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Abstract

We present a novel structure for topologically protected propagation of mechanical waves in a 

continuous, elastic membrane using an analog of the quantum valley Hall effect. Our system 

involves a thin, continuous graphene monolayer lying on a pre-patterned substrate, and as such, it 

can be employed across multiple length scales ranging from the nano to macroscales. This enables 

it to support topologically-protected waves at frequencies that can be tuned from the kHz to GHz 

range by either selective pre-tensioning of the overlaying membrane, or by increasing the lattice 

parameter of the underlying substrate. We show through numerical simulations that this continuous 

system is robust against imperfections, is immune to backscattering losses, and supports 

topologically-protected wave propagation along all available paths and angles. We demonstrate 

the ability to support topologically-protected interface modes using monolayer graphene, which 

does not intrinsically support topologically non-trivial elastic waves.
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Introduction

Topological insulators have recently attracted significant attention due to their potential for the 

lossless propagation of various forms of wave energy1-3. These topological properties have been 

uncovered using both theoretical predictions and experimental observations of spin-orbit 

interactions that preserve time reversal symmetry (TRS) for electronic systems4-8, even for 

photonic and phononic systems9-10. Topological states enable a system to have back scattering-

immunity, unidirectional energy transport, or even superconducting features. Although these 

exotic phenomena arise from fermions following Fermi-Dirac statistics, these concepts have 

recently been extended to photons11-15, and even to phonons16-20 through analogy with the quantum 

hall family which are characterized from bosonic systems.

While most attention has focused on electronic topological insulators, topological phonons have 

attracted increasing visibility in recent years. As phonons represent the vibrational characteristic 

of solid lattice structures, they have drawn great interest because of their wide applicability across 

multiple length scales, and because of the relative ease in controlling the phononic band structure 

as compared to photonic or electronic systems. Because the low group velocity, high density of 

states, and relatively large impedance contrast implies that phononic systems are highly sensitive 

to disorder in wave propagation by scattering21,22, achieving topologically protected states in 

phononic systems is an important goal for solid structures. Although the differences from electrons 

such as the absence of spin-orbit interactions leads to challenges in achieving topological order in 

phononic systems, recent works have successfully found analogs of the quantum Hall family, for 

example the quantum spin hall effect (QSHE), to manipulate unit cells in order to generate double 

Dirac-cone dispersion using zone-folding techniques and degenerate pseudo-spin intact TRS23-27.
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Recent studies on valley hall polarized mechanical states have enabled phononic structures to have 

distinct topological states preserving TRS without the pseudo-spin states that result in a phononic 

analog of the quantum valley Hall effect (QVHE)28-31. The valley dependent topological states can 

be achieved through simple control of the unit cell geometry by breaking inversion symmetry. A 

large separation in momentum space and counter propagation at the corresponding symmetry point 

enables the structure to have backscattering immunity and unidirectional wave propagation. 

Because of the simple construction for topological phase classification, various space inversion 

symmetry (SIS) breaking systems in solids have been investigated such as bilayered lattices, vein-

connected lattices, and diatomic lattices with resonant components32-35. However, we currently 

lack a design that can be scaled across length scales ranging from the nano to the macroscales, and 

thus the ability to function at frequencies ranging from the kHz to GHz ranges36-39. Furthermore, 

we lack the ability to actively tune the topologically-protected bandgap widths and frequencies 

once a structure has been fabricated. Finally, most proposed structures to-date are discontinuous 

in the plane, and require external, active elements to help achieve topologically non-trivial 

properties, which significantly complicates the fabrication and scalability of such concepts 40-42. 

