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ABSTRACT

Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and 

hydrogen evolution reaction (HER) are three critical reactions for energy-related 

applications, such as water electrolyzers and metal-air batteries. Graphene-supported 

single-atom catalysts (SACs) have been widely explored; however, either experiments 

or density functional theory (DFT) computations cannot screen catalysts at high speed. 

Herein, based on DFT computations of 104 graphene-supported SACs (M@C3, 

M@C4, M@pyridine-N4, and M@pyrrole-N4), we built up machine learning (ML) 

models to describe the underlying pattern of easily obtainable physical properties and 

limiting potentials (mean square errors = 0.027/0.021/0.035 V for ORR/OER/HER, 

respectively), and employed these models to predict the catalytic performance of 260 

other graphene-supported SACs containing metal-NxCy active sites (M@NxCy). We 

recomputed the top catalysts recommended by ML towards ORR/OER/HER by DFT, 

which confirmed the reliability of our ML model, and identified two OER catalysts 

(Ir@pyridine-N3C1 and Ir@pyridine-N2C2) outperforming noble metal oxides, RuO2 

and IrO2. The ML models quantitatively unveiled the significance of various 

descriptors and fast narrowed down the candidate list of graphene-supported 

single-atom catalysts. This approach can be easily used to screen and design other 

SACs, and significantly accelerate the catalyst design for many other important 

reactions.

KEYWORDS: Single-Atom Catalysts, Machine Learning, Limiting Potential, 

ORR/OER/HER, Density Functional Theory (DFT).
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1. INTRODUCTION

Oxygen reduction reaction (ORR) oxygen evolution reaction (OER), and 

hydrogen evolution reaction (HER) are among the core electrochemical processes in 

clean energy conversion and storage devices, such as metal-air batteries, 1,2 water 

electrolysers,3 and fuel cells.4-6 However, their inherent reaction rates are rather 

sluggish. Noble metal (Pd and Pt) and noble metal oxide (IrO2) are state-of-the-art 

electrocatalysts, 7,8 but the high cost and scarcity of noble metal materials limit their 

large-scale and sustainable applications. Thus, developing stable, low-cost, and 

high-performance catalysts for these reactions are highly desirable.

Single-atom catalysts (SACs), in which the well-dispersed isolated metal atoms 

are anchored on appropriate substrates, have emerged as a new frontier of 

heterogeneous catalysts due to their highly increased coverage of active sites, much 

enhanced catalytic performance, and maximal (100%) metal utilization.9-15 Especially, 

metal-nitrogen-carbon (M-N-C) SACs, where a transition metal atom (M = Co, Fe, Ni, 

Mn, etc.) is located at the center of nitrogen (N) doped graphene support (C), showed 

great promise as substitutes for precious metal electrocatalysts.16-23 At least hundreds 

of M-N-C SACs exist due to a sequence of physical structural variables, such as 

different transition metals and various N/C combinations. Therefore, trial-and-error 

approaches are rather inadequate to search for highly efficient catalysts in a 

reasonable time scale. Though volcano curves and approximate linear 

relationships24,25 between some single factors and the performances of catalysts were 
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put forward, the rather simple linear relationships can only give rather rough 

judgments, instead of direct predictions of their catalytic performance. 

Machine learning (ML) is an efficient statistic method, which builds up models 

based on input data26 and computer algorithms to output the desired information.27-30 

Machine learning can be employed to depict the intricate relations between 

descriptors and performance, analyze the importance of each descriptor, and predict 

the performance of a large number of unknown systems.

