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ABSTRACT

Blends of polymers of different topologies, such as ring and supercoiled, naturally occur in biology and 
often exhibit emergent viscoelastic properties coveted in industry. However, due to their complexity, along 
with the difficulty of producing polymers of different topologies, the dynamics of topological polymer 
blends remains poorly understood. We address this void by using both passive and active microrheology to 
characterize the linear and nonlinear rheological properties of blends of relaxed circular and supercoiled 
DNA. We characterize the dynamics as we vary the concentration from below the overlap concentration c* 
to above (0.5c* to 2c*). Surprisingly, despite working at the dilute-semidilute crossover, entanglement 
dynamics, such as elastic plateaus and multiple relaxation modes, emerge. Finally, blends exhibit an 
unexpected sustained elastic response to nonlinear strains not previously observed even in well-entangled 
linear polymer solutions. 

INTRODUCTION

DNA is a ubiquitous biopolymer that naturally exists in multiple topologies such as linear, relaxed circular 
(ring), and supercoiled.1-3 Due to the unique ability to produce precise lengths and topologies on demand, 
DNA has been studied extensively over the past few decades as a model system to shed light on 
controversial polymer physics principles.4-17 These studies – along with theoretical investigations and 
synthetic polymer experiments – have enabled a robust understanding of the dynamics of solutions of linear 
polymers in all three concentration regimes: dilute (c<c*), semidilute (c~c*) and entangled (c>>c*), where 
c* is the concentration at which polymer coils begin to overlap, defined as (3/4π)M/NARG

3 where RG is 
radius of gyration, NA is Avogadro’s number and M is molecular weight.16, 18-20 However, much less 
understood are the dynamics of solutions of polymers of different topologies, such as ring and supercoiled 
constructs, as well as polymer blends.2, 16, 19, 21-25 Moreover, the limited studies on these systems have shown 
that polymeric blends can display unique and surprising viscoelastic properties that are not only intriguing 
from a physics point of view but also beneficial for the design of new multifunctional materials.16, 19, 26-28 
For example, blends of ring and linear polymers have been shown to display increased viscosity, suppressed 
relaxation, and hindered diffusion compared to monodisperse systems of linear chains or rings.27, 29-33 These 
results suggest that interactions between topologically distinct polymers are key to emergent mechanics, 
and could be harnessed to produce tunable materials with a wide parameter space of function. However, 
the emergent properties reported thus far have only been observed at concentrations above the entanglement 
concentration ce which is several times larger than c*.12, 13, 16, 26, 27

Here, we combine passive and active microrheology to determine the linear and nonlinear rheological 
properties of blended solutions of ring and supercoiled DNA (Fig. 1). We show that these blends exhibit 
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surprising signatures of classical polymer entanglements at concentrations much lower than similar 
monodisperse systems of linear or ring polymers. These emergent properties demonstrate that topological 
blends can be exploited to create robust and stiff materials with much lower concentrations than 
monodisperse systems. We hope our surprising results spark theoretical investigations to elucidate the 
interactions between topologically-distinct polymers that give rise to the emergent phenomena.

Figure 1. Experimental approach to probe the rheological properties of blends of ring and supercoiled 
DNA in the dilute-semidilute crossover regime. (a) Cartoon of blends of supercoiled (red) and ring (blue) 
DNA at four different concentrations that straddle the overlap concentration c*. Dashed circle around each 
polymer coil represents its area of influence. (b-d) Passive microrheology. (b)  Cartoon of 1-μm microspheres 
diffusing through a DNA blend. Relative sizes of DNA and beads are approximately to scale. Particle-tracking 
algorithms determine the frame-to-frame displacements of beads. (c) Mean-squared displacements <Δr2(t)> are 
determined from the trajectories of ~2000 beads for each blend. (d) <Δr2(t)> is used to determine the frequency-
dependent elastic and viscous moduli, G'() and G"(). Scaling bars indicate power-law exponents predicted 
for the terminal regime. (e-f) Active microrheology. (e) An optically trapped 4.5-μm bead is displaced 30 μm 
through each blend at speeds v = 5–200 μm/s, corresponding to strain rates = 3υ/ R = 4.9 – 189s-1 where R 𝛾 2
is the bead radius. Relative sizes of DNA and beads are approximately to scale. (f) Stage position (green) and 
force exerted on the trapped bead (orange) before (5 s), during (0.15-6 s), and following (9-15 s) the bead 
displacement (delineated by dashed lines) are recorded at 20 kHz. Data shown is for v = 20 μm/s. 
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To frame our results, we provide a brief summary of current understanding of polymer solution dynamics.3, 

6, 16-18, 34, 35 In the dilute regime (c<<c*) the Zimm model, which accounts for hydrodynamic effects, 
describes dynamics.36 Polymers in this regime are predicted to relax over the Zimm time z=sRG

3/kBT 
where s is solvent viscosity.34 The storage and loss moduli, G'(ω) and G"(ω), are predicted to scale with 
frequency as G'(ω)~ω2 and G"(ω)~ω at low frequencies with G">G'. The complex viscosity η* is 
independent of frequency in this regime. At higher polymer concentrations, this terminal regime scaling 
still holds but only for timescales above the longest relaxation time .37 As c approaches c* 𝜏 = lim