Here, we present a novel concept for achieving topologically-protected elastic wave propagation 

based on the QVHE. We achieve this by considering, as shown in Fig. 1a, a pre-patterned periodic 

substrate with overlapping holes of radius R0, thus creating an effective hexagonal lattice structure, 

on top of which is placed a solid, in-plane continuous two-dimensional membrane, such as 

monolayer graphene. It is well-known that pristine graphene does not possess a phononic bandgap, 

and that the intrinsic graphene lattice structure satisfying C6 crystalline symmetry induces a Dirac-

cone in the dispersion relationship at the  point of the Brillouin zone. In order to create a bandgap 

at the relevant frequency, we break SIS by varying the radius of the disk at each lattice site that 
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results in reducing the order of crystalline symmetry from C6 to C3. 

Results and discussion

Structural design concept

Topologically-speaking, this patterned substrate in the form of a diatomic graphene lattice results 

in a time-reversal-invariant system with large separation in momentum space between the K and 

K’ valleys where there exist two distinct frequency extrema in the band structure that embody 

valley-dependent non-trivial properties, thus resulting in a QVHE analog in a solid structure. Since 

our structure is constrained in the longitudinal directions, for example via van der Waals forces 

between graphene and an SiO2 substrate43, it supports out-of-plane flexural waves and thus 

transverse phonon modes. The novelty of this design for nanomechanical devices is the 

geometrical simplicity and dimensional consistency, and the fact that it can immediately be 

fabricated experimentally, where only the substrate need be fabricated, and not the overlaying 

membrane. This allows for scalable customization for desired frequency ranges without any 

additional components such as resonant elements. Furthermore, this design is scale-invariant in 

the sense that it can be utilized at the nano or macroscales; for specificity we consider the 

membrane to be monolayer graphene in this work.

Phononic dispersion analysis

To examine the topological properties of this structure, we conducted finite element simulations 

using COMSOL Multiphysics to find the frequency dispersion of the Brillouin zone for a unit cell 

with a constant lattice parameter, a = 4.5m and symmetric radius, R0 = 3m (Fig. 1d). The free-

standing membrane has the elastic properties of monolayer graphene throughout this work and in 
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our numerical simulations (see Methods)44. We define a parameter  that characterizes the order 

of SIS breaking which is defined as  = (R1-R2)/R0 where R0 is the radius which makes the structure 

preserve SIS and R1, R2 are the radii at each diatomic lattice site. R1 and R2 are changed in 

complementary fashion, i.e. that R1 increases when R2 decreases in order to retain a constant lattice 

parameter (Fig. 1c and 1d). For a unit cell with  = 0, which is the symmetric case, Dirac-cones in 

the band structure are observed around 100.6MHz and 185.7MHz at the  point in momentum 

space By varying the radius ratio  from 0 to 0.13, a bandgap emerges at the K point, with a width 

of about 5.4MHz (blue box) from 97.8MHz to 103.2MHz and 8.2MHz (red box) from 181.3MHz 

to 189.5MHz (Fig. 1e). Also, while there exists another bandgap region around 210MHz (black 

box), we focus on the lower frequencies in this work.

Visualization of the eigenvector mode shapes in momentum space for two identical structures 

which have chiral symmetry,  = 0.13 and  = -0.13 at each corresponding bandgap frequency 

range, reveals the topological phase transition with a degeneracy at the  point as shown in Fig. 

2a. For  = 0, the first Dirac point (100.6MHz) represents the interaction of the monopole modes 

of each membrane and the second Dirac point (185.7MHz) represents the interaction of the dipole 

modes of each membrane. With increasing  from 0 to 0.13, polarization of the modes results in 

the interaction of monopole modes in the first bandgap region and monopole-dipole interactions 

in the second bandgap region. (Fig. 2a) We implemented 2x2 supercells based on the unit cell 

containing at least one intact hexagonal lattice structure to determine these polarized modes in 

wave propagation throughout the structure (Fig. S1). For  = -0.13, wave propagation through the 

intact lattice structure at the K point of the Brillouin zone shows clockwise propagation in the 

lower band at a frequency of 97.8MHz and counterclockwise propagation in upper band with 
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103.2MHz frequency while it shows reversed propagation direction for  = 0.13, i.e. being 

counterclockwise in the lower band and clockwise in the upper band with the same frequencies 

(ESI Video 1), indicating the emergence of band inversion, which is essential for a topological 

phase transition. This inversion also emerges in the second bandgap region from 181.3MHz to 

189.5MHz, again demonstrating that breaking SIS of the structure not only results in a bandgap, 

but also the emergence of band inversion which is essential for topological phase transition (ESI 

Video 2). 