The strong ability of ML has been applied to fast screening of materials with 

specific properties31-40 and catalysts with high performance.41-47 So far, ML in 

catalysis is mainly focused on two aspects: (1) establishing the correlations of 

physical properties and adsorption strength of reaction intermediates (Figure 1, Path I), 

because the catalytic activity is significantly affected by the binding strength. For 

instance, by the least absolute shrinkage and selection operator (LASSO) 

regressions,48 O’Connor et al. revealed that the interfacial binding strength of single 

metal atom on oxide supports is correlated with readily available physical properties 

of both the absorbed metal (such as oxophilicity) and the support (such as 

reducibility);41 (2) Identifying the relationships between the intermediate adsorption 

strengths and the performance of the catalyst (Figure 1, Path II). For instance, Ma et 

al. demonstrated that ML can well estimate the CO adsorption energy on the surface 

of multimetallic alloys, which can be used as a descriptor to screen CO2 

electroreduction catalysts.49 However, the physical properties are intrinsic and 
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easy-obtained, and the limiting potential (UL) is the most direct standard for the 

activity of an electrocatalyst, then, is it possible for us to directly predict the limiting 

potentials based on the physical properties (Figure 1, Path III)? The powerful ML 

algorithms may help find correlations between physical properties and limiting 

potentials. If successful, the discovery of electrocatalysts can be remarkably 

accelerated.

Figure 1. The schematic of three different aspects for catalyst development using ML 

techniques 

Herein, by taking advantage of the ML algorithm and DFT computations, we 

depicted the underlying pattern of the physical properties of 104 graphene-supported 

SACs and their limiting potentials towards ORR/OER/HER reactions. The ML 

models for these three reactions were further used to predict the catalytic performance 

of 260 other graphene-supported metal-nitrogen/carbon systems (M@NxCy). The 

reliability of the ML models was confirmed by the DFT computed limiting potential 

(UL) values of the top ML-recommended electrocatalysts (0.61, 1.51, 0.003 V for 

ORR, OER, and HER). We further quantitatively unveiled the significance of various 
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descriptors for M-N-C catalysts, which can significantly narrow down the candidate 

lists of M@NxCy SACs and provide deep insights and guidance towards future 

catalyst design. This work provides a new paradigm for directly predicting the 

catalytic performance from physical properties of catalyst candidates, and vividly 

demonstrates the strong capability of ML in screening and design of catalysts.

2. COMPUTATIONAL METHODS

The training data of graphene-supported SACs were obtained from the previous 

study,21 which include 104 graphene-supported structure compositions (M@C3, 

M@C4, M@pyridine-N4, and M@pyrrole-N4) and their UL values for ORR, OER and 

HER of each system.

Random Forest (RF),50,51 a widely used integrated algorithm of Decision Tree52 

as implemented in scikit-learn software,53 was used to train optimal models. RF50,51 

randomly selects different features and training samples, generates many decision 

trees, and then average the results of these decision trees to perform the final 

classification. Following our test computations for different parameters of RF, the 

max depths for ORR/HER models were set as eight, and the numbers of trees were set 

as 500; while for OER model, the max depth was 7 with 1000 decision trees.

For the pretreatment of data, it is necessary to divide the training set and the 

cross-validation set. The training set was used to build the model, and the score of 

fitting for the test set would feedback to the model. The ratio of cross-validation sets 
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was tested and judged by the training scores and testing scores, and was finally set to 

around 0.85, 0.83, and 0.82 for ORR, OER, and HER, respectively. The 104 input 

data were randomly split into 88 training set and 16 validation set for ORR/HER 

models. For OER model, the small data set (with 26 data) for M-N-pyrrole systems 

was amplified three times (totally 156 input data), which was divided into 135 

training data and 21 validation data. To lower the possibility of over-fitting, we 

reproduced the minor class with uniformly distributed random noises from -2% to 2% 

of the original data. Due to the large region of feature values, data normalization of all 

the features was performed before training. The training/testing score is the 

coefficient of determination (R2) of the prediction, which is defined as R2 = 1 - 

Σ(y_true - y_pred)2 / Σ(y_true - y_average)2. The mean squared error (MSE) represents 

the mean difference between the predicted values and the real values, defined as MSE = 

1/n Σ(y_true - y_pred)2.

DFT computations were carried out for optimization and frequency computations 

of the 19 top ML-recommended M@NxCy SACs and adsorbates with *H, *O, *OH, 

and *OOH. These computations employed an all-electron method within a 

generalized gradient approximation (GGA) for the exchange-correlation term, as 

implemented in the DMol3 code,54,55 in which the double numerical plus polarization 

(DNP) basis set and Perdew, Burke and Ernzerhof (PBE) functional were adopted56. 