𝜔→0
𝐺′/𝜔𝐺′′

polymers begin to overlap and the Rouse model describes dynamics for lengthscales larger than the 
correlation blob size  B = RG(c/c*)-3/4.38, 39 In this semidilute regime (c~c*) solutions exhibit terminal regime 
scaling at low frequencies but transition to the scaling G'~G"~ω1/2 at higher frequencies. The complex 
viscosity also scales with frequency as η*~ω-1/2.6, 7, 40, 41 The primary mode of stress relaxation is elastic 
retraction which occurs over the Rouse time τR=6RG

2/3π2D where D is the dilute limit diffusion coefficient.6, 

8, 34, 42, 43 Once c reaches ce polymers become entangled and the reptation model describes dynamics.18, 34, 35 
The longest predicted relaxation time in this regime is the disengagement time τD=(18RG

2/a2)τR where a is 
the entanglement tube radius. For τR<t<τD, G'>G" with G' exhibiting a frequency-independent plateau G0 
while G" transitions from ω1 to ω-1/4 scaling.41 The crossover frequency ωc at which G'>G'' provides a 
measure of τD. The plateau modulus G0 is predicted to exhibit power-law concentration dependence with 
scaling exponent of ~2.3.37, 44 Entangled solutions also exhibit stronger frequency dependence of the 
complex viscosity than semidilute unentangled solutions with η*~ω-(~0.7-1).8, 22, 41, 45, 46 

In the nonlinear regime, in which the stress is no longer independent of strain, the steady-state viscosity for 
semidilute and entangled polymers have been shown to exhibit shear-thinning at high strain rates with 
scaling exponents similar to those measured for complex viscosity η*(ω).13, 22, 39, 47 This equivalence, known 
as the Cox-Merz rule, appears to be valid for many polymer systems including linear DNA.10, 22, 41, 47-49 The 
bulk stress response of entangled linear polymers has also been shown to exhibit stress-overshoots before 
reaching a steady-state value, which has been attributed to chain stretching.8, 50, 51 However, 
microrheological measurements of entangled linear DNA have not found evidence of stress-overshoots.10

Previous studies on semidilute unentangled and entangled linear DNA have reported dynamics that largely 
obey the theoretical framework described above.10, 13, 39, 41, 47 For example, in the semidilute regime shear-
thinning has been reported with exponents of ~0.3 – 0.5,40, 47 whereas in the entangled regime exponents of 
~0.7-1 have been reported.8, 10 The critical entanglement concentration ce for DNA has also been shown to 
be ~6c* in good solvent conditions (~3c* in theta solvent conditions).5, 12, 13 

The dynamics of ring polymers is far more controversial due to their lack of free ends required for classical 
reptation theory.16 In the semidilute regime, ring polymer solutions have been reported to have zero shear 
viscosities ~2x lower than their linear counterparts with diffusion coefficients that obey Rouse scaling.12, 16 
In the nominally entangled regime, rings show no G' plateau and instead exhibit scaling G'~G''~ω0.4-0.5  

similar to semidilute linear chains.16, 49, 52 However, when linear polymer ‘contaminants’ are present, a 
plateau modulus is again observed as well as viscosities up to ~2.5x larger than for linear polymers.16 
Further, τD for rings has been predicted and observed to be shorter than that for linear chains with τD,R/τD,L 

=(aR/aL)2(L/2p)-1/2 where p is persistence length.42, 53, 54 Finally, while some studies report terminal regime 
scaling for entangled rings, others show no signs of reaching the terminal regime scaling (i.e. G'(ω)~ω2, 
G"(ω)~ω) at low frequencies, which authors suggest arise from slow relaxation modes in entangled rings 
that are not present in entangled linear chains.49, 52 However, it is expected that at low enough frequencies, 
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below the rate of the slow relaxation modes, that entangled rings will fully relax stress and exhibit terminal 
regime scaling.

The nonlinear response of rings is less understood than the linear regime dynamics, with very few studies 
reported to date. One previous study examining entangled polystyrene reported that rings exhibited weaker 
shear thinning over a broad frequency range and minimal stress overshoots compared to their linear 
counterparts.22 Authors argued that this difference arose from the more compact structure of rings and their 
lack of free ends that hinder their ability to deform and stretch in response to strain as easily as linear chains. 
Importantly, this same study showed that the Cox-Merz rule was valid for ring polymers. The extensional 
rheology of entangled rings has also been measured.55 In this study, the extensional stress as a function of 
strain for rings was shown to exhibit much more delayed relaxation to steady-state compared to linear 
chains, increasing approximately linearly with strain for a broad range of strain values.55 Rings also 
exhibited much more pronounced strain-stiffening, in which the slope of the stress curve increased during 
the strain, compared to linear chains. These distinct features were suggested to arise from the unraveling of 
the more compact structures that rings assume compared to linear chains. Notably, even less is understood 
regarding supercoiled polymers or blends of rings and supercoils, with no rheology data or predictions to 
our knowledge. 