Topological analysis

These topological phenomena are characterized by a topological invariant known as the Chern 

number, which is calculated by numerically integrating the Berry curvature over a small region 

near the K and K’ points (see Methods). The Berry curvatures calculated in the 1st Brillouin zone 

at kx = -2/3 are highly localized at the  and K’ points with opposite sign. These valley-dependent 

topological invariants are also reversed for the lower and upper bands in both bandgap regions 

(Fig. 2b and 2c). Since the valley Chern number, defined as Cv = Ck - Ck’, is non-zero and has 

opposite value, this valley-dependent Berry curvature shows that breaking SIS ensures a QVHE-

like topological phase transition. 

We also demonstrate in Fig. 2d and 2e the tunability of the frequency from the kHz to the GHz 

range by changing the lattice parameter a/a0 of pre-patterned lattice substrate where a0 is defined 

as R1+R2-O, where O is the overlapped length between two disks as shown in Fig. 1c, or from the 

MHz to GHz range by changing the pre-tension T/T0 within the graphene membrane (see Methods 

for full definition of the lattice parameter). The values of the first and second bandgap regions are 

inversely proportional to the ratio of the lattice parameter, a/a0, and directly proportional to the 
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square root of pre-tension variation ratio, (T/T0)1/2 (Fig. 2d and 2e). It is worthwhile to note that 

the natural frequency of a circular membrane under the out-of-plane oscillation exhibits the same 

relationship and one can derive the relationship based on continuum membrane theory45. Because 

the overall frequency range increases with decreasing lattice parameter and increasing pre-tension, 

the bandgap width also increases at higher frequencies (smaller a/a0). We checked the values of 

the topological invariants, which showed K-valley localization while being proportional to the 

square of the lattice parameter ratio while remaining constant for varying pre-tension (Fig. S2), 

which demonstrates that the topological phase transition is still valid across multiple length scales 

and arbitrary pre-tension values. Therefore, we can use the lattice parameter of the patterned 

substrate and the pre-stress acting on the continuous graphene membrane to both achieve specific 

topologically-protected frequencies, while the pre-stress can be used to actively tune the 

topological frequencies and bandgaps of the overlaying membranes.

To verify the presence of topologically protected edge states, we conducted frequency domain 

simulations for three types of edges that are possible for the hexagonal lattice structure (Fig. S3a, 

S3b and S3c): the two zigzag types (ZIG1 and ZIG2) and armchair type (ARM). For clarity, the 

structures corresponding to  = -0.13 and  = 0.13 are labeled as A type and B type such that ZIG1 

and ZIG2 edge states are defined as interface of A-B type and B-A type respectively. Specifically, 

a ZIG1 edge contains two lattice structures with R1 and a ZIG2 edge contains two lattice structure 

with R2. We created a supercell composed of an A-B-A type, two hexagonal A types – four 

hexagonal B types – two hexagonal A types, for the frequency dispersion calculation with Bloch 

periodic condition in kx direction (Fig. 3a). Edge states marked as red solid lines are states that 

cross the bandgap and intersect near the valley point K(K’) where k = 2/3 (4/3) (Fig. 3b). This 

clearly indicates the presence of a topologically non-trivial interface connecting the A-B and B-A 
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states that support interface modes with distinct frequencies of 102MHz and 186MHz. The 

deformed mode shapes at valley frequencies show that these edge states are strongly localized 

within a single hexagonal lattice constant away from the interface at both 102MHz and 186MHz 

respectively, which facilitates topologically protected wave propagation through the interface (Fig. 

3c and Fig. 3d). 