Self-consistent field (SCF) computations were performed with a convergence 

criterion of 10−6 a.u. To prevent artificial interactions between periodic images, we 
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applied a vacuum space of at least 15 Å in the perpendicular direction of the 

two-dimensional (2D) layer.

The changes of Gibbs free energy (∆G) for each elementary step along the 

ORR/OER were evaluated using the computational hydrogen electrode (CHE) model 

developed by Nørskov and co-workers.57 The computed electronic energy was 

converted into Gibbs free energy by adding zero-point energy. The energy of the 

triplet O2 molecule cannot be accurately computed by DFT method,58,59 thus, its free 

energy was computed relative to the free energies of H2O(l) and H2(g). The chemical 

potential of the H+/e- pair is equal to half of the gas-phase H2 at standard hydrogen 

electrode (SHE) conditions.

3. RESULTS AND DISCUSSION

3.1. Graphene-supported SACs for ORR/OER/HER used to construct ML 

models 

Three types of graphene-supported SACs (Figure 2) were chosen as 

representatives of the M-N-C electrocatalysts, in which the central metal atom is (1) at 

the single vacancy with three carbon atoms (M@C3); (2) at the double vacancy with 

four nitrogen/carbon atoms (M@pyridine-N4 /M@C4); and (3) coordinated with four 

pyrrole nitrogen atoms (M@pyrrole-N4). The 28 transition metals (except for Hg, La, 

and Ac) were employed as the central metal atoms. The data for training and 

validation are the limiting potentials and features of these SACs21.
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RF50,51 is a widely used algorithm for both regression and classification problems, 

which randomly selects different features and training samples, generates many 

decision trees, and then average these decision trees to perform the final results. RF 

can not only depict the underlying patent of a complicated problem, but also provide 

feature importance for different features after training, which cannot be obtained by 

many other algorithms. Moreover, compared with Decision Tree, RF greatly improves 

the accuracy of models and avoids the easily attacked characteristic of DT; therefore, 

we employed the RF algorithm to train three models.

Figure 2. Schematic structures of graphene-supported SACs used to build up the ML 

models. (a) Single vacancy with three carbon atoms. (b) Double vacancy with four 

nitrogen/carbon atoms. (c) Four pyridine nitrogen atoms. The orange, green, and gray 

balls represent TM, neighboring N/C, and other C atoms, respectively.

3.2 Training ML Model for ORR
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Feature Set for ORR. Obtaining an appropriate feature set with a compact 

composition and sufficient information is the most significant step for a ML process, 

since the quality choice of features determines the highest accuracy that a model can 

achieve. Focusing on intrinsic properties, we selected five features for ORR: the 

electron numbers of d orbital (d), the oxide formation enthalpy (Hof),60,41 Pauling 

electronegativity of the center metal atom (Em), the sum of Pauling electronegativity 

of surrounding atoms (Es), and the average of the pKa values of the surrounding 

atoms (pKa).

The first feature, the electron numbers of d orbital (d), highly relates to the 

reactivity because the central atom would lose some ability to donate or accept 

electrons when its d orbital is filled with either too few or too many electrons. 

The second feature, the oxide formation enthalpy (Hof) of a single atom, firmly 

connects with the ability of the metal atom to react with oxygen,61 which can be 

obtained by using the following equation: 

,△ 𝐻𝑜𝑓 =  △ 𝐻𝑠𝑢𝑏 ― 𝐻𝑜𝑓,  𝑏𝑢𝑙𝑘

where is the experimentally determined cohesive energy of the bulk metal △ 𝐻𝑠𝑢𝑏

structure, and  is the formation enthalpy of the metal’s most stable oxide △ 𝐻𝑜𝑓, 𝑏𝑢𝑙𝑘

relative to the bulk metal and O2. Moreover, the oxide formation enthalpy would not 

change along with different systems, which demonstrates that the oxide formation 

enthalpy values can be used directly in future studies.
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The third and fourth features are the electronegativity values of the central metal 

atom and its surrounding atoms, respectively. The higher the associated 

electronegativity value, the more an atom or a substituent group can attract electrons 

towards itself. Notably, the electronegativity of an atom is influenced by its intrinsic 

property and the circumstance, thus we included both the electronegativity of the 

central atom (Em) and the sum of electronegativity of surrounding atoms (Es) into the 

feature set.

