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The universal anomalous vibrational and thermal properties of amorphous solids are believed to
be related to the local variations of the elasticity. Recently it has been shown that the vibrational
properties are sensitive to the glass’s stability. Here we study the stability dependence of the
local elastic constants of a simulated glass former over a broad range of stabilities, from a poorly
annealed glass to a glass whose stability is comparable to laboratory exceptionally stable vapor
deposited glasses. We show that with increasing stability the glass becomes more uniform as
evidenced by a smaller variance of local elastic constants. We find that, according to the definition
of local elastic moduli used in this work, the local elastic moduli are not spatially correlated.

1 Introduction
The vibrational modes and the low temperature thermal proper-
ties of amorphous solids are sharply different from those of their
crystalline counterparts1–4. The uniform structure of crystals al-
lows for the description of the low frequency modes as if it were a
classical elastic body whose properties are governed by the elastic
moduli, which forms the basis of the Debye model for the density
of states. This description leads to a T 3 increase of the specific
heat for crystalline solids due to the increase of the density of
the vibrational modes as the square of the frequency ω. Recently
it was shown that the low frequency vibrational modes of amor-
phous solids can be divided into a Debye term and an excess con-
tribution that increases as the fourth power of the frequency5,6.
The excess modes are spatially quasi-localized. Their spatial ex-
tent and density decrease with increasing stability. The quasi-
localized character of excess modes suggests that there might be
a spatially varying local elasticity.

Indeed, there is a large body of evidence for the existence of
spatially varying local elastic constants in amorphous solids7–19.
To explain a plateau observed in the thermal conductivity around
10K for many dielectric amorphous solids, a Rayleigh like scat-
tering of sound waves was assumed1,4. This assumption posits
scattering from uncorrelated defects that are much smaller than
the wavelength of the sound wave, and these defects would natu-
rally give rise to local variations of the elasticity. Further theoret-
ical analysis assuming local variations of the elasticity reproduces
the ω4 excess in the vibrational density of states and predicts the
Rayleigh scaling k4 (where k is a wavevector) of sound attenua-
tion6,20–22. The k4 scaling of sound attenuation was questioned
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in a computer simulation study13 and a logarithmic correction to
the Rayleigh scaling was proposed. This correction was rational-
ized in terms of a power law decay of the spatial correlations of
the local elasticity. However, other simulation studies6,22,23 sug-
gest that the logarithmic correction either exists only for a nar-
row range of wavevectors (frequencies) or this correction is only
a good description of the crossover region between the high and
low wavevector (frequency) behavior of sound attenuation.

Pogna et al.19 examined sound attenuation in geologically hy-
peraged, ultrastable amber within the framework of fluctuating
elasticity theory to establish a link between stability and the lo-
cal variation of the elastic constants. They fitted the predictions of
the theory for the vibrational density of states to the experimental
data and in this way obtained estimates of the relative variance
of the local elastic constants and of a length scale characterizing
their spatial variation. They concluded that there was a reduc-
tion in the variation of the elastic constants by around 6% and
an increase of the characteristic length scale of around 22% in
the hyperaged amber compared to a liquid cooled sample. Thus,
increasing stability seemingly narrows the distribution of elastic
constants and increases the range of their correlations.

However, in a very recent simulational study Caroli and
Lemaitre14 argued that the fluctuating elasticity theory does not
describe well sound attenuation in amorphous solids. They based
this conclusion on two results. First, they showed that the fluc-
tuating elasticity theory predicts the k4 Rayleigh scattering-like
sound damping whereas their simulations were consistent with a
logarithmic correction. Second, they measured the parameters
that enter into the fluctuating elasticity theory in simulations,
used them to calculate sound attenuation, and compared these
predictions with sound attenuation observed in the same simu-
lations. They found that the predicted sound attenuation is two
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orders of magnitude smaller than the observed one. The second
fact implies that the fluctuating elasticity theory severely underes-
timates the magnitude of the sound attenuation even if one were
to argue that the logarithmic corrections is an intermediate, finite
wavevector feature and the sound attenuation can be described
within the Rayleigh scattering picture.