Below we present the microrheological properties of topological DNA blends in which we fix the ratio of 
rings to supercoiled molecules (R:S≈3:1) and vary solution concentration from ~2x below to ~2x above c*. 
We show that blends display a crossover at ~c* to a regime with dynamics that can be described by 
predictions for entangled polymers, including: elastic plateaus, tube disengagement, and sustained 
elasticity. Further, our results suggest that interactions between the topologically distinct polymers give rise 
to entanglement-like dynamics which are distinct in the linear versus nonlinear regimes.

MATERIALS AND METHODS

Complete experimental details, summarized below, are provided in SI. 

Circular 50 kbp DNA was prepared using protocols detailed elsewhere.4, 56 The purified solution has a 
concentration of 0.56 mg/mL and consisted of ~69% relaxed circular (R), ~26% supercoiled (S), and ~5% 
linear (L) DNA, as quantified via single-molecule ‘counting’ experiments (SI, Fig S1). The topological 
difference between relaxed circular (ring) and supercoiled DNA is the lack of torsional stress in rings. Both 
are circular and have no free ends. The two strands of double-stranded supercoiled constructs are twisted 
such that the torsional stress causes the molecule to assume a tightly coiled conformation. For relaxed 
circular DNA, one of the double-strands is nicked such that the DNA can unwind and assume a relaxed 
open circular conformation with no twists or coils. In comparison, for linear DNA the two strands are cut 
in one position, providing the molecule with free ends. In solution, ring DNA assumes a random coil 
configuration, similar to linear DNA, with a radius of gyration ~1.58 times smaller than a linear chain 
equivalent.4 Supercoiled molecules assume a more compact ribbon-like conformation (Fig S1). In dilute 
solution the diffusion coefficient for supercoiled molecules is ~1.3 times faster than for ring DNA and ~1.7 
times faster than for linear DNA.4 

Throughout the text we treat the blend as comprised of rings and supercoiled DNA, largely ignoring the 
small fraction of linear molecules present. We realize this is an approximation, and, as described in the 
Introduction, previous studies on synthetic ring polymers have shown that a small fraction of linear chains 
can impact the rheological properties of ring polymers due to threading events.16 However, based on our 
previous steady-state diffusion studies for ring-linear DNA blends,57 we do not expect this small fraction 
of linear chains to play a significant role in our results. In this study we showed that for a comparable DNA 
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length and concentration (45 kbp, 0.5 mg/ml), the introduction of 5% linear chains into a ring DNA solution 
only reduced the diffusion of ring DNA by ~3%. This is compared to a 21% drop measured at ~25% linear 
chains. Because the supercoiled contaminants make up >25% of the blend, we assume that it is the presence 
of supercoiled constructs rather than linear chains that play the dominant role in the mechanics we report. 
Nonetheless, we cannot unequivocally rule out the possibility that the linear DNA ‘contaminants’ impact 
our results, and our future work will examine this impact directly by carrying out experiments on blends of 
ring and linear DNA with varying fractions of linear chains.

We performed measurements at blend concentrations of 0.14, 0.27, 0.41 and 0.51 mg/mL, chosen to span 
from ~2x below to ~2x above c* (Fig. 1a). To determine an effective c* for blends we started with the 
expression c*=(3/4π)M/NARG

3 that is conventionally used in the literature.37 This expression is derived by 
equating the solution volume (m/c*, where m is total mass) to the total volume the molecules comprise, i.e. 
the total number of molecules (N=mNA/M) multiplied by the volume per molecule (Vm=4RG

3/3). We use 
this approach but consider that each component contributes separately to the total volume the molecules fill 
in solution: NSVm,S+NRVm,R+NLVm,L = (4/3)N(0.69RG,R

3+0.26RG,S
3+0.05RG,L

3). The resulting expression is 
then: c*=(3/4π)M/NA(0.69RG,R

3+0.26RG,S
3+0.05RG,L

3). 

The radius of gyration for rings has been shown to be smaller than their linear counterparts with a ratio 
RG,L/RG,R =1.58 measured for DNA.4 The radius of gyration for supercoiled DNA (RG,S) has likewise been 
shown to be smaller than linear chains and can be calculated via the worm-like-chain expression for linear 
polymers assuming a contour length of LS=0.4L, where L is the contour length of the polymer: 

𝑅𝐺,𝑆 = 𝑝[0.4𝐿
3𝑝 ― 1 + 2( 𝑝

0.4𝐿)2

(1 ― 𝑒 ―0.4𝐿/𝑝)]
0.5

,

where p is the persistence length (~50 nm for DNA).3 

Using these expressions and relations, along with reported values of RG for similarly sized ring and linear 
DNA, we compute RG,S≅0.33 μm, RG,R≅0.37 μm, and RG,L≅0.56 μm. From these values we calculate 
c*≅0.25 mg/mL. As such, our chosen concentrations equate to ~0.5c*, c*, 1.5c* and 2c*. 