The last feature, the average of the pKa values of the surrounding atoms (pKa), 

is introduced, to our best knowledge for the first time, as a feature for catalytic 

activity. Note that Es alone cannot well describe the environment of the neighboring 

atoms of the metal center, such as pyridine-4N and pyrrole-4N; while pKa can 

represent the activity of the neighboring N/C atoms in the M@NxCy subunits. The 

pKa values for pyridine-N, pyrrole-N, C6-C, and C5-C atoms are 5.25, 16.5, 44.0, and 

15.0 (based on the pyridine, pyrrole, benzene, and cyclopentadiene molecules).  

Among these five features, the first three (d, Hof, and em) are the intrinsic 

characteristics of the central metal atom itself, while the last two (es and pKa) describe 

the environment of the central atom. Through these five descriptors, we can outline 

the connection of the physical properties and the catalysis performance of M-N-C for 

ORR.

Performance of the ML Model for ORR. Using the aforementioned five features, 

we successfully built up an ML model with excellent performance: the training and 

Page 11 of 29 Journal of Materials Chemistry A



12

test scores are 0.97 and 0.95, respectively. The ML predicted UL values well agree 

with our previous DFT data (Figure 3a): the average error (0.013 V) approaches the 

accuracy of DFT computations, and the mean square error (MSE, 0.027) is rather 

small, which verify the great performance of our ORR model. This ML model can 

also directly predict the limiting potentials of other related SACs, which will be 

discussed in Section 3.4. All the well-trained models and training/test data can be 

obtained by the link in Supporting Information.

Figure 3. Comparison between DFT and ML predicted limiting potential (UL) values 

of (a) ORR, (b) OER, and (c) HER, where both training and testing data points are 

presented.

To encode the significance of different properties towards UL, we compared the 

importance of these five features (Figure 4). We found what dominate are the three 

features intrinsic to the central metal atom alone (d, Hof, and Em), thus the type of 

central atoms is the most important factor for the catalytic performance. Among these 

three features, the number of d electrons (d) has the largest feature importance of 
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0.498, followed by the oxygen formation enthalpy (Hof) and the electronegativity (Em) 

with the feature importance of 0.173 and 0.155, respectively. The sum of 

electronegativity of surrounding atoms (Es) and the average of pKa (pKa) have less 

but still critical importance with the same feature importance of 0.087. The high 

training and test scores, as well as the rather high feature importance, verify that our 

ML model for ORR is reliable and our feature set is a good choice.

Figure 4. Radar chart on the feature importance of six features (d, pKa, Es, Em, Hxf, 

and Hof) in the ML models for ORR, OER, and HER.

3.3. Training ML Models for OER and HER

Feature Set for OER. The ML model for OER can only be trained well after 

involving another feature, namely the hydride formation enthalpy (Hxf) of a single 
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atom, besides the five features we used for ORR. Our newly introduced feature, Hxf , 

is conceptually similar to Hof, which reflects the hydrogen affinity of the central metal 

atom. The Hxf value can be obtained by checking the energy difference between the 

most stable metal hydride and the most stable pure substances (H2 gas and the metal 

bulk). The equation for calculating Hxf is:

,△ 𝐻𝑥𝑓 =  △ 𝐻𝑠𝑢𝑏 ― 𝐻𝑥𝑓,  𝑏𝑢𝑙𝑘

where is the experimentally determined cohesive energy of the bulk △ 𝐻𝑠𝑢𝑏

metal structure,  is the formation enthalpy of the metal’s most stable △ 𝐻𝑥𝑓, 𝑏𝑢𝑙𝑘

hydride relative to the bulk metal and H2.