We note that it is difficult to directly probe local variations of
the elasticity in experiments17, which forced Pogna et al. to treat
the relative variance of the local shear modulus as a fitting pa-
rameter. In contrast, simulations are able to calculate local elastic
constant using several different methods7,13,22. Lerner demon-
strated that the sample to sample fluctuations of the shear modu-
lus decreased with increasing stability for a model glass former24,
but did not examine the local elastic constants. Mizuno, Mossa,
and Barrat found that the width of the distribution of local elas-
tic constant correlates with sound attenuation12. For their study,
they continuously transformed a crystal into an amorphous solid
by continuously changing the size ratio of a binary mixture. Us-
ing the same technique they also demonstrated that the thermal
conductivity, the lifetime of acoustic modes, and the local elastic
heterogeneity are correlated8. This investigation, however, does
not mimic the experimental procedure of Pogna et al.19 who stud-
ied the stability dependence of sound attenuation. Importantly,
in the work of Mizuno, Mossa, and Barrat the system is changed
systematically in order to establish the correlations between the
transport and acoustic properties and the variation of local elastic
constants.

Here we examine the dependence of local elastic moduli of a
simulated polydisperse glass former on its stability. We partition
the system into different box sizes w and determine the distribu-
tion of local elastic moduli for three values of w. We find that
the width of the distribution decreases with increasing stability.
However, using our definition of the local elastic moduli, we find
that the local elastic moduli are uncorrelated in space.

2 Methods

2.1 Molecular Dynamics Simulations

We studied a system of N = 48000 and N = 192000 polydisperse re-
pulsive particles in a cubic box of volume V with periodic bound-
aries in 3D. The pair potential is given by

U(ri j) =


ε

(
σi j
ri j

)12
+ v(ri j),

σi j
ri j

< rcut

0, σi j
ri j
≥ rcut

(1)

with

v(ri j) = c0 + c2

(
ri j

σi j

)2
+ c4

(
ri j

σi j

)4
. (2)

The distance between particle i and particle j is ri j = |ri−r j|, σi j =
σi+σ j

2
(
1− e|σi−σ j|

)
where the mixing parameter e= 0.26,25. The

size of an individual particles σ are given by the probability dis-
tribution

P(σ) =
A

σ3 (3)

where σ ∈ [0.73,1.63] and zero otherwise. The coefficients c0, c2,
and c4 are chosen to guarantee the continuity of the potential up

to the second derivative at the cutoff distance rcut = 1.25. This
choice of system inhibits crystallization due to the polydispersity
and fractionation due to the non-additive mixing rule, while al-
lowing the swap Monte Carlo algorithm to equilibrate to low tem-
peratures25. We present the results in reduced units with ε being
our unit of energy, the average of σ = σ0 being our unit of length,

and
√

mσ2
0 /ε being the unit of time.

For each parent temperature Tp ∈ [0.062,0.200] we studied 4 in-
dependent initial configurations at number density ρ = 1. Each
configuration was first equilibrated at its parent temperature and
then quenched to an inherent structure via the conjugate gradi-
ent algorithm. For reference, for our system the mode-coupling
temperature TMCT ≈ 0.108 and the glass transition temperature
Tg ≈ 0.07225. The equilibration was done using the swap Monte
Carlo algorithm that combines conventional Monte Carlo moves
with particle swaps25–27.

After quenching, we ran very low temperature NVT molecu-
lar dynamics simulations using LAMMPS28,29 code to which we
added the interaction potential for the present model. The time
step for all of MD simulations was dt = 0.02. We first ran short
equilibration runs at T = 10−5 in an NVT ensemble using a Nosé-
Hoover thermostat. We then ran NVT production runs. Their
length was determined by the time needed for to decorrelate a
term involving the local and global stress

