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Abstract

Small-angle X-ray Scattering (SAXS) is a non-invasive reciprocal space characterization 

technique that provides statistically representative microstructural information about a material. 

This focus article examines SAXS as a tool to probe the microstructure of nanoporous materials. 

We seek to educate the reader on scattering instrumentation and requisite scattering theory 

pertinent to nanoporous materials, and describe analytical models used to fit SAXS data, to 

elucidate the microstructure of these nanoporous materials including their morphological features 

such as the pore size distribution, pore curvature, and specific surface area. Finally, we fit and 

compare the aforementioned models to real scattering data of nanoporous gold synthesized in our 

laboratory. The models yield realistic material parameters for the nanoporous gold morphology, 

in agreement with electron micrograph images. In addition, we have investigated the scattering 

patterns and characteristic electron micrographs of nanoporous copper and nanoporous antimony 

also synthesized in our laboratory. The models discussed in this paper do not yield realistic material 

parameters for specific nanoporous copper and nanoporous antimony morphologies, however. 

This could be the subject of follow-up work. 
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1 Introduction

While the properties of dense macroscopic materials are governed by bulk atoms, many 

material properties become governed by surface atoms and related phenomena when structural 

size is on the order of nanometers. In this regime, surface atoms constitute a much larger fraction 

of the material than bulk atoms. One such a high surface-to-volume ratio class of materials 

corresponds to nanoporous (NP) materials, including NP metals,1–24 NP metal oxides,25–28 metal-

organic frameworks (MOFs),26,29–35 zeolites,29,30,36–39 covalent organic frameworks (COFs),40–42 

carbonaceous materials such as carbide-derived carbon (CDC),43–47 and porous polymer networks 

(PPNs),48,49 all characterized by open channels or pores classified according to the IUPAC’s 

ranking in micropores (less than 2 nm), mesopores (between 2-50 nm), and macropores (larger 

than 50 nm). These NP materials have been widely investigated for various applications including 

gas storage (e.g. H2 storage and CO2 capture),30,35,44,45,50 biotechnology,51 radiation resistance,52 

plasmonics,16,53–57 (photo)catalysis,17,18,35,38,55,58–66 sensing,67,68 actuation,8,68–71 and energy storage 

and conversion.6,9,11,12,19,21,43,47,60,72–75 In all of these applications, the characteristic size, specific 

interfacial area, and curvature are critical and necessitate proper quantification. (i) Starting with 

the characteristic size, usually the average pore size is manually measured from scanning and 

transmission electron micrographs (SEM and TEM).5,76 However, SEM and TEM data only 

capture a small fraction of the billions of pores within the often voluminous  NP materials. 

Structure sizes deduced from SEM and TEM micrographs, therefore, are not statistically 

representative of the whole specimen. In an effort to improve upon this limitation, McCue et al. 

recently developed an automated computational method to calculate average ligament and pore 

sizes, specific to NP metals, reducing the need for by-hand calculation.77 While useful, this method 
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still relies on incomplete data from electron micrographs.5,76 (ii) Next, in terms of specific surface 

area, even though porosimetry techniques such as nitrogen adsorption (BET) are commonly used 

to determine the specific surface area of NP materials,11,13,14 these techniques usually require a 

large amount of porous materials to yield reliable values. In several cases, it is not straightforward 

to produce a large amount of NP materials for porosimetry studies. In an effort to overcome this 

limitation, Detsi et al. derived an analytical expression for a direct computation of the specific 

surface area of NP materials.78 Though useful,79–84 this analytical model is only valid in specific 

situations where the size of ligaments and pores in NP metals are comparable.78 An effective 

approach to characteristic size and specific surface areas of NP materials is needed, and SAXS can 

provide this information. (iii) Finally, in terms of curvature, the surface curvature of a structure 

(which is associated with the surface free energy) provides a driving force for morphological 

evolution via the Gibbs-Thomson effect.85,86 In order to study the curvature of a nanoscale 

structure, we currently rely heavily on computer models,85,87 and other intensive techniques, 

including X-ray tomography (which cannot resolve nanoscale features). In this article, we expand 

on a SAXS method capable of providing this information.

SAXS is a reciprocal space technique utilized by researchers in various fields, spanning 

polymer science,88 biology,89 metallurgy,90–92 and astronomy.93 The technique was pioneered by 

André Guinier, who measured crystallite size in age-hardened Al-Cu alloys using the scattering 

instrument he built for his dissertation, the ‘Guinier Camera’.90,94,95 Guinier, along with colleague 

Gérard Fournet, wrote a 1955 book on the topic, Small-Angle Scattering of X-Rays. The book 

serves as an excellent general reference for scattering data interpretation, and the reader is 

encouraged to consult it for theory beyond the scope of this paper.90 Guinier’s book develops 

scattering intensity functions for a wide variety of particle shapes (sphere, cylinder, etc.), but the 
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NP materials we are interested in do not fit neatly into these categories; therefore, general models 

are appropriate. The aims of this focus paper are to: (i) provide those who are interested in this 

field with useful background information on SAXS techniques and its benefits and limitations; (ii) 

elucidate the theoretical foundations of SAXS, expand in depth for models related to NP metals, 

in particular NP gold (NP-Au), and offer insight on the morphology and topology of NP materials 

using simulated structures; (iii) provide a description of other models used to fit scattering data for 

a broad range of NP materials and demonstrate its applicability for the determination of 

characteristic size, and specific surface area. 

