  optimization with the physical 

intuition of the authors to create  a  new  high-performance, multi-functional  glass. The integration of machine 

learning methods and physical intuition enables us to efficiently search a high-dimensional fabrication space for 

creating random re-entrant nanostructures inspired by those on the glasswing butterfly. In particular, we pose a 

multiobjective optimization problem where we seek to balance the photon management and wettability 

properties of the surfac, and determine a subset of the Pareto efficient frontier that is subject to pre-defined 

threshold values. We report  on  a  self-healing  supertransmissive and superclear nanostructured glass with high 

liquid repellency and antifogging properties. We envision that these surfaces will be useful in a variety of optical 

and optoelectronic applications where self-cleaning, anti-fouling, and anti-fogging are important. 
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