〈
σm

αβ
σγδ

〉
, which was

identified as a slowly decorrelating term and discussed by Mizuno
et al.7. This term is defined in Section 2.2. We did not observe
any finite size effects, but, consistently with the observation made
in Ref. [7], much longer production runs are needed for larger
systems. For a system of N = 48000 particles, which was mainly
used to perform the elastic modulus calculations in this study, the
length of the production runs time was ∆t = 3× 105, which cor-
responds to 1.5× 107 time steps. The results shown in the paper
are for the N = 48000 particle system unless otherwise specified.
We observed very infrequent jumps in the energy and the pres-
sure even at the very low temperature that we used, T = 10−5.
We attribute these jumps to transitions between the locally stable
minima. In the analysis we only use a continuous portion of the
trajectory that excludes the energy jumps.

2.2 Elastic Modulus Calculations

To measure the local elastic response, the system is equally par-
titioned into cells of size w = 3.30, 4.54, 6.05, and 12.11. Several
methods have been proposed to define and calculate the local
elastic constants. Here we use the so-called “fully local” approach
described by Mizuno, Mossa, and Barrat7. This approach was also
used in other studies8,12,16. For each box m the volume averaged
stress tensor is calculated as:

σ
m
αβ

=−ρ
mT δαβ +

1
w3 ∑

i< j

∂U(ri j)

∂ ri j

ri j
α ri j

β

ri j
qi j

m

ri j (4)

where, ρm is the local number density of cell m, T is the tempera-
ture, δ is the Kronecker delta and ri j = |ri−r j|. The parameter qi j

m

is the segment of the line joining ri and r j that lies within the box
m. We use Greek subscripts to denote the Cartesian coordinates
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(α,β ,γ,δ = x,y,z) and Roman superscripts to denote particle la-
bels. The global stress tensor is given by:

σαβ =
1
V ∑

m
w3

σ
m
αβ

=−ρ̂T δαβ +
1
V ∑

i< j

∂U(ri j)

∂ ri j

ri j
α ri j

β

ri j . (5)

We first calculate the local modulus Cm
αβγδ

given by

Cm
αβγδ

= CAm
αβγδ

−CNm
αβγδ

= CBm
αβγδ

+CCm
αβγδ

+CKm
αβγδ

−CNm
αβγδ

CBm
αβγδ

=
1

w3

〈
∑
i< j

(
∂ 2U
∂ ri j2 −

1
ri j

∂U
∂ ri j

) ri j
α ri j

β
ri j

γ ri j
δ

ri j2

qi j
m

ri j

〉
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= −1
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2
〈

σ
m
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〉
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〈
σ

m
αγ

〉
δβδ

−
〈
σ

m
αδ

〉
δβγ −

〈
σ

m
βγ

〉
δαδ −

〈
σ

m
βδ

〉
δαγ

]
CKm

αβγδ
= 2〈ρ̂m〉T

(
δαγ δβδ +δαδ δβγ

)
CNm

αβγδ
=

V
T

(〈
σ

m
αβ

σγδ

〉
−
〈

σ
m
αβ

〉〈
σγδ

〉)
, (6)

where CAm
αβγδ

is the affine contribution and CNm
αβγδ

is the non-
affine contribution. While the non-affine contribution vanishes
in perfect crystalline systems at zero temperature, it has a magni-
tude comparable to the affine term in amorphous systems30. The
brackets 〈· · · 〉 denotes an ensemble average. The Born contribu-
tion CBm

αβγδ
to the affine term stems from the uniform displace-

ment of all particles and it determines the instantaneous elastic
modulus under such displacements9. The CCm

αβγδ
term is due to

the initial stress having a finite value7. The CKm
αβγδ

term is the
kinetic energy contribution to the local elastic modulus tensor.
Compared to the Born and the non-affine terms, the kinetic en-
ergy contribution to the elastic constant is negligible.