2 Scattering Instrumentation

While X-ray diffraction (XRD) measures coherent scattering of atomic planes at wide scattering 

angles, SAXS can measure much larger feature sizes, on the order of 1-100 nm, in transmission or 

reflection mode. This reflection mode is commonly referred to as grazing incidence small-angle 

X-ray scattering (GISAXS). The present article will focus on measurement in transmission mode 

(SAXS), but the concept is also applicable to GISAXS. If the instrument has a long enough sample-

to-detector distance, it is capable of probing micron-sized dimensions in what is named Ultra 

Small-Angle X-ray Scattering (USAXS). Figure 1 displays a simplified diagram of a typical 

SAXS instrument in transmission geometry. In the lab-scale SAXS setup shown in Figure 1a, 

polychromatic and unfocused X-rays, whose characteristic wavelength is determined by the 

elemental nature of the source, are generated at point (b). Various monochromation and beam 

collimation instruments are used after the beam exits the source, encompassed in point (c) in our 

diagram. After exiting point (c), the X-rays bombard the sample at point (d), and one of three 

things can happen: they can be scattered, transmitted, or absorbed by the material. When scattered, 
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the interaction between the material’s electrons and the incoming X-ray produces a secondary, so-

called scattered, wave.96 Such an X-ray-electron interaction is typically assumed to be elastic, 

where the incoming wave’s energy and momentum are conserved after the scattering event.90 

Figure 1. SAXS instrumentation (a) and geometry (b-e). X-rays are generated at point (b) and are 

monochromated and collimated at point (c). The beam bombards the material at point (d), where the 

X-rays do one of three things: scatter with the electrons in the material, transmit through the material, 

or absorb into the material. The transmitted beam and secondary scattered waves travel down an 

evacuated tube of length , and are detected at point (e). In addition, the geometry of the scattering 𝑹

theory described in the theory section is displayed above (d). Both the SEM of the sample (d) and the 

detector pattern (e) are from NP-Au. 
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Both the scattered and transmitted X-rays travel the sample-to-detector distance R as illustrated in 

Figure 1, and finally interact with the detector at point (e). We display the commonly used 2D 

area detector, however this can be replaced by a 1D line or 0D point detector. By increasing , the 𝑅

range of accessible scattering angles becomes smaller, resulting in larger real-space dimensions 

due to the inverse proportionality between real and reciprocal space. Thus, transmission SAXS is 

limited by the instrumental geometry: to probe length scales pertinent to NP materials, which can 

have characteristic dimensions of hundreds of nanometers, a large instrument is required. For 

example, to probe real-space dimensions of ~350 nm with a Cu source ( 1.5406 ), s needs to 𝜆 =   Å

be roughly 5 m. Due to this length requirement, performing SAXS with an elemental X-ray source 

in a lab setting is typically carried out under vacuum to minimize incoherent background scattering 

by air. Synchrotron radiation mitigates the incoherent scattering issue by making use of high 

energy and high flux X-rays, and thus SAXS can be performed in air. The reader is referred to 

sources provided in references90,97 for further detailed instrumental information. 

3 Scattering Theory

3.1 Scattering by a discrete charge distribution

When X-rays impinge on an atom within a particle, the atom’s electrons are forced to vibrate with 

the radiation’s electric field and become emission sources for electromagnetic scattered waves.98 

In principle, the X-ray’s magnetic field also interacts with the spin and orbital magnetic moments 

of the electrons, however the quantity of such scattered waves is negligible in comparison to those 

originating from the electric field.98 For a single atom, this outgoing radiation is emitted in all 

directions (in the case of an unpolarized X-ray source, spherically).98 Its amplitude depends on the 

atom’s electronic structure (i.e. the number of electrons it contains and their spatial arrangement) 
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and the source X-ray’s amplitude. The electric field of a scattered wave at a distance  from 𝑅

emitted atomic position  (Figure 1) can be described by Eqn. 1:90𝑷𝒋

𝐸𝑗 =
𝐸0

𝑅 𝑟𝑒 𝑓𝑗 𝑒
―𝑖

2𝜋
𝜆

(𝒌𝒇 ― 𝒌𝟎) ⋅ 𝑶𝑷𝒋 Eqn. 1 

Here,  is the electric field amplitude of the incoming wave,  is the classical electron radius,  𝐸0 𝑟𝑒 𝑓𝑗

is the atomic form factor (derived in the Appendix),  is the unit wave vector after scattering,  𝒌𝒇 𝒌𝟎

is the unit wave vector before scattering,  is the X-ray’s wavelength, and  is a vector from an 𝜆 𝑶𝑷𝒋

arbitrary origin  and point . Conservation of energy requires the amplitude to be inversely 𝑶 𝑷𝒋

proportional to the distance from the source, , as the electric field spreads equally around 𝑅

spherical shells of area  with increasing distance from the emission source. The inclusion of 4𝜋𝑅2

the classical electron radius, , where  is the elementary charge,  is the 𝑟𝑒 = 𝑒2/4𝜋𝜀0𝑚𝑒𝑐2 𝑒 𝜀0

permittivity of free space, and  and  are the mass of the electron and speed of light, respectively, 𝑚𝑒 𝑐

ensures proper electric field units. Its inclusion here can be derived from Maxwell’s equations.96,98 

The scattering vector  is defined by the difference between the incoming and outgoing 𝒒

wavevectors as  and has magnitude . Further in this article, the 𝒒 =
2𝜋
𝜆 (𝒌𝒇 ― 𝒌𝟎) |𝒒| =

4𝜋
𝜆 sin (𝜃)

magnitude  will simply be referred to as . |𝒒| 𝑞

Noting the principle of superposition of waves, we can determine the electric field of all irradiated 

atoms at a distance  (sample-to-detector distance in Figure 1) from the source by summing over 𝑅

all atoms within the irradiated volume (Eqn. 2). The intensity of the field at the detector positioned 

at distance  is deduced from its amplitude multiplied by the complex conjugate,  (Eqn. 3):90𝑅 |𝐸|2

𝐸 = Σ𝑗𝐸𝑗 =
𝐸0

𝑅  𝑟𝑒 Σ𝑗𝑓𝑗𝑒 ―𝑖 𝒒  ⋅  𝑶𝑷𝒋 Eqn. 2 

𝐼(𝒒) = 𝐼0 Σ𝑘,𝑗𝑓 ∗
𝑘 𝑓𝑗𝑒𝑖 𝒒  ⋅  (𝑶𝑷𝒌 ― 𝑶𝑷𝒋) Eqn. 3 
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In Eqn. 3,  absorbs the incident intensity , the classical electron radius, and 𝐼0 = 𝐸 ∗
0  𝐸0 𝑟2

𝑒 𝑅 ―2 |𝐸0|2

the sample-to-detector distance. Note that this definition holds true for the rest of this article.  When 

the waves in Eqn. 2 are in phase, (i.e. when there is a repetitive structural size in the irradiated 

material like atomic planes or, in NP materials, the characteristic pore-pore spacing) they give rise 

to peaks in intensity at specific values of  (Eqn. 3). In this way, the intensity at the detector as a 𝒒

function of the scattering vector  is a Fourier series that relies on the positions of atoms in the 𝒒

sample and their atomic form factors. While these general expressions for a discrete charge 

distribution are useful in understanding X-ray-electron interactions, we can consider the 

continuous case for practical matters. In the next section, we will derive a general scattering 

equation for a continuous charge distribution and apply it later to NP materials.