In the case of ARM edges states, we add lattice components with radius R0 in order to enhance 

symmetry (Fig. S4). A supercell composed by the A-B interface is adopted for the frequency 

domain calculation in the same way as the ZIG edges (Fig. 3e). The frequency domain results 

show that the ARM edge also has gapless and strongly localized edge states (Fig. 3f and 3g). Since 

the rotation of Brillouin zone occurs in case of ARM edge lattice structure, the Dirac points and 

intersecting point of edge states in momentum space are shifted to the  point from the K point. 

The wave propagation through topologically protected edge states in this system is clearly 

established through visualization of edge states propagation modes. For these edge states, forward 

propagating modes induced by ZIG1 (ZIG2) emerged from near K (K’) valley whereas backward 

propagating modes induced by ZIG1 (ZIG2) emerged from near K’ (K) valley (Fig. 3c and 3d). In 

more detail, for ZIG1 (ZIG2), the A-state shows clockwise propagating mode while B-state shows 

counterclockwise propagating mode (ESI Video 3 and 4). These counter propagating 

characteristics with a large interval in momentum space from K to K’ ensures valley-dependent 

interfacial wave propagation that represents an analogue to the QVHE, implying backscattering 

immunity as well as unidirectional wave propagating system. This demonstrates a topologically-

protected waveguide where waves can travel unimpeded along all possible paths in a hexagonal 

lattice.
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Full-field simulations

One of the significant features of a topologically protected waveguide system is robustness against 

imperfections such as sharp edge corners and defects. First, we implement a steady state frequency 

domain analysis in order to confirm immunity to backscattering at sharp edge corners. Four types 

of sharp edge corners are employed to demonstrate the ability to support all possible wave 

propagation paths in a hexagonal lattice. A triangle shaped closed waveguide composed of two 

identical single ZIG (ZIG1 and ZIG2) edges with 60 angles (Fig. 4a), a parallelogram shaped 

closed waveguide composed of ZIG1 and ZIG2 edge with 120 angles (Fig. 4c) and a square 

shaped closed waveguide composed of ZIG and ARM with 90 angles (Fig. 4e) in 23x10 unit cells 

are adopted for verification of topologically protected wave propagation. The displacement field 

calculated from the frequency response for the excitation point (red circle) with topologically-

protected frequencies 102MHz and 186MHz shows stable and strongly localized wave propagation 

through the topologically-protected interface for all sharp angle corners (Fig. 4b,4d, and 4f). This 

robustness to sharp bends enables arbitrarily complicated waveguides in practice. Moreover, in 

order to verify robustness to defects we deleted a single nanodrum near the path of ZIG in the 

triangular shaped closed waveguide (Fig. 4g). Likewise, at both topologically-protected 

frequencies 102MHz and 186MHz, the waveguide maintains their localized propagation (Fig. 4h), 

thus demonstrating robustness against imperfections by topologically protected states.

Another remarkable topological feature is unidirectional wave propagation by valley dependent 

counter-propagation. In order to clarify this, we composed four distinct domains consisting of two 

A states and two B states distinguished by ZIG1, ZIG2 and two ARM edge states (Fig. 5a), which 

induces wave propagation in the directions marked in yellow along the interfaces. Waves excited 
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from the red (orange) point propagate in a topologically-protected manner first along the ZIG1 

(ZIG2) edge, and subsequent along the ARM edge (Fig. 5b). Although the opposite edge state 

ZIG2 (ZIG1) has identical frequency dispersion, wave propagation through the opposite edge 

ZIG2 (ZIG1) is locked since the ZIG1 edge state supports upward wave propagation while ZIG2 

supports downward wave propagation. Moreover, the phased excitation based on the phase of the 

out-of-plane displacement from edge dispersion results enables the one-way wave excitation along 

a single edge that enables separation of forward and backward propagating waves along the same 

edge (Fig. S5). This propagating characteristic is analogous to pseudospin-dependent topological 

phase that ensures unidirectional wave propagation. 