As described by Mizuno et al.7, the local bulk modulus Km is
defined from the pressure-volume change and the five shear mod-
uli Gm

1 , · · · , Gm
5 , are defined from two pure shear and three simple

shear deformations. These moduli are given by the following lin-
ear combinations of Cm

αβγδ

Km =
(
Cm

xxxx +Cm
yyyy +Cm

zzzz

+Cm
xxyy +Cm

yyxx +Cm
xxzz +Cm

zzxx +Cm
yyzz +Cm

zzyy
)
/9

Gm
1 =

(
Cm

xxxx +Cm
yyyy−Cm

xxyy−Cm
yyxx
)
/4

Gm
2 =

[
Cm

xxxx +Cm
yyyy +4Cm

zzzz

+Cm
xxyy +Cm

yyxx−2
(
Cm

xxzz +Cm
zzxx +Cm

yyzz +Cm
zzyy
)]
/12

Gm
3 = Cm

xyxy

Gm
4 = Cm

xzxz

Gm
5 = Cm

yzyz. (7)
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Fig. 1 Macroscopic shear (red line) and bulk (black line) moduli obtained
by deforming the zero temperature (quenched) configurations as func-
tions of the parent temperature. The symbols show the averages of the
local shear and bulk moduli for different box sizes. The errorbars for the
local moduli averages, not shown here, are smaller than or comparable
to the size of the symbols.

The moduli are averaged over MD configurations that are sep-
arated by t = 0.5, i.e. over 6×105 time steps.

3 Results
Shear and bulk moduli describe the elastic response of the sys-
tem to a small deformation. In simulations one can determine
these moduli through a deformation, or utilize the thermody-
namic equations summarized in Eqns. (6-7) for the whole sys-
tem, i.e. when the system is only partitioned into one box. Here,
we partition the system into several boxes and determine distri-
butions of the moduli. We expect that the averages of these dis-
tributions should be equal to the values of the moduli obtained
from deformation. To check this, we calculated the averages of
the moduli for different box sizes w and compared these results
to the shear and bulk moduli obtained from deformation.

Shown in Fig. 1 are the shear modulus (left axis) and the bulk
modulus (right axis) obtained from deforming the system (lines)
and from the averages of the distributions of the local moduli
(symbols) for different box sizes. Up to the mode coupling tem-
perature TMCT the global shear modulus G changes very little with
decreasing parent temperature Tp. Below TMCT it increases with
decreasing Tp, reaching a value approximately 27% larger at the
lowest parent temperature used. In contrast, the global bulk mod-
ulus K monotonically decreases with decreasing Tp, reaching a
value 7% smaller at the lowest parent temperature than at TMCT.
The averages of the local shear Gm and bulk Km moduli for dif-
ferent box sizes are very close to the moduli obtained from defor-
mation. We do find, however, that at the largest parent tempera-
ture the averages of the shear moduli are slightly larger than the
value obtained from deformation, with the difference increasing
systematically with decreasing box size.

We note that, as shown in Fig. 2, for both of the global shear
and the global bulk moduli the Born and fluctuation terms in
Cαβγδ decrease with decreasing Tp. For the shear modulus, the
fluctuation term decreases faster with decreasing Tp than the Born
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Fig. 2 The dependence of the Born and fluctuation terms on the parent
temperature. Inset: rescaled data for the bulk fluctuation term. Both Born
and fluctuation terms decrease with decreasing parent temperature, for
both shear (a) and bulk (b) moduli.

term, and this leads to the increase in the shear modulus since
the two terms are the same order of magnitude. However, for
the bulk modulus the fluctuation term is an order of magnitude
smaller than the Born term, and thus a decrease in the Born term
leads to a decrease of the bulk modulus.

Although the average shear and bulk moduli are approximately
independent of the box width w, one would expect to find some
box width dependence of the width of the moduli distributions.
The dependence of the width of the distribution relative on the
box size is an important parameter in the fluctuating elasticity
theory. Mizuno et al. found that the distributions of the individual
shear moduli are almost identical and presented distributions av-
eraged over the individual components. We found that the same
fact is true for our system and also present distributions of the
shear moduli averaged over the individual components.