3.2 Scattering by continuous charge distribution and notion of correlation function

In this section, we discuss scattering from the perspective of a continuous electron density 

function, , which we can mathematically construct considering the geometry of the material 𝜌(𝒙)

structure. This method rose to prominence from the work of Debye, Anderson, Brumberger, and 

Bueche, and will be further referred to as the Debye model.99,100 Consider a solid with density of 

electrons  in a given volume :𝜌(𝒙) 𝑉

  𝜌(𝒙) = 𝜌0 +𝜂(𝒙) Eqn. 4 

where  is the average electron density and  represents the fluctuations around . In the 𝜌0 𝜂(𝒙) 𝜌0

discrete description above, Eqn. 3 includes values for the positions of individual atoms and their 

atomic form factor . In the continuous description, we replace the form factors  with  𝑓𝑗 𝑓𝑗 𝜌(𝒙)

(Eqn. 4), and the scattered intensity may be written as:
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𝐼(𝒒) = 𝐼0∫
𝑉
∫

𝑉
𝜌(𝒙𝒋)𝜌(𝒙𝒌) 𝑒 ―𝑖𝒒 ⋅ (𝒙𝒌 ― 𝒙𝒋)𝑑3𝒙𝒋𝑑3𝒙𝒌 Eqn. 5 

where  and  are the electron densities at points  and , respectively. The intensity 𝜌(𝒙𝒋) 𝜌(𝒙𝒌) 𝒙𝒋 𝒙𝒌

can be rewritten as a function of the electron density fluctuations  in the material (see 𝜂(𝒙)

Appendix):

𝐼(𝒒) = 𝐼0∫
𝑉
∫

𝑉
𝜂(𝒙)𝜂(𝒙 + 𝒓) 𝑒 ―𝑖 𝒒 ⋅ 𝒓𝑑3𝒙 𝑑3𝒓 Eqn. 6 

In Eqn. 6, we have substituted , the distance between scatterers, and removed the 𝒓 = 𝒙𝒌 ― 𝒙𝒋

subscript on . Debye defines the correlation function  as:99𝒙𝒋 𝛾(𝒓)

∫
𝑉

𝜂(𝒙)𝜂(𝒙 + 𝒓)𝑑3𝒙 = 𝜂2 𝑉 𝛾(𝒓) Eqn. 7 

The mean square fluctuation, , is defined in the Appendix. In an isotropic system,  depends 𝜂2 𝛾(𝒓)

only on the magnitude , and corresponds to the probability of two endpoints of a rod with |𝒓| = 𝑟

length  being within the same type of matter. For example, it is the probability of being in the 𝑟

solid phase of a NP material after moving a radius  away from any random point in the NP 𝑟

material’s solid phase.101 Thus, the correlation function will tend to 1 (having been normalized by 

 and ) for  (short distances correlate very well), and 0 for  (long distances do not 𝜂2 𝑉 𝑟→0 𝑟→∞

correlate). After some manipulation and assuming isotropy (using the average value of 𝑒 ―𝑖 𝒒 ⋅ 𝒓 =

, replacing the vectors  and  with their magnitudes), the intensity integral can be sin (𝑞 𝑟)/(𝑞 𝑟) 𝒒 𝒓

written as:100

𝐼(𝑞) =  𝐼0  𝜂2 𝑉 ∫
∞

0
𝛾(𝑟) 4𝜋𝑟2sin (𝑞 𝑟)

𝑞 𝑟 𝑑𝑟 Eqn. 8 

Several system parameters may be extracted from the correlation function, whose functional form 

is developed from arguments based on some knowledge of the system. Debye et al. used a ‘square 

wave’ (for details, see reference100) model of electron density to construct the correlation function 
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( , Eqn. 9), and with it derived the surface-area-to-volume ratio (S/V, Eqn. 10) in an 𝛾𝐷(𝑟)

inhomogeneous and porous medium with void fraction :100𝜙

𝛾𝐷(𝑟) = 𝑒
( ―

𝑟
𝜉) Eqn. 9 

𝑆
𝑉 = ―4 𝜙 (1 ― 𝜙)𝛾′𝐷(0)→

𝑆
𝑉 =

4 𝜙 (1 ― 𝜙)
𝜉 Eqn. 10 

In Eqn. 9 and 10,  is the mean width of the Debye correlation function and is called the correlation 𝜉

length, a characteristic length scale which describes how fast electron density fluctuation 

correlations decay spatially.  represents the derivative of the correlation function at . 𝛾′𝐷(0) 𝑟 = 0

Thus, with knowledge of the functional form of the correlation function and the void fraction ,100 𝜙

the surface-area-to-volume ratio can be obtained. Note that the surface-area-to-volume ratio is a 

function of the derivative of  when , as this region describes correlations at smaller 𝛾𝐷(𝑟) 𝑟→0

length scales (interfaces). 

The specific surface area may also be calculated from the region over which the intensity decays 

as  (note, this power law is not always -4, as will be discussed in Section 3.4) without any prior 𝑞 ―4

knowledge of  by analyzing scattering data in absolute units, or by normalizing with the Porod 𝛾(𝑟)

invariant (see Appendix). The latter method has been described in numerous articles including 

Dotzler et al. who used it to calculate nanoporous gold (NP-Au) specific surface area during 

dealloying in nitric acid.90,101,102 The result was independently discovered by Guinier and Debye’s 

contemporary, Porod, and is thus named the Porod regime.90,100  For clarity, this method has been 

detailed in the Appendix.