To estimate the correlation blob size B for our system we compute a weighted average of the blob sizes 
for each topology using the expression  B = RG(c/c*)-3/4.5, 38 The effective correlation blob size is then  B  
≅ (0.69RG,R+0.26RG,S+0.05RG,L)(c/c*)-3/4 which equates to values of ~0.57 m (0.14 mg/ml), 0.35 m (0.27 
mg/ml), 0.26 m (0.41 mg/ml), and 0.22 m (0.51 mg/ml). The mesh size  is related to the correlation 
blob size via  =61/2 B.38

Microrheology measurements are described in Figure 1 and SI. The microspheres used in both linear and 
nonlinear measurements are coated with BSA to enable a no-stick boundary condition between the spheres 
and the blend.58 Further, to ensure that we are probing the bulk rheology rather than the non-continuum 
local rheology, we chose bead diameters (d = 1 m and 4.5 m) that were larger than RG and B. This 
criterion has been theoretically and empirically shown to be sufficient to probe the continuum mechanics 
of unentangled polymer solutions.41, 59-61 Nonetheless, it is well known that particle-tracking microrheology 
typically underestimates the magnitudes of G' and G'' compared to bulk rheology; however, their 
dependences on frequency and sample concentration are transferable between the two techniques.62-65 As 
such, to facilitate comparison to bulk rheology we focus our discussion on the scalings and trends in the 
data rather than the absolute magnitudes. In future work we plan to perform macrorheology measurements 
on this system for direct comparison to our microrheology measurements and bulk rheology results on other 
polymer systems. However, our current purification methods produce DNA quantities that are too small for 
accurate experiments with standard bulk rheometers.
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RESULTS AND DISCUSSION

We first analyze trajectories of diffusing microspheres embedded in the blends to determine the dependence 
of the linear viscoelastic moduli on concentration. At low frequencies all blends exhibit terminal regime 
scaling with G'~ω2, G''~ω1 and G''>G' (Fig. 2b). While this is expected for linear polymers at these modest 
concentrations, it contradicts recent findings for ring polymers that show no terminal regime scaling at low 
frequencies.52 For c>c*, a crossover to G'>G'' is observed at frequencies of ωc=17rad/s and ωc=4.25rad/s 
for 1.5c* and 2c*, corresponding to disengagement times D≈0.4s and D≈1.5s (Fig 2d). Surprisingly, these 
times are close to D for comparable linear DNA systems with reported values of ~0.7s and ~1.24s.10 In 
contrast, predicted values for rings are an order of magnitude smaller (~0.05s,~0.07s). Similarly, zero-shear 
viscosities for 1.5c* and 2c*, determined from the low-frequency plateau in η*(ω) (Fig. 2c), are markedly 
similar to reported values for comparable linear DNA systems (45 kbp, 0.5 mg/ml),10 while η0 for rings is 
predicted to be ≥2x smaller.16 

Further, a shift in scaling of η0 with concentration is also observed for c>c* (Fig. 2c,e). The agreement 
between η0 values for c>c* and those from entangled linear DNA suggest that the crossover is to an 
entanglement-dominated regime. Finally, at high frequencies all solutions exhibit η*(ω)~ω– scaling with 
exponents that increase with concentration (Fig. 2c,e) and exhibit a similar shift for c>c*. Given the small 
frequency range over which power-law scaling is apparent, along with the noise in the data at high 
frequencies, we cannot extract exact scaling exponents from the data. However, for the sake of comparison 
with predictions and previous results, we fit the high-frequency regions of the viscosity curves to power-
laws to determine approximate scaling exponents. Exponents for blends with c<c* are in line with the 
predicted Rouse scaling (0.5) and those reported for linear DNA up to 6c* (≈ce).5, 7, 40 Conversely, for c>c*, 
scaling exponents match those reported for well-entangled linear DNA (~0.7–1).8, 41 Our previous studies 
on entangled linear DNA10, 41 demonstrated the validity of the Cox-Merz rule, which equates the steady-
shear viscosity at a given shear rate to the complex viscosity at the same frequency, for these systems. 
Previous studies on marginally entangled synthetic ring polymers have also demonstrated its validity.22 As 
such we can compare our η*(ω)~ω– scaling to previously reported shear-thinning exponents. Previous 
studies on semidilute unentangled DNA solutions reported scaling exponents of ~0.3 – 0.5 for 
concentrations up to 0.5 mg/ml47 whereas concentrated linear DNA solutions have been reported to have 
exponents of ~0.7 – 1.8 These findings further support our interpretation that our blends exhibit dynamics 
reminiscent of entangled linear chains for c>c* and semidilute linear chains for c<c*. 