Shown in Fig. 3 are probability distributions of the local shear
modulus Gm calculated for (a) w = 12.114, (b) w = 6.057, (c)
w = 4.543, and (d) w = 3.303 for three parent temperatures Tp

= 0.062 (circles), 0.085 (squares), and 0.2 (triangles). We note
that we observe no finite size effects, which we demonstrate in
the inset to Fig. 3(d) by calculating the distribution for N = 48000
and N = 192000 for a box of the same size. However, as discussed
in Ref. [7], the

〈
σm

αβ
σγδ

〉
term converges very slowly for large

systems. To characterize the width we fit the distributions to a
Gaussian distribution, Aexp{−0.5(G−G0)

2/σ2}, where G0 is the
average shear modulus and σ is the standard deviation. The fits
are shown as continuous lines in the figures. For all box sizes,
including the smallest one with w = 3.303 that only contains '
36 particles, the shear moduli distributions are well described by
Gaussian distributions.

We can see two trends. First, with increasing stability the dis-
tribution becomes narrower. This is easily seen since the peak of
the distribution increases with decreasing width due to normal-
ization of the distributions. Therefore, with increasing stability
the glass becomes more uniform, in the sense that the local shear
moduli vary less between different boxes. The other trend is that

Fig. 3 Distributions of local shear moduli for different box sizes: (a)
w = 12.114, (b) w = 6.057, (c) w = 4.542, (d) w = 3.303. Each panel shows
distributions for three different parent temperature, circles, Tp = 0.062,
squares, Tp = 0.085 and triangles Tp = 0.200. The solid lines show Gaus-
sian fits to the distributions.

the width becomes broader with decreasing box size. This result
is intuitively expected.

One noticeable property of some of these distributions is the
appearance of regions with negative moduli. The regions with
negative moduli are characterized as domains where the deform-
ing force and the resulting response are in opposite directions31,
which suggests that these domains are unstable. However, with
such small domains it is questionable if continuum elasticity is
a valid description30. Overall, at each box size the distributions
with higher averages and smaller standard deviations (i.e. the
distributions of Tp = 0.062) represent the more stable structure15.

We also examined the distribution of the bulk modulus Km, Fig.
4 for the same three parent temperature Tp and box sizes w. We
also find that the width of the distribution of Km decreases with
decreasing parent temperature and increases with decreasing box
size. The lines in the figures are fits to a Gaussian distribution.
Again, these results points to the bulk modulus becoming more
uniform with an increase of the stability. Since the bulk modulus
is 3.5 to 5.5 times larger than the shear modulus (depending on
stability), the change in the relative size of the distribution σΓ/Γ,
where Γ = G or K is much less for the bulk modulus.

We summarize the parent temperature and box size depen-
dence of the standard deviation of the distributions of the local
moduli in Fig. 5. The closed symbols are the results for the shear
moduli and the open symbols are results for the bulk modulus.
The increase in σGm upon decreasing the box of size from w =
12.114 to w = 3.303 is a factor of 5.5 for Tp = 0.2 and 5.8 for Tp

= 0.062. Similarly, the decreases of σGm with parent temperature
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Fig. 4 Distributions of local bulk moduli for different box sizes: (a)
w = 12.114, (b) w = 6.057, (c) w = 4.542, (d) w = 3.303. Each panel shows
distributions for three different parent temperature, circles, Tp = 0.062,
squares, Tp = 0.085 and triangles Tp = 0.200. The solid lines show Gaus-
sian fits to the distributions.

for a fixed box size is 31% for w = 12.114 and 35% for w = 3.303.
Within fluctuating elasticity theory20,32,33, the heterogeneity

of local shear modulus is characterized by the disorder parame-
ter γG, γG = ρw3σ2

Gm/〈Gm〉2. We calculated this parameter for the
different box sizes. We found that the disorder parameter varies
with box size. For our most stable glass, Tp = 0.062, γG = 1.24 for
w = 12.1 and γG = 0.90 for w = 3.3. These two values of the dis-
order parameters differ by approximately 38%. This box size de-
pendence of the disorder parameter originates from slower than
w−3 decay of the variance σ2

Gm upon increasing the box size w. It
makes it unclear if γG is a proper parameter to be used as input to
a theory of sound attenuation in glasses. We note that Lerner24

found that a quantity which should be equivalent to the square
root of the variance (see Eq. (18) of Ref.24) of the sample-to-
sample fluctuations of the shear modulus decreases with the size
of the system as N−1/2. The difference between our results and
those of Ref.24 suggests that the distribution of local shear mod-
ulus calculated for a given sample might be different from the
distribution of sample-to-sample fluctuations of the shear modu-
lus calculated for the whole system.