After performing the Fourier transform of , the resultant intensity function is:𝛾𝐷(𝑟)

𝐼𝐷(𝑞) =
𝐼0 8 𝜋 𝜉3 𝜂2 𝑉

(1 + 𝑞2 𝜉2)2 Eqn. 11 
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This function does not contain a Bragg-like peak (as it will be shown later in Figure 3a), and thus 

does not map onto the structure of NP materials which have some characteristic length scale not 

captured by . 𝐼𝐷

3.3 Models for nanoporous materials with a strong scattering peak

In the late 1980s and early 1990s, there were many different approaches to determine the origin of 

a peak in the scattering data of bicontinuous microemulsions (oil and water mixtures).103–113 

Depending on the temperature and composition of the mixture, the oil and water arrange into 

different microstructural phases. One such phase is bicontinuous, implying that if one were to start 

moving within the water phase, they could traverse the entire water network without crossing into 

the oil phase. While they look disordered and random, bicontinuous materials have a characteristic 

and quasi-repetitive length scale which gives rise to a Bragg-like scattering peak in the small-angle 

scattering regime.103,104,113,105–112 Many NP material classes exhibit such a bicontinuous 

structure,85,114–118 opening up opportunity to study these systems with X-ray scattering. One such 

class is NP metals, typically synthesized by an (electro)chemical etching process known as 

dealloying, in which the sacrificial component of an alloy is selectively removed to form a 

bicontinuous network of struts (ligaments) and channels (pores), both with characteristic diameter 

in the nanoscale range.87,119–127 Advances in tomography techniques have enabled 3D 

reconstruction of several NP  metals; these findings indicate that the ligament and pore structures 

are inverse of one another and are morphologically and topologically equivalent, and thus exhibit 

the so-called bicontinuous structure.128–130 Computation of NP metal structures with Kinetic Monte 

Carlo, molecular dynamics, and phase field methods yield similar results.85,123,125–127,131–135 These 

bicontinuous networks (both NP metals and microemulsions), have been modeled as spinodally 
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decomposed structures.85,105,113,119,136–138 In this section we focus on this type of microstructure and 

how SAXS can aid in determining this microstructure.

3.3.1 Cahn Spinodal Decomposition

The spinodal decomposition model stems from the work of J. W. Cahn and J. E. Hilliard, who 

developed a model for the free energy function for a non-uniform system in the late 1950s.139 In 

several subsequent articles, Cahn describes spinodal decomposition of isotropic systems in terms 

of local concentration, , and its gradients (see Appendix).120,140–142 In essence, the spinodal 𝑐(𝒒,𝒓;𝑡)

concentration  is found by implementing the Cahn-Hilliard free energy expansion into 𝑐(𝒒,𝒓;𝑡)

Fick’s diffusion equations and solving them in terms of Fourier components, leading to a 

superposition of waves:

𝑐 ― 𝑐0 = Σ𝒒𝑒𝑅(𝑞) 𝑡(𝐴(𝒒)cos (𝒒 ⋅ 𝒓) + 𝐵(𝒒)sin (𝒒 ⋅ 𝒓)) Eqn. 12 

Where  is the amplification factor (defined in Cahn),120 and  is the wavevector of the Fourier 𝑅(𝑞) 𝒒

components with magnitude . By assuming the only important Fourier component is , that 𝑞 𝑞0

which maximizes ,  can be replaced by  in Eqn. 12. In this case,  becomes a 𝑅(𝑞) Σ𝒒 Σ𝒒𝟎 𝑐

superposition of waves that all have the same magnitude wavevector, but with random orientation, 

amplitude, and phase.120 Cahn computed several binarized 2D level cuts of this so-called stochastic 

standing wave in one of the first computer simulations of material structure,120 predicting the 

bicontinuous two-phase structure of characteristic size denoted by the wavelength of the 

maximizing wavevector  i.e.  𝑞0,
2𝜋
𝜆0

.
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3.3.2 Leveled-wave model

Recently, Soyarslan et al. provided evidence for the applicability of Cahn’s model to NP metals 

by mapping it to their mechanical behavior and specific surface area.122 We use their notation for 

clarity. Cahn’s stochastic standing wave equation (Eqn. 12) is restructured into cosine waves with 

random orientation and phase:

𝑓(𝒙) =
2
𝑁

𝑁
∑

𝑖 = 1
cos (𝒒𝒊 ⋅ 𝒙 + 𝜑𝑖) Eqn. 13 

where  is the total number of waves used,  are the random directions distributed on a sphere 𝑁 𝒒𝒊

with radius  (i.e. the wavevectors have equivalent magnitude), and  are random phases. Once 𝑞0 𝜑𝑖

 waves are generated (104 waves are used, as mentioned in Soyarslan et al., to ensure isotropy in 𝑁

the simulated structure),122 points in real space are assigned as part of the bulk or void by 

thresholding  with a value  (not to be confused with the correlation length):𝑓(𝒙) 𝜉

𝒙 ∈ ℬ if 𝑓(𝒙) < 𝜉, 𝒙 ∈ ∂ℬ if 𝑓(𝒙) = 𝜉, 𝒙 ∈ 𝒫 if 𝑓(𝒙) > 𝜉

where  is the bulk (the metal),  is the interface, and  is the pore.122 The threshold value is a ℬ ∂ℬ 𝒫

function of the bulk fraction , . This thresholding process produces a 𝜙ℬ 𝜉 = 2erf ―1 (2 𝜙ℬ ― 1)

leveled-wave, which can be computed to provide structural visualization for a scattering dataset. 

As a demonstration of this concept for one wavelength, we used Mathematica143 to compute one 

such structure, which is displayed in Figure 2. Here we used fitted values (discussed later in 

Section 4) for ligament-ligament distance to determine . 𝑞0
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3.3.3 Berk Model

In two mathematically rigorous articles on the subject, N.F. Berk used the leveled-wave scheme 

discussed above to investigate the scattering properties of a three-phase system (such as 

oil/interface/water), which can be reduced to a two-phase system (such as ligament/pore in NP 

metals).111,112 The correlation function for  is the first spherical Bessel function:122𝑓(𝒙)  

𝛾𝐿𝑊(𝑟) =
sin (𝑞0𝑟)

𝑞0𝑟 = 𝑗0(𝑞0𝑟) Eqn. 14 

Figure 2. Example of a 3D structure generated by the leveled-

waved model found in Berk111,112 and Soyarslan et al122 using one 

wavelength,  determined by fitting the dataset in Section 4.𝒒𝟎
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The Fourier transform of Eqn. 14 predicts a very sharp peak at , as the function used only one 𝑞0

magnitude of (i.e. ), unlike the SAXS data shown in Figure 3. Berk added Gaussian dispersion 𝑞 𝑞0

around  and solved for the scattering intensity analytically:111,112 𝑞0

𝐼𝐵(𝑞) =
1
𝑞

(𝜋
2)

3
2
 

2 𝑞0  (Δ𝑞)[exp ( ―
(𝑞 ― 𝑞0)2

2 (Δ𝑞)2 ) ― exp ( ―
(𝑞 + 𝑞0)2

2(Δ𝑞)2 )] Eqn. 15 

for which the probability density for the wavevector  is a Gaussian distribution centered around  𝑞

 with variance .112 This function has been reduced from its original form (Eqn. 11 in Berk), 𝑞0 (Δ𝑞)2

where here we are assuming equal pore and bulk volume percentages ( ). Since this 𝜙ℬ = 𝜙𝒫 = 0.5

intensity function is derived based on a correlation function expansion that does not converge 

quickly as , the asymptotic curve at higher values of  (in the Porod regime) cannot be well 𝑟→0 𝑞

matched with any finite number of expansion terms.111 Eqn. 15 has been plotted in Figure 3c, 

which shows how this function changes when the both distribution ( ) and the characteristic Δ𝑞

spacing ( ) are varied. We can clearly see that this intensity distribution does not match the high-  𝑞0 𝑞

tail of the NP-Au scattering spectrum in Figure 4.