We note that while the 1.5c* and 2c* blends appear to reach frequency independent plateaus G0 at the 
highest frequencies measured, similar to entangled linear polymers, the scaling with concentration appears 
to be weaker than the predicted value of ~2.3.37, 40 However, the frequency range over which the plateaus 
are apparent, particularly for 1.5c*, is quite small, so determining a scaling law from the data is not possible.
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Figure 2. Passive microrheology reveals sharp crossover in linear viscoelastic properties of ring-supercoiled 
blends at the overlap concentration. (a) Mean-squared displacements <Δr2(t)> of microspheres diffusing through 
blends of c=0.5c*-2c* as listed in legend. (b) Frequency-dependent elastic modulus G' (closed symbols) and viscous 
modulus G'' (open symbols) determined from data shown in (a). Scaling bars indicate power-law exponents predicted 
for the terminal regime (G'~ω2, G''~ω1). (c) Complex viscosity , showing varying degrees of shear thinning 
() with representative scaling exponents  shown. (d) Loss tangent (G''/G') versus ω with dashed line indicating 
G'=G''. The disengagement time for each blend is determined by where the data crosses the dashed line (i.e. ωc). Note 
only blends with c>c* exhibit this crossover. (e) Zero shear viscosity η0 and shear thinning exponent  versus c/c*. 
(f) Diffusion coefficients D, determined via linear fits to <Δr2(t)> (shown in (a)) and normalized by the value in buffer 
conditions D0, plotted versus RG/. The dashed line corresponds to the previously reported relation D/D0~exp(-
1.63(RG0.89) for particles diffusing in unentangled semidilute linear polymer solutions. (g) D versus c/c* with dashed 
lines corresponding to D~(c/c*)-x, where x = 2.28 and 3.9 are the previously reported values for intermediate and large 
particles respectively, diffusing in entangled linear polymer solutions.
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These results suggest that unexpected entanglement-like interactions occur in ring-supercoiled blends with 
much less coil overlap than their pure linear or ring counterparts. To corroborate this interpretation, we 
determine the diffusion coefficients D of the particles from the mean-squared displacements (Fig 2a), and 
compare to predicted and empirical scalings for semidilute unentangled and entangled linear polymer 
solutions (Fig 2f,g).37, 61, 66, 67 For particle diameters d comparable to the system mesh size , and larger than 
or equal to RG (d≈, d≥RG), as in our experiments, previous studies on PEG solutions have reported the 
relationship D/D0~exp(-(RG), with  1.63 and  0.89 for unentangled semidilute solutions.61 This ≅ ≅
relation implies that the radius of gyration rather than the mesh size is the critical determinant for whether 
the particles are measuring the solvent viscosity or the bulk viscosity of the polymer solution, the latter of 
which is the Stokes-Einstein relation. For d > RG the diffusion coefficient scales according to this expression 
and the Stoke-Einstein relation is recovered. As shown in Fig 2f, our data for c≤c* aligns with this scaling.

For the entangled regime this same study reports D~(c/c*)-x with x = -2.28 for d<2a and x = -3.9, similar to 
predicted values for large particles,37, 66 for d>2a. The scaling theory with which these empirical scalings 
agree, which couples the bead diffusion to the relaxation of the polymers, predicts that intermediate size 
particles measure an effective viscosity that is equivalent to that of a polymeric fluid in which the polymer 
size is on the order of the particle size, whereas large particles measure the bulk viscosity dictated by the 
relaxation of the entire polymer mesh. For linear DNA solutions with similar length and concentration as 
our highest concentration blend (45 kbp, 0.5 mg/ml), a ≈ 0.5 m, so d ≈ 2a in our experiments. As such, if 
blends were behaving similar to entangled linear polymers for c>c*, as our rheology data suggests, then 
we should expect scaling in between these two values. The data shown in Fig 2g is indeed consistent with 
this picture. 

To shed further light on these intriguing mechanical properties we turn to the nonlinear rheological 
response. To characterize the nonlinear viscoelastic response of the blends we optically drive a microsphere 
30 μm through the blends at strain rates of =4.7–189s-1. As shown in Figs. 3a and S3, all blends exhibit an 𝛾
initial elastic response in which the force increases linearly with strain followed by softening to a more 
viscous (i.e. strain-independent) regime. These general features are similar to those previously reported for 
entangled linear DNA and actin.10, 68 However, the notable difference is the retained elasticity over the 
entire strain (Figs. 3a,S3). The previously reported systems all soften to a purely viscous response at large 
strains. This retained elasticity, which implies strong entanglements, is particularly surprising considering 
the modest concentrations. Interestingly, this sustained elasticity is similar to that reported for the 
extensional stress response of entangled rings compared to linear polymers, as described in the 
Introduction.55 While microrheological strains are typically assumed to be more analogous to shearing 
rather than extensional bulk rheology, because we are pulling a microsphere through the blends, there may 
be components of extensional rheology at work as well, as DNA strands can get momentarily hooked on 
the bead before slipping off. Further, as shown in SI Fig S6, our blends exhibit similar strain-stiffening 
features as Ref 55, with stress curves exhibiting an increase in slope at large strains. This agreement 
suggests that blends are behaving more closely to entangled ring solutions in the nonlinear regime, as 
opposed to the linear polymer features exhibited in the linear regime. The authors of Ref 55 postulate that 
the sustained elasticity and strain-stiffening in rings is a result of the ring chains unraveling from their 
compact structures in the direction of the strain. Such unraveling could force rings to separate from 
supercoiled constructs as they unravel in the direction of the strain, and cause rings to self-entangle. We 
explore this hypothesis further below.
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Figure 3. Ring-supercoiled DNA blends straddling c* universally exhibit nonlinear stress response features 
indicative of strong entanglements. (a) Measured force in response to strain rates of =4.7–189 s-1 as listed in 𝛾
(d). Data shown is for 2c* (see Fig. S3 for other concentrations). (b-c) Final differential modulus Kf, determined 
from the slopes of force curves in the final response phase shown in (a) and Fig. S1, versus (b)  (see legend) 𝛾
and (c) c (see legend in (f)). (d) Differential modulus, K=dF/dx, as a function of time for 2c* and  listed in 𝛾
legend (other concentrations shown in Fig. S1). Inset: Average softening time tsoft, determined as the time at 
which K≈Kf, versus  for 2c*.  (e) K0 vs , only showing -dependence for c>c*. (f) Data from (e) plotted as a 𝛾 𝛾 𝛾
function of c, showing a crossover from -independence to -dependent increase of K0 at ~c*. All data in b,c,e,f 𝛾 𝛾
have error bars but in some instances they are smaller than symbol sizes.