The disorder parameter does increase dramatically with de-
creasing stability for a fixed box size. The disorder parameter
increases by a factor of 3.4-3.9, depending on box size, when
we compare our most stable glass, Tp = 0.062, to our least stable
glass, Tp = 0.2. For our least stable glass, disorder parameters are
of similar magnitude as thouse found by Mizuno, Ruocco, and
Mossa34 in their T = 0 glass.

We note that the change in the variation of the local elastic

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

T
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

σ
G

m
 ,

 σ
K

m

w = 12.114
w = 6.057
w = 4.542
w = 3.303

Fig. 5 Dependence of the standard deviation of the local shear, σGm ,
and bulk moduli, σKm , on the parent temperature. The solid lines and
filled symbols show σGm and the dashed lines and open symbols show
σKm . The standard deviation σGm increases by 67% for our smallest box
size w = 3.303 and 50% for our largest box size w = 12.114. The standard
deviation σKm increases by 33% for our smallest box size and 7.1% for
our largest box size. Since K > G, this signifies a much larger relative
change in σGm than σKm .

moduli, i.e. of the heterogeneity of the local elasticity, with the
changing stability found in this work is much larger than that es-
timated by Pogna et al. for hyperaged amber. In the latter study a
decrease of only 5% was estimated upon a very large increase in
the stability. We note that the change in the variation of the elas-
tic constants reported by Pogna et al. was obtained indirectly, by
fitting measured vibrational densities of states to the predictions
of the fluctuating elasticity theory. Thus, the accuracy of their in-
ferred change of the variation of the local elastic moduli depends
on accuracy of the fluctuating elasticity model that they used. We
find that there is probably a stonger dependence of the variation
of the elastic constants on the glass’ stability than that inferred
from fluctuating elasticity theory.

To characterize the spatial correlations of local shear moduli,
which also enter into the fluctuating elasticity theory21, we cal-
culated the correlation function

gGG(r) = ∑
m

∑
n
(〈GmGn〉−〈Gm〉〈Gn〉)δ (r−|rm− rn|), (8)

where rn is the coordinate for the center of a box used to calcu-
late the elastic moduli. We used 3000 particle systems to calcu-
late gGG(r) and checked that the calculation was consistent with
results for 48000 particle systems. It is important to recognize
the fact that the boxes used in this calculation may overlap (in
order to get results for distances r smaller than the box size).
Thus, boxes may share some of the same particles and their elas-
tic moduli are necessarily correlated. Therefore, there are trivial
correlations in gGG(r) due to overlapping boxes. We show gGG(r)
for our most stable glass, Tp = 0.062, for four different box sizes
w. We find that gGG(r) decays to near zero at the size of the box,
which is indicated by the vertical lines in the figure. This implies
that only the trivial correlations exists.
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To explore further if there are spatial correlations for the shear
modulus and the bulk modulus at every temperature and every
box size, we calculate the cross correlations of neighboring non-
overlapping boxes. To this end we calculate the correlation pa-
rameter

Ψ
m,n
Γ

=

〈(
Γm−Γ

σΓm

)(
Γn−Γ

σΓn

)〉
m

(9)

where, 〈· · · 〉m denotes an average over all the boxes and box n
is one of the six nearest neighbors of box m and Γ = G or K. A
correlation parameter close to 0 indicates no significant correla-
tion and a value of 1 indicates perfect correlation. In Fig. 6(b)
we show ΨG (circles) and ΨK (squares) for box sizes of w = 6.075
(black), 4.542 (red), and 3.028 (blue). The values of ΨΓ are all
close to zero and there are no noticeable trends with box size or
parent temperature. This leads us to conclude that the elastic
moduli, calculated using this fully local approach, do not exhibit
any spatial correlations. We also examined correlations of Gm

n
where n = 1...5 found in Equation 7 and found the same trends,
i.e. only trivial correlations. We note that there are other methods
to calculate local elastic moduli7, and these other methods may
indicate that the moduli are spatially correlated.