3.3.4 Teubner-Strey (TS) Model

In another attempt to determine the origin of the scattering peak in microemulsions, Teubner and 

Strey developed a free energy expansion in terms of an order parameter, , and its gradients, 𝜓 ∇𝜓

:113 

𝑓(𝜓,∇𝜓, ∇2𝜓,…) = 𝑎0 + 𝑎1𝜓 + 𝑎2𝜓2 + 𝑎3𝜓3 + … + 𝑐1(∇𝜓)2 + 𝑐2(∇2𝜓)2 + …
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where  is the local free energy per molecule. The order parameter  in the case of microemulsions 𝑓 𝜓

is the water-oil ratio, and all coefficients except for , , and  were taken to be 𝑎2 > 0 𝑐1 < 0 𝑐2 > 0

zero. Choosing these coefficient values was a system-based decision:  and  are zero by 𝑎0 𝑎1

symmetry, terms higher than  were ignored as the fluctuations are small,  was chosen to be 𝑎2 𝑐1

negative as there is negative microscopic surface tension in microemulsions and considering this, 

 must be positive to provide phase stability.113 This methodology is known as Landau-Ginzberg 𝑐2

phenomenological theory, and we refer the reader to Chapter 3 of Kardar’s Statistical Physics of 

Fields, which connects it to scattering.144 Upon Fourier transformation of the fluctuations of , 𝜓

one can extract a correlation function and a scattering intensity relationship with two length scales, 

 and :𝑑 𝜉

𝛾𝑇𝑆(𝑟) = 𝑒
― (𝑟

𝜉)
𝑗0 (2𝜋𝑟

𝑑 ) Eqn. 16 

𝐼𝑇𝑆(𝑞) =

8𝜋
𝜉 𝜂2 𝑐2 𝑉

𝑎2 + 𝑐1𝑞2 + 𝑐2𝑞4
Eqn. 17 

where fit parameters  and  are functions of  and . Here,  is a characteristic domain size 𝑎2 𝑐1,2 𝑑 𝜉 𝑑

(periodicity) which captures local order and the peak in the intensity distribution;  is the 𝜉

correlation length which, as mentioned previously, describes how fast electron density fluctuation 

correlations decay spatially. We have plotted Eqn. 17 in Figure 3b to demonstrate how the 

intensity changes with parameters  (represented by the black curve) and  (represented by the 𝑑 𝜉

colored curve).  As shown in Figure 3, The Teubner-Strey correlation function combines those of 

Debye, , and Berk, , so that  captures both the peak and a characteristic  𝑒( ― 𝑟/𝜉)  𝑗0(𝑞0𝑟) 𝐼𝑇𝑆 𝑞 ―4

Porod regime. This model has been used extensively in the microemulsion literature due to its 

satisfactory evaluation of characteristic size and ease of model fitting.103,106,145,146 However, it 
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misses an important intermediate regime after the peak and before the Porod regime, which is 

present in some bicontinuous microemulsions and is a consequence of another length scale in the 

scattered volume. The following model adds a third length scale, , to capture this intermediate 𝛿

regime, which appears in the data as a shoulder and corresponds to interfacial roughness, or the 

correlations in the wrinkles at the surface.

Figure 3. Comparison of the (a) Debye, (b) Teubner-Strey, and (c) Berk models and 

variation in their key parameters. In the Debye model, altering the correlation length shifts 

the curve, but it maintains its shape. In the TS (b) and Berk (c) models, the curves center 

around a value of q corresponding to the characteristic size (i.e.  or ). Here, the colored 𝒅 𝒒𝟎

lines represent a constant characteristic size and we vary the correlation length (in b), or 

the ratio  (in c), to alter the distribution around that q-value. In the black curves, we 𝒒𝟎/𝚫𝒒

have changed the characteristic size while maintaining the distribution in the blue curve.
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3.3.5 Choi and Chen modified leveled-wave model

The Debye, Berk, and Teubner-Strey models do not adequately describe the entire scattering 

intensity curve of NP-Au, as will be discussed further in Section 4. To deal with this discrepancy, 

Choi and Chen introduced a third length scale that modifies the Berk model – an interfacial length 

.145 Their model replaces the single wavevector magnitude, , for  in Eqn. 13, with a 𝛿 𝑞0 𝒒𝒊

distribution of magnitudes, , called a spectral density function. This distribution can take on 𝑓(𝑞)

any form as long as it is normalizable, i.e. , however the choice should have some ∫∞
0 𝑓(𝑞)𝑑𝑞 = 1

relevance to the scattering data.111 Choi and Chen have used an inverse 8th-order polynomial with 

three length scales ( , , and ) for :145 𝑎 𝑏 𝑐 𝑓(𝑞)

𝑓(𝑞) =
𝑏𝑐[𝑎2 + (𝑏 + 𝑐)2]2/(𝑏 + 𝑐)𝜋2

(𝑞2 + 𝑐2)2[𝑞4 + 2(𝑏2 ― 𝑎2)𝑞2 + (𝑎2 + 𝑏2)2] 
Eqn. 18 

where , , and . It was shown by Teubner that the Gaussian curvature  and the 𝑎 =
2𝜋
𝑑 𝑏 =