Finally, we point out that our force curves show no stress overshoots that macrorheology studies on 
entangled linear polymers find.10, 22 Such overshoots have been attributed to chain stretching, and, as 
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described in the Introduction, previous nonlinear rheology measurements on entangled rings found much 
less prominent overshoots compared to their linear counterparts, which was attributed to rings not being 
able to deform in the direction of the strain as easily.22 Our previous nonlinear microrheology studies on 
entangled linear polymers also showed no overshoot, which we postulated was due to the different scales 
of the two techniques.10 Namely, stress overshoots require many chains to be stretched affinely with the 
strain, as could happen in bulk rheology measurements but less so in microrheology. Further, as described 
above, stretching of rings may manifest differently than linear chains, exhibiting a much slower relaxation 
to steady-state and more pronounced stiffening at long times rather than stress overshoots. 

In order to further characterize the unexpected elasticity that our blends exhibit, we calculate an effective 
differential modulus K=dF/dx, which quantifies the stiffness of the system (Figs. 3b-f,S3). As shown in Fig. 
3b,c, the K value in the final response phase Kf, which we define as the average value in the plateau region 
that all K curves exhibit, is nonzero and increases with  and c (Fig S4). The dependence of Kf on 𝛾 𝛾 
demonstrates that measurements are indeed probing the nonlinear regime.10 However, for <40s-1 the 𝛾
dependence on  appears to be weaker than for higher rates which follow a power-law of ~1.2. This data 𝛾
suggests that lower rates may not be accessing the nonlinear regime, but may rather be in a crossover regime 
between linear and nonlinear response dynamics. 

The initial stiffness K0 displays a crossover at c* for all rates (Fig. 3d-f). Namely, K0 is largely independent 
of  for c<c* (Fig. 3f), suggestive of a linear response; while for c≥c* K0 increases with , similar to the 𝛾 𝛾
nonlinear response observed for entangled linear DNA.10 The absence of a crossover in Kf for fast rates then 
suggests that these large strains are sufficient to alter the interactions between polymers such that they 
exhibit strong entanglement-like interactions even at c<c*. Nonlinear forcing has been shown to induce 
similar strain-induced network alterations in entangled linear polymers, due to entanglement tube dilation 
and contraction as well as convective constraint release.8, 42, 46, 69-77

To shed further light on the transition from the initial to final phase of the nonlinear response we determine 
the time tstiff at which blends deviate from the initial elastic phase (when K drops to K0/2), which is a measure 
of the fastest relaxation time of the system. We find tstiff=0.007±0.002s, independent of  and c, which 𝛾
agrees with the Zimm time for supercoiled constructs (Z,S≈0.008s). While Zimm relaxation is expected for 
c<c*, it is rather surprising that is persists for c>c*, and that there is no evidence of Zimm relaxation for 
rings. 

We also quantify the time at which blends enter the final regime tsoft, which we define as the time at which 
K first reaches Kf (Fig S4). For all concentrations, tsoft increases with  for <40s-1, but for higher rates 𝛾 𝛾
reaches a -independent value of tsoft≈0.047±0.004s, quite close to the predicted Rouse time for pure ring 𝛾
solutions (R,R≈0.044s). The crossover seen at  ≈40s-1, similar to that observed for Kf, corroborates that 𝛾
lower rates are not well within the nonlinear regime. 