Finally, we verify the topologically-protected wave propagation using real-time finite element 

simulations via the commercial finite element code ABAQUS (see Methods). To demonstrate 

propagation over all available paths within the hexagonal lattice structure, we created an L-shaped 

path consisting of ZIG1, ZIG2, and ARM type edges as shown in Fig. 6a. A 40-count wave pulse 

with frequency of 186MHz was used as the excitation on the ZIG2 edge. The wave pulse, which 

starts from the ZIG2 edge propagates through a 60 angle change to the next ZIG2 edge, after 

which a 120 angle change is made to propagate along the ZIG1 edge. Finally, a 90 angle change 

is made to propagate along the ARM edge. The snapshots of the wave propagation at different 

times in Fig. 6b clearly indicate the absence of backscattering at sharp corners, with the energy 

transported along the interface. This result is completely consistent with the previously discussed 

valley-dependent characteristics and frequency domain results, demonstrating robustness to sharp 

turns and corners and unidirectional wave propagation.

Conclusions
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In conclusion, we have presented and numerically validated a new design of a fully continuous 

phononic analog of the quantum valley hall effect. We accomplished this through a system 

consisting of a continuous solid membrane lying on a patterned substrate, which should enable this 

approach to be used across multiple length scales ranging from the nanoscale to the macroscale 

We demonstrated scalability of the achievable frequencies from the kHz to the GHz range by 

changing the lattice parameter of the patterned substrate, while also demonstrating significant 

tunability of the frequency for a set geometry by applying stress to the membrane. The numerical 

examples also demonstrated the ability to transport topologically-protected wave energy along 

arbitrary pathways in monolayer graphene, which does not intrinsically support topologically non-

trivial elastic waves. Overall, the approach presented here represents a robust approach to enabling 

phononic topological devices across a range of technologically relevant length scales and operating 

frequencies.

Simulation Methods

We performed finite element simulations to calculate the frequency dispersion relationship of 

our phononic crystal structure using COMSOL Multiphysics. We implemented a prestressed 

eigenfrequency analysis module based on membrane mechanics. The lattice parameter, a, can be 

changed with fixed ratio between R1, R2, and O, that is 2a=2R1+2R2-2O for frequency tuning (see 

Fig. 1c and 1d). The material properties for monolayer graphene, which serves as the free-standing 

membrane in this work, are Young’s modulus 1TPa, Poisson’s ratio 0.165, density 2.267g/cm3, 

thickness 0.335nm and isotropic in-plane pre-stress 0.65N/m44. Since the continuous solid 

membrane is lying on the pre-patterned substrate, we design the unit cell similar to the substrate 

pattern and apply fixed boundary conditions on the patterned edges. We used a 2x2 unit cell for 
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supercell in order to visualize the wave propagation. 

We employ Floquet periodic boundary conditions to four periodic sides, u(r+R) = u(r) ·exp(ik·R) 

where u(r) is the displacement vector, r is the position within a unit cell, R is a lattice translation 

vector and k is the wavevector. We calculate the frequency dispersion curves along the boundary 

of the irreducible 1st Brillouin zone in two dimensions. Likewise, we performed frequency domain 

simulations to verify the emergence of edge states along interfaces. The supercell has nx1 unit cell 

geometry and the frequency dispersion was calculated with periodic boundary conditions along 

the x-direction only. We also calculated the berry curvature in order to evaluate the topological 

invariant from the unit cell geometry as Ωn(k)= ∇ k x < un(k) | i ∇ k | un(k) >, where u is 

displacement vector field, k is the wavevector and n represents the nth mode. The local Chern 

number, CK/K’, is calculated as . Thus, a highly localized berry curvature at the 2πC = ∫𝛺𝑛(𝑘)𝑑2𝑘

K point gives signed local Chern number, ideally ±1/2. That is, the valley Chern number, Cv = CK-

CK’, becomes ±1.