1
𝜉 𝑐 =

1
𝛿 〈𝐾〉

square mean curvature  are functions of the 2nd and 4th moments of ,  and , 〈𝐻2〉 𝑓(𝑞) 〈𝑞2〉 〈𝑞4〉

respectively.104 This high degree polynomial was chosen in order to capture the 4th moment, 

whereas in the other cases (Debye, Berk, and TS models), only odd moments exist, or the 4th 

moment diverges.145 Curvature analysis in this model is therefore more robust than in the 

aforementioned models. One can obtain these parameters by fitting a form of  to an 𝑓(𝑞)

experimental correlation function  using the steps outlined in the Appendix. 𝛾𝐸(𝑟)

We will study the pattern of NP-Au in more details in Section 4, during which the Choi and Chen 

model will be used, and we will provide an example of interfacial shape distribution (ISD) analysis 

to share its usefulness as a tool for quantitative analysis of ISD evolution and evaluation of self-

similarity in coarsening.  For the remainder of Section 3 (namely section 3.4 below ), we will 

discuss scattering from porous materials that do not give rise to a Bragg-like peak. 
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3.4 Models for nanoporous materials without a strong scattering peak

While NP materials with a well-defined and quasi-repetitive characteristic length over a long range 

give rise to a strong, Bragg-like scattering peak as mentioned in the previous sections, other NP 

materials do not. Instead of a peak, they exhibit distinct features in their scattering spectra. In 

particular, ‘shoulders,’ or plateaus, in the data indicate an important length scale that can be 

characterized by combining both the high-  Porod-like power-law decay discussed in Section 3.2 𝑞

and low-  analysis put forward by Guinier.90 Guinier approximated the scattering at very low 𝑞

angles to decay exponentially in what is sometimes referred to as Guinier’s law:90 

𝐼(𝑞)~𝑒
―

𝑞2𝑅2
𝐺

3 Eqn. 19 

introducing the concept of the radius of gyration (  in scattering. In the context of scattering, 𝑅𝐺)

the radius of gyration of an object (of arbitrary shape) is the root-mean-squared distance from its 

electronic center of mass. This quantity can be obtained from the slope of a linear fit of  ln (𝐼(𝑞))

vs.  in the so-called Guinier regime ( , for spherical objects90). The relationship 𝑞2 𝑅𝐺 ∗ 𝑞 < 1.3

between the radius of gyration and some real physical length depends on the shape of the object in 

question. For a spherical particle, for example, , where  is the radius of the particle.96 𝑅2 
𝐺 =

3
5𝑅2

𝑝 𝑅𝑝

Feigin and Svergun have tabulated several of these relationships for simple shapes,147 and this 

relatively simple analysis is performed frequently in X-ray and neutron scattering data.45,148–154 In 

a seminal paper on carbide-derived carbon, Gogotsi et al. fit scattering data to show that there is a 

very narrow distribution of pores which can be controlled well by synthesis temperature.45 They 

used an analysis put forward by Kyutt et al. which determines pore size by a series of  fits of 𝑅𝐺

the SAXS data.155–157   
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 was derived for particles of various shapes which are separated from each other in some 𝑅𝐺

solution,90 however many NP materials consist of grains comprised of nanoscopic subunits, often 

with a distribution of sizes, which are not widely separated. Such a material will scatter across 

those multiple length scales, producing overlapping spectra which can be difficult to interpret. For 

example, one may find a Guinier shoulder between two power-law decay regimes. Fitting this type 

of curve has been the subject of numerous models, as one would be hard-pressed to fit with any of 

those previously mentioned. Beaucage addressed the issue in a unified exponential/power-law 

model which, by way of local fitting in important regions (i.e. around the Guinier shoulder), one 

may determine physical parameters on these different length scales.151 Hammouda developed on 

the unified Beaucage model by adding continuity equations on some of the fitted parameters to 

eliminate discontinuities in the fits.150 Spalla et al. developed a model for two distinct power-law 

regimes which offers a way to extract physical parameters (specific surface area, pore radius, 

porosity) if the exact chemical composition of the sample is known. Using the Hammouda and 

Spalla models, Panduro et al.158 have studied the SAXS patterns of CeO3 particles of average 

radius 2.3 m, which contain two distributions of pores (micro- and nanoscale). Using USAXS, 𝜇

they resolve the different pore sizes as separate entities with their own physical parameters (e.g. 

average size). 

There are also cases where the Porod power-law decay deviates from  as discussed in Section 𝑞 ―4

3.2. This deviation of  in  is controlled by the scatterer’s fractal dimension, a notable 𝛼 𝐼(𝑞)~𝑞 ―𝛼

concept in the scattering literature96,154,158–163 which is beyond the scope of this focus article. 

Martin and Hurd discuss the subject at length in an article on the subject.164 Briefly, the high-  𝑞

decay rate, , can be thought of as describing a particle’s surface by its smoothness. For example, 𝛼

if , the surface is smooth, and when , the surface is rough.150 We also note that if , 𝛼 = 4 𝛼 = 3 𝛼 < 3
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the scatterer is a mass fractal, and , it is a surface fractal.150,164 Both the unified Beaucage 3 < 𝛼 < 4

model and Hammouda’s extension can capture the deviation, and was part of the analysis in 

Panduro et al.158

Figure 4 shows two different NP metal scatterers synthesized in our laboratory, namely 

nanoporous antimony (NP-Sb) and nanoporous copper (NP-Cu), which do not give rise to strong, 

Bragg-like scattering. The NP-Sb and NP-Cu were made by selective removal of sacrificial Mn 

from Mn-rich Sb-Mn and Cu-Mn alloys, respectively (details of the synthesis are beyond the scope 

of this article). We have attempted to use the various models mentioned in this section to fit these 

data, but by comparing to the SEM micrographs shown in the insets, we note that the models yield 

unrealistic parameters for characteristic size. Development of new models to fit these data are 

beyond the scope of this focus article, but will be the subject of a follow-up work.
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4 Case Study for NP-Au 

The most common and practical way to tune the structural size of a NP metal is by thermal 

treatment, which has been the subject of numerous studies using various techniques, including X-

ray tomography,129,165 Laue diffraction,129 electron microscopy,76,166–170 positron annihilation 

spectroscopy,168 and thermal conductivity measurements.171 Kinetic Monte Carlo (KMC) 

simulations indicate that diffusion-controlled Rayleigh instabilities cause coarsening, where a 

reduction in topological genus drives growth of the framework.129,132 An X-ray tomography study 

by Chen-Wiegart et al. indicated that the scaled surface curvature and surface orientation evolves 

Figure 4. Nanoporous materials which do not give rise to a strong, Bragg-like scattering peak. 