To verify that we are probing the nonlinear response and test if the slower rates are closer to linear regime 
expectations we compare our force curves with the expected force growth within the linear viscoelasticity 
(LVE) framework.37 We compute LVE stress curves LVE(t) by calculating the relaxation modulus G(t) 
from the viscoelastic moduli presented in Fig 2 (Fig S5) and carrying out the integral 𝜎𝐿𝑉𝐸(𝑡) = 𝛾∫𝑡

0𝐺(𝑡)𝑑𝑡
.37 As shown in Fig S6, the nonlinear stress curves are distinctly different from the expected LVE growth, 
particularly for 40 s-1. Noteworthy distinctions are the strain-stiffening that arises in the nonlinear 𝛾 ≥
curves (Fig S6, described above), as well as the initial non-zero stress. Further, the concentration 
dependence of K0 is similar to that of the initial G(t) value but the magnitudes differ substantially (Fig S5). 
Within the LVE framework, nonlinearities are predicted to arise when the shear rate exceeds the terminal 
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relaxation frequency, . As shown in Fig S7, 0.6 s-1 and our lowest strain rate in 𝜔𝑇 = lim
𝜔→0

𝜔𝐺′′/𝐺′ 𝜔𝑇 ≤

nonlinear measurements is 4.7 s-1, so we are indeed beyond the LVE regime. However, the differences 
between LVE(t) and the nonlinear stress curves are much less dramatic for <40 s-1 suggesting that blends 𝛾
may in fact be in a crossover regime from linear to nonlinear dynamics for these strain rates.

The loss of substantial elasticity over R,R indicates that Rouse-like relaxation of rings and Zimm relaxation 
of supercoiled molecules are the dominate modes of stress relaxation. However, because blends maintain 
some elasticity throughout the strain, a slower mode, such as the disengagement time D, must also be 
present. We offer one possible mechanism, which we alluded to above and explore further below, that could 
give rise to the emergent physics. Namely, because of the different relaxation timescales and conformations 
of rings and supercoils, nonlinear strains could force their separation, such that in the vicinity of the strain 
there are regions of freely diffusing supercoiled constructs that have unthreaded or untangled from rings 
(undergoing Zimm relaxation), and regions of pure rings that remain entangled or at least strongly 
overlapping (undergoing Rouse relaxation and disengagement). 

Following strain, the probe is halted and the force is measured as the system relaxes (Figs. 1f,4a,S8). As 
with previous studies on entangled linear and ring DNA,42, 54 a sum of up to three exponentials (F(t)=C1e-

t/τ1+C2e-t/τ2+C3e-t/τ3) fits our data well (Figs. S8,S9).

In all fits the different time constants are separated by close to an order of magnitude with values ~O(10-

3)s, O(10-2)s, and O(10-1)s. As such, we group time constants into slow, intermediate and fast modes based 
on this criterion (Fig 4b), with 99% confidence intervals of τ1=0.006±0.003s, τ2=0.04±0.01s, and 
τ3=0.15±0.04s and corresponding relative coefficients of C1= 0.48±0.05, C2= 0.40±0.10 and C3= 0.12±0.04 
(Fig 4c).  For <40s-1, single or double exponentials with time constants of τ1 (single) or τ1 and τ2 (double) 𝛾
are sufficient to describe the data, suggesting that the slowest relaxation mode is distinct to the nonlinear 
regime. We also note there may be higher order relaxation modes that we are unable to resolve but that 
contribute to the force relaxation. However, fitting our data to more than three exponentials did not result 
in substantially improved fits and the added decay times were not well-separated from the existing ones. 
As such, while there may be additional relaxation modes that the polymers undergo, we approximate that 
there are only up to three primary modes that dictate the relaxation.  

τ1 is nearly identical to tstiff measured during strain, corroborating that Zimm relaxation of supercoils is the 
fastest nonlinear relaxation mode. To understand the relaxation mechanisms associated with the two slower 
modes we compare our measured values to the predicted and measured values of τR and τD for linear and 
ring polymer systems. We find that τ2 and τ3 are comparable to τR and τD for ring DNA (τR,R≈0.04s, τD,R≈0.1s), 
but significantly shorter than those for linear DNA (τR,L≈0.13s, τD,L≈1.24s).10, 41, 53, 54 By comparing the 
contributions from each mode, we see that the system relaxes mainly through apparent Zimm relaxation of 
supercoils with C1≈48% and Rouse-like relaxation with C2≈40% (Fig. 4b,c). This result is in line with our 
tsoft analysis that shows that blends dissipate most of their elastic stress on the order of τR,R despite the 
existence of a slower relaxation mode and sustained elastic response to strain.
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Figure 4. Ring-supercoiled DNA blends exhibit multi-mode relaxation following nonlinear strain. (a) Force 
relaxation as function of time following strain for  values (s-1) listed in legend. Each curve is fit to a sum of 1-𝛾
3 exponential decays (green dashed lines, equation shown in (c)). Data shown is for 2c* (other concentrations in 
Fig. S5). (b) Time constants from exponential decay fits for varying blend concentrations (x-axis) and  (y-axis). 𝛾
Filled blue circles, black crosses, and open squares represent the fast (τ1), intermediate (τ2) and slow (τ3) time 
constants, respectively. (c) Relative coefficients Ci (black) and time constants τi (blue), averaged over all c and 