This conclusion is at odds with the result of Gelin et al.13 who
reported that the elastic correlations decayed as r−2 for a two
dimensional glass-forming system different from the system used
here. We note that Gelin et al. used a different way to define local
elastic moduli. However, Mizuno and Ikeda22 utilized the same
method as Gelin et al. for yet another, different two dimensional
system and found that the stress correlations decay as r−2, but
the elastic moduli correlations does not show the same long range
correlations.

4 Conclusions
We examined the structural heterogeneities, including local and
global elastic moduli, of glassy systems prepared from parent sys-
tems equilibrated at different initial temperatures. Our calcula-
tions showed that the glass has a rather mild 27% increase of
the local shear modulus, and a smaller 7% decrease on local bulk
modulus compared to their values at the mode-coupling temper-
ature with decreasing parent temperature. More importantly, we
found that the local shear and the local bulk moduli become more
uniform with decreasing parent temperature and thus stability of
the glass. This finding is consistent with the recent report on
the stability and sound attenuation of stable glasses35. Sound
attenuation increases with an increase in the fluctuations of the
local elasticity, and hence with a decrease of the stability. Our re-
sults are in qualitative agreement with fluctuating elasticity the-
ory20,32,33, which predicts an increase of sound attenuation and
the observed Rayleigh-like k4 scaling for small wavevectors22,35.

Our results are also qualitatively consistent with recent ex-
perimental work by Pogna et al. on hyperaged amber19, which
showed that the elastic matrix becomes more homogeneous with
increased stability, corresponding to a smaller Tp and a narrower
moduli distribution in our study. However, we find that the local
moduli are not spatially correlated. Pogna et al. inferred a 22% in-
crease in the length scale characterizing elastic correlations. The
same work reported on an increase of the elastic moduli fluctua-
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Fig. 6 Panel (a) shows the spatial correlations of the shear modulus
G for a 3000 particle system and for our most stable glass, Tp = 0.062.
The vertical lines indicate the box sizes. At these points the trivial cor-
relations disappear. Panel (b) illustrates the correlation parameter Ψ

m,n
G

(circles) and Ψ
m,n
K (squares) for the box sizes w = 6.075 (black), 4.542

(red), and 3.028 (blue) as a function of parent temperature (N = 48000).
The correlation parameter is small and there is no clear box size or parent
temperature dependence.
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tion length scale in the more stable amorphous medium. This re-
sult, however, remains at variance with the findings of our study,
where there is no discernible length scale associated with elastic-
ity and there is no long range decay of elastic correlations. The
lack of long range decay is also at odds with the study of Gelin et
al.13, but agrees with the conclusions of Mizuno and Ikeda22.

Our results suggest that the current version of fluctuating elas-
ticity theory is not a quantitatively accurate description of sound
attenuation and the boson peak in amorphous solids, even though
it makes qualitatively accurate predictions. A similar conclusion
was drawn by Caroli and Lamaître14, who developed a full tenso-
rial fluctuating elasticity theory and found that it underestimates
the sound attenuation by about two orders of magnitude. Further
theoretical work is warranted to properly describe the interplay
of sound attenuation and elastic heterogeneities. Additionally,
Mizuno and Ikeda found that elastic moduli correlations may be
system dependent22. Therefore, different systems should be ex-
amined to establish the universality of the results reported here
and in other papers. In particular, we note that the polydisperse
system studied here is designed to suppress crystallization, and
hence some fluctuations may be suppressed compared to more
standard binary mixtures.
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We show that the distribution of the local elastic constants narrows
with increasing stability for a model glass former, but the local
elasticity is spatially uncorrelated.
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