Scattering patterns of NP-Cu (red curve) and NP-Sb (blue curve) and corresponding scanning 

electron micrographs. 
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during coarsening, indicating it is non-self-similar. The self-similarity classification requires that 

the topology and morphology do not evolve temporally when scaled under a time-dependent 

quantity like surface area.129 More recent work by Lilleodden and co-workers have revealed that 

the coarsening process is nearly self-similar;172,173 however, the full picture of the coarsening 

process remains open for debate.174 

In this section, we fit the models discussed in Section 3.3 to real scattering data of a ~5 m-thick μ

film of NP-Au made by free corrosion of a Au35Ag65 leaf (custom order, Norris Blattgoldfabrik) 

in 15 M HNO3 for 30 minutes (gold curve in Figure 5). These scattering data were acquired at the 

University of Pennsylvania’s Dual Source and Environmental X-Ray Scattering (DEXS) facility. 

The DEXS facility is home to the Xenocs Xeuss 2.0, equipped to probe length scales from 1 Å to 

570 nm by utilizing variable sample-to-detector distances (up to 6.4 m), and both copper and 

molybdenum X-ray sources. The data in Figure 5 combines two collections at different sample-

to-detector distances to encompass a larger  range, and intensity was calibrated to absolute units 𝑞

(cm-1) with a glassy carbon standard.175 

Fitted Parameters Predicted Values
Model 𝜟𝒒/𝒒𝟎  (nm)𝒅 Sv (m2/cm3) Sm (m2/g)
Berk 0.24 55.3 66.1 3.4

Model  (nm)𝝃  (nm)𝒅 Sv (m2/cm3) Sm (m2/g)
Debye 10.3 - 149.3 7.7

Teubner-Strey 31.9 55.5 48.3 2.5

Table 1. Fitted parameters for all four models used to evaluate the SAXS data. 
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Figure 5. a) SEM and b) SAXS data from a ~5 m-thick film of NP-Au 𝝁

dealloyed by free corrosion in concentrated HNO3 for 30 minutes. The 

peak in the scattering data comes from the characteristic ligament-

ligament spacing (red lines on the SEM), and we model the data with the 

 functions discussed in Section 3.3.𝑰(𝒒)
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For all models shown in Figure 5a, we have chosen equivalent bulk and pore fractions (𝜙ℬ = 𝜙𝒫

), the isometric case, to compare with the Choi and Chen model. The values for volumetric = 0.5

and mass specific surface, SV and Sm, respectively, will decrease if the bulk fraction is changed, 

but not by orders of magnitude. Fit parameters and specific surface area calculations have been 

summarized in Table 1. The ligament-ligament spacing, , fitted by the Berk and Teubner-Strey 𝑑

models are nearly the same, ~55 nm. This characteristic distance in real space was evaluated by 

taking manual measurements of the SEM image in Figure 5b, where 30 measurements of 

‘obvious’ adjacent ligament centers (red lines in Figure 5b are examples) yield a spacing of ~62 

nm. To convert between SV
 and Sm, the effective density of NP-Au was chosen to be  0.65 × 19.3

g/cm3, which takes into account its porosity when the 65 at. % sacrificial Ag content has been 

removed during free corrosion.

Of the models fitted in Figure 5a, the Teubner-Strey model is clearly the most descriptive of the 

real scattering data. However, it fails to capture the intermediate shoulder in the curve after the 

peak and through its transition into the high-  Porod scattering regime ( . This shoulder 𝑞 𝐼(𝑞)~𝑞 ―4)

corresponds to another characteristic length scale in the system – we model this third length scale 

with the Choi and Chen model parameter  (surface roughness parameter), generate structures that 𝛿

look qualitatively similar to NP-Au, and evaluate the mean and Gaussian curvatures of these 

structures (Figure 6). The fitted  value was on the order of 3 nm. One can immediately distinguish 𝛿

the structure in Figure 6a (Choi and Chen spectral distribution, Eqn. 18) from the structure in 

Figure 2, which uses a single magnitude of , by a few distinct features. Namely, there are 𝑞

‘capped’ regions, and ‘necked’ regions in this simulated structure. Figure 6b and 6c show that the 

curvature of much of the structure is nearly zero, however, the necked and capped regions have 
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non-zero curvature. These regions are integral to the coarsening behavior, as they represent the 

parts of the structure involved in the Rayleigh instabilities that reduce the material’s topological 

genus.127,165,172,174 

Figure 6. Structure generation and ISD analysis using the Choi and Chen model fits to real 

experimental data from Figure 3. (a) 3D structure generated from fitted Choi and Chen model, 

(b & c) Gaussian and mean curvature maps of (a), using the convention that convex regions 

have negative mean curvature. (d) Interfacial shape distribution of the generated structure. 
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5 Conclusion

In this focus article, we have introduced SAXS as an important tool to characterize the structure 

of NP materials. To bring unfamiliar and interested investigators up to speed, we discuss the 

geometry of a scattering experiment and develop SAXS theory from fundamentals. We explore a 

variety of models to fit our data, starting from the Debye model, and adding multiple length scales 

in the Berk, Teubner-Strey, and Choi & Chen models to capture the significant features of the 

scattering intensity of NP materials with a strong scattering peak. We successfully apply these 

models to the scattering pattern of NP-Au in a case study, and put SAXS forward as a method to 

investigate the morphological characteristics of NP materials by linking structural similarities to 

bicontinuous microemulsions. In addition, we have discussed the scattering patterns of nanoporous 

materials without strong scattering peak. It is found that the models investigated in this work do 

not yield realistic material parameters for specific nanoporous copper and nanoporous antimony 

morphologies, however. A follow-up work will investigate appropriate models for these 

morphologies.
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7 Appendix

7.1 Atomic form factor 𝑓𝑗

In Section 3, we described the atomic form factor as the scattering ability of the  atom. The 𝑗𝑡ℎ

atomic form factor takes into consideration the probability distribution of electrons in an atom, 

which can be described by the square of its wavefunction, . Its mathematical form |𝜓(𝒓)|2 = 𝜌𝑎(𝒓)

is similar to that of the continuous electron distribution discussed in Section 3.2 (i.e., a Fourier 

transform):

𝑓𝑗 = ∫𝜌𝑎(𝒓) 𝑒𝑖 𝒒 ⋅ 𝒓𝑑3𝒓 Eqn. 20 

Thus, it is a function of the scattered angle, the radiation’s wavelength, and the distribution of 

electrons in the atom. All atomic form factors decrease from the atomic number  at  to 0 at 𝑍 𝑞 = 0

high .176,177 NIST178 and the International Tables for Crystallography179 have useful tables and 𝑞

calculators for the form factors.