, for each decay mode. 𝛾
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It is worth discussing the differences between our nonlinear and linear microrheology data. As described 
above, we attribute the agreement of linear microrheology results with those of entangled linear polymers 
to interactions between the two topologies that cause substantial entanglements – similar to entangled linear 
polymer systems – even in semidilute conditions. However, the agreement of tsoft and 2 with R,R rather 
than R,L, and likewise 3 with τD,R rather than τD,L, suggest that nonlinear forcing is sufficient to alter the 
interactions between topologically distinct polymers such that they lose blend characteristics and behave 
closer to pure entangled ring polymer solutions. The difference in the relaxation times for linear and 
nonlinear regimes is further evidenced by the order of magnitude difference between 3 and the longest 
relaxation time predicted within the LVE framework,  (see SI Fig S7).37  At the same time, 𝜏 = lim

𝜔→0
𝐺′/𝜔𝐺′′

while the existence of multiple relaxation modes is in line with our linear regime results that show that for 
c>c* blends behave as if entangled, in the nonlinear regime these modes persist for all concentrations. These 
results support our suggested mechanism of nonlinear straining separating supercoils from rings and 
forming separate regions of densely entangled rings and minimally overlapping supercoils (Fig 5). We note 
that this local inhomogeneity is a strain-induced transient effect that arises from the fact that the strain rate 
is much faster than the system relaxation timescales. Similar behavior has been seen for entangled linear 
DNA in which nonlinear micro-strains compress polymers in front of the moving bead, thereby increasing 
the local entanglement density while leaving dilute regions in its wake.78 This effect may also explain the 
emergent sustained elasticity.

CONCLUSIONS

In conclusion, we present linear and nonlinear rheological properties of blends of relaxed circular and 
supercoiled DNA at concentrations that straddle the overlap concentration. Surprisingly, despite being in 
the dilute-semidilute crossover regime, we observe dynamics indicative of entanglements, which we 
suggest arise from synergistic interactions between the two topologies. Linear microrheology reveals a 
crossover at c* from semidilute dynamics to those that align with entangled linear polymers. At the same 
time, nonlinear microrheology uncovers unique sustained elasticity and multiple relaxation modes not 
expected at these modest concentrations. Interestingly, while blends exhibit linear viscoelasticity 
comparable to those of entangled linear polymers, nonlinear response characteristics align more closely 
with predictions for entangled rings. We interpret these differences as arising from strain-induced network 
rearrangements that alter the entanglement density and disrupt the interactions between topologically-
distinct polymers (Fig 5). Given the unexpected dynamics that these ring-supercoiled DNA blends exhibit, 
as compared to previous studies of ring-linear polymer blends,16, 49, 79 the unique topology of the supercoiled 
constructs likely plays an important role in our results. 

Nonetheless, the paucity of rheological data on supercoiled polymers and blends thereof demands future 
work to fully understand this system and validate our interpretations. In fact, we hope that the new 
phenomena we report spur theoretical investigations into similar topological blends to shed light onto the 
physical interactions between topologically distinct polymers that give rise to the emergent dynamics they 
exhibit. Key questions that remain are: How does the topology of the supercoiled DNA influence the 
dynamics? How does the ratio of rings to supercoiled DNA impact the results? Our future work will focus 
on answering these important questions by performing experiments with analogous blends of ring and linear 
(rather than supercoiled) DNA, and with ring-supercoiled DNA blends with varying fractions of rings and 
supercoiled constructs. 

Page 13 of 18 Soft Matter



14

In summary, our results reveal that blended solutions of ring and supercoiled polymers exhibit unexpected 
viscoelastic properties at surprisingly low concentrations. As a result, this study is not only of fundamental 
importance to polymer physics research but also has commercial applications. Namely, topological blends 
can potentially be exploited as a route for designing low-mass high-strength viscoelastic materials. 

Figure 5. Nonlinear microrheological straining causes re-distribution of rings and supercoiled DNA in 
ring-supercoiled blends. (Top) Cartoon of a steady-state blend of supercoiled (red) and ring (blue) DNA at 2c*. 
Approximate polymer sizes are increase ~2x for better visibility. Large grey sphere represents the optically 
trapped 4.5-μm microsphere. (Bottom) Cartoon depicting the hypothesized effect of nonlinear straining on a 
supercoiled-ring DNA blend. Nonlinear straining separates rings from supercoils such that separate regions of 
densely entangled rings and dilute supercoiled DNA are formed in front of and in the wake of the moving 
microsphere, respectively. 
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FOOTNOTES

Supporting Information. Expanded experimental section; Figure S1. Single-molecule ‘counting’ 
experiments to visualize DNA molecules in the blend; Figure S2. Position and velocity of nanopositioning 
stage during active microrheology measurement; Figure S3. Nonlinear force response of blends of ring and 
supercoiled DNA; Figure S4. Final phase of differential modulus in response to nonlinear strains; Figure 
S5. Linear relaxation modulus G(t) and initial values of G(t) and the nonlinear differential modulus K; 
Figure S6. Expected LVE stress growth compared to the nonlinear stress growth measured in nonlinear 
microrheology experiments; Figure S7. Terminal linear relaxation frequency and time determined from 
passive microrheology experiments; Figure S8. Relaxation of force induced in ring-supercoiled DNA 
blends following nonlinear strains. Figure S9: Initial force relaxation following nonlinear strain.
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