In addition, implicit dynamic finite element simulations are conducted to visualize real-time 

wave propagation through topologically protected waveguide using the commercial simulation 

code ABAQUS. 27x29 unit cells were used to create the L-shaped waveguide including ZIG1, 

ZIG2 and ARM edges, which represents all possible path in a hexagonal lattice. The entire domain 

is initialized with in-plane pre-stress and all external boundary edges are fixed. The wave pulse is 

initiated by unit displacement, 0.001nm, with target frequency, 186MHz. We detected the wave 

propagation response for each time increment.
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Fig. 1. Achieving topologically-protected elastic wave propagation using continuous graphene 

membranes on patterned substrates. (a) Design concept of patterned membrane. The substrate is 

pre-patterned with a lattice of arrayed holes (white), after which the graphene membrane is laid on 

top of it. (b) Side view (Left) of the structure that supports a free-standing graphene membrane on 

a lattice arrayed hole and top view (Right) of continuous two dimensional phononic crystal lattice 

structure, with the hexagonal lattice array shown in dashed black lines and the unit cell for 

dispersion calculations shown in solid black lines. (c) Hexagonal symmetry lattice structure with 

constant lattice parameter. (d) Breaking space inversion symmetry by increasing R1 = R0 + d and 

decreasing R2 = R0 – d. (e) Frequency dispersion curve for symmetric case, R0 = 3μm (Black solid 

lines) and asymmetric cases R1 = 3.2μm and R2 = 2.8μm (Red solid lines) showing the emergence 

of bandgap opening for three different frequency regimes.
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Fig. 2. Topological phase transition and frequency tunability. (a) Evolution of bandgap width with 

respect to increasing γ, where band inversion occurs at γ = 0. (Top) unit cell mode shapes at 185.7 

MHz for different values of γ, (Bottom) unit cell mode shapes at 100.6 MHz for different values 

of γ. Berry curvatures in the 1st Brillouin zone when ky = -2/3 for (b) γ = -0.13 and (c) γ = 0.13 that 

indicates a valley-dependent Chern number which is reversed with inversion symmetry in the first 

bandgap region (bottom) and second bandgap region (top). Tunability of the bandgap frequencies 

by changing the (d) lattice parameter and (e) value of pre-tension where a0 = 4.5μm and T0 = 

0.65N/m.
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Fig. 3. Edge state frequency dispersion curve and mode shapes. (a) Supercell geometry for two 

ZIG type edges. (b) Frequency dispersion curve that shows counter-propagating edge states 

marked as red lines within the bandgap region. These edge states are localized near the interface 

lattice at (c) 102MHz and (d) 187MHz while also showing valley-dependent counter propagating 

modes at the K point (black solid arrow) and K’ point (black dashed arrow). (e) Supercell geometry 

for revised ARM type edge and (f) Frequency dispersion curve that indicates similar (g) edge states 

to ZIG at 102MHz (Left) and 187MHz (Right). The counter propagating topological phase 

transition occurs near the Г point, kx = 0, for positive kx (black solid arrow) and negative kx (black 

dashed arrow).
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Fig. 4. Robustness to imperfections. Frequency domain analysis for various interface paths 

including sharp 60° degree turn for (a, b) single ZIG edge, with 60° and 120° degree turns for (c, 

d) two ZIG edges and with 90° degree turns for (e, f) two ZIG edges and two ARM edges. (g-h) 

Frequency domain analysis for when defects (blue) are introduced along the interface. (a, c, e, g) 

Interface edges excited are at 187MHz and denoted as red lines in the bottom detailed lattice cut.
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Fig. 5. Unidirectional wave propagation. (a) Frequency domain analysis at 187MHz with four 

discretized domains with two identical states that yields different wave propagation directions as 

indicated by the yellow arrows. (b) Excited from ZIG1 (Left) and Excited from ZIG2 (Right) show 

unidirectional wave propagation based on valley-dependent topological protection. 
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Fig. 6 Real-time wave propagation. (a) Waveguide comprised of all available edge types ZIG1, 

ZIG2, and ARM in the hexagonal lattice. (b) Wave propagation results at different times for 

186MHz excitation.
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