7.2 Detailed derivation of scattering from a continuous charge distribution

The following derivation stems from two seminal papers of Debye and co-workers,99,100 and can 

also be found in Chapter 2 of Small-Angle Scattering of X-Rays.90 As defined in Section 3.2,

  𝜌(𝒙) = 𝜌0 +𝜂(𝒙) Eqn. 21 

Which can be rewritten as follows:

𝜂(𝒙) = 𝜌(𝒙) ― 𝜌0 Eqn. 22 

The average value of the fluctuation is zero, meaning that:

∫
𝑉

𝜂(𝒙)𝑑3𝒙 = ∫
𝑉

[𝜌(𝒙) ― 𝜌0]𝑑3𝒙 = 0 Eqn. 23 

In Section 3.2 we have left out the steps between Eqn. 5 and 6, so we have included them here for 

convenience. Substituting Eqn. 4 into equation Eqn. 5 yields:
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𝐼(𝒒) = 𝐼0∫
𝑉
∫

𝑉
[𝜌0 + 𝜂(𝒙𝒋)] ∗  [𝜌0 + 𝜂(𝒙𝒌)] 𝑒 ―𝑖𝒒 ⋅ (𝒙𝒌 ― 𝒙𝒋)𝑑3𝒙𝒋𝑑3𝒙𝒌 Eqn. 24 

We can break up this integral into four parts, including the principal and cross terms. We can 

ignore three of the terms,90 and we are left with only one term will remain as given in Eqn. 25: 

𝐼(𝒒) = 𝐼0∫
𝑉
∫

𝑉
[𝜂(𝒙𝒋)] ∗  [𝜂(𝒙𝒌)] 𝑒 ―𝑖𝒒 ⋅ (𝒙𝒌 ― 𝒙𝒋)𝑑3𝒙𝒋𝑑3𝒙𝒌 Eqn. 25 

We substitute , and consider the  integral:𝒓 = 𝒙𝒌 ― 𝒙𝒋 𝒙

∫
𝑉

𝜂(𝒙)𝜂(𝒙 + 𝒓)𝑑3𝒙 Eqn. 26 

If  , this integral goes to:|𝒓| = 0

∫
𝑉

𝜂(𝒙)𝜂(𝒙)𝑑3𝒙 = 𝜂2 𝑉 Eqn. 27 

defining the mean squared fluctuations of electronic density,  where  represents the irradiated 𝜂2 𝑉

volume. This factor is used to normalize the correlation function  to 1.𝛾(𝒓)

7.3 Inverting Intensity, Porod Invariant, and Specific Surface

While we cannot obtain the spatial distribution of electrons from scattering data directly, we can 

extract the correlation function using the inverse Fourier transform:

𝐼0 𝑉 𝜂2  𝛾(𝑟) =     
1

2 𝜋2∫
∞

0
𝐼(𝑞)  𝑞2sin (𝑞 𝑟)

𝑞 𝑟 𝑑𝑞 Eqn. 28 

As stated in Section 3.2, the correlation function tends to 1 as , and 0 as . We can use 𝑟→0 𝑟→∞

this fact to obtain the Porod invariant, , where we set  in the Fourier inversion equation:𝑄 ∗ 𝑟 = 0

2𝜋2 𝐼0 𝑉 𝜂2   =     ∫
∞

0
𝐼(𝑞)  𝑞2 𝑑𝑞 = 𝑄 ∗ Eqn. 29 

The Porod invariant is named as such because it varies only with the mean squared fluctuations of 

electron density within the scattered volume, and not their spatial arrangement (i.e. their 

structure).101 In a two-phase system with electron densities  and , we can use the fact that the 𝜌1 𝜌2
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mean squared fluctuations  to associate  with physical properties of the  𝜂2 = Φ1 Φ2(𝜌2 ― 𝜌1)2 𝑄 ∗

scattered volume:101

𝑄 ∗ = Φ1Φ2 (𝜌2 ― 𝜌1)2 𝑉 𝐼02𝜋2 Eqn. 30 

In the case of NP-Au scattering in vacuum, the contrast  is simply equivalent to the Δ𝜌 = 𝜌2 ― 𝜌1

electron density of Au ( ),  is the void fraction, and . When absolute 𝜌1 = 0 Φ1 Φ2 = (1 ― Φ1)

intensity calibration is not possible,  can be used to normalize the data in order to extract 𝑄 ∗

specific surface area:96,102

𝑆
𝑉 =

𝜋  lim
𝑞→∞

𝐼(𝑞) 𝑞4

 𝑄 ∗  
Φ1Φ2

Eqn. 31 

In this way, we can determine the specific surface area without using absolute calibration by 

plotting the normalized  vs.  and finding the constant value it tends to. It is important to  
𝐼(𝑞)
𝑄 ∗ 𝑞4 𝑞

note, however, that in a scattering experiment we do not have data for , thus absolute intensity 𝑞→∞

will give a more accurate representation of the specific surface. If the intensity data is in absolute 

units, the invariant calculation is not needed, and the specific surface is:

𝑆
𝑉 =

lim
𝑞→∞

𝐼(𝑞) 𝑞4

2𝜋 (𝜌2 ― 𝜌1)2 
Eqn. 32 

7.4 Fitting Choi & Chen Model
An experimental correlation function  (found by extrapolating and Fourier transforming the 𝛾𝐸(𝑟)

, we used SASview to accomplish this)180 can be fitted to the spectral density function  in 𝐼(𝑞) 𝑓(𝑞)

Eqn. 18 by the following analytical relationship for an isometric ( ) two-phase 𝜙𝐵 = 𝜙𝑃 = 0.5

system as shown in Berk, and Choi et al.:111,145

𝛾(𝑟) =
2
𝜋arcsin 𝑔(𝑟) Eqn. 33 
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where . Choi and Chen explicitly solve for  in their first article on 𝑔(𝑟) = ∫∞
0 𝑓(𝑞)𝑗0(𝑞 𝑟)𝑑𝑞 𝑔(𝑟)

the subject.146
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