Note that the majority of transition metals have stable compounds in nature, and 

in recent years many stable 2D metal hydrides (eg. Mn, Cu, Zn, Mo, Ru, Cd, W, Os, 

Ir, and Pt) have been achieved.62,63 From the stable 2D metal hydride structures 

reported by Zhou et al.62, we extracted those with the most negative formation energy 

for each transition metal. However, for two elements, namely Au and Ag, no stable 

compounds and 2D metal hydrides exist, thus, the M-N-C systems with Au and Ag 

were not covered in the ML models62-64 (totally 26 transition metals were considered 

here). 

Performance of the ML model for OER. Based on six features, the random forest 

model for OER also gained satisfactory scores for the training (0.96) and the test sets 

(0.92). The ML predicted limiting potentials have a good linear correlation with the 
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previous DFT results (Figure 3b). The rather low average error (0.005 V) and MSE 

(0.021) confirm the high performance of our ML model.

By examining the importance of six intrinsic features (Figure 4), we can disclose 

the relationships between descriptors and catalytic performance of the OER SACs 

under investigation. The number of d electrons (d) remains as the most significant 

feature for OER, but its importance (0.400) is slightly lower than that for ORR 

(0.498). The hydride (Hxf) and oxide formation enthalpies (Hof) are the second and the 

third vital features for OER (with the importance of 0.284 and 0.187, respectively). 

Compared with ORR (Hof and Em ranked as the second and third features with the 

importance of 0.173 and 0.155, respectively), the formation enthalpy of hydrides (Hxf) 

has a much larger weight for estimating the limiting potentials of OER. The sum of 

electronegativity of surrounding atoms (Es) and the average of Pka also play 

indispensable roles in the OER model with feature importance of 0.115 and 0.104, 

while the Pauling electronegativity of central metal has the lowest feature importance 

of 0.064.

Feature set and performance of the ML model for HER. To build up the ML 

models for HER, we used the five descriptors, including Hxf but not Hof. This selection 

can be easily understood since only the strength of hydrogen bonding with central 

metal atom, rather than that of oxygen bonding, affects the catalytic performance for 

HER. Our ML model achieved scores of 0.97 and 0.91 for training and test sets, 
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respectively, and the average error and MSE are only 0.020 V and 0.035 for both sets 

(Figure 3c).

For feature importance exploration, we found that the same as ORR and OER, 

the number of d electrons (d) has the highest feature importance (of 0.614) for HER 

(Figure 4), which verifies again the unique role of the central transition metal for 

SACs. Ranked by the importance for HER, the electronegativity of central atoms (Em) 

is in the second place (0.189), followed by the sum of Pauling electronegativity of 

surrounding atoms (Es, 0.081), the average of the pKa values of the surrounding 

atoms (pKa, 0.068), and the hydride formation enthalpy (Hxf, 0.048).

To summarize, the intrinsic features we selected can be easily obtained and 

employed for the feature studies for SACs. The high scores of our three ML models 

demonstrate that the compact five/six features we extracted have sufficient 

information to describe and distinguish these SACs structures, which make us 

confident in using these ML models to predict the activity of other related SCAs 

towards these three reactions. 

3.4. Predicting the limiting potentials of other graphene-supported SACs 

(M@NxCy) by ML models  

What inspiring most is that ML techniques can quickly identify new materials 

with desired properties, thus significantly accelerating materials discovery and design. 

In this section, we will use the aforementioned well trained ML models to estimate 
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the catalytic performance (by predicting the limiting potentials) of many more 

graphene-supported SACs with similar structural configurations. 

It is known that the coordination environments of the central metal atom are 

important factors for the performance of SACs. However, no systematic investigation 

on the catalytic performance of enormous graphene-supported SACs towards 

ORR/OER/HER has been performed. Thus, we constructed 260 M@NxCy SACs 

containing 26 transition metals and with 10 types of metal coordination environments, 

including M@N1C2, M@N2C1, M@N3, M@pyridine-N1C3, M@pyridine-N2C2, 

M@pyridine-N3C1, M@pyrrole-C4 M@pyrrole-N1C3, M@pyrrole-N2C2, and 

M@pyridine-N3C1.

In total, 1560 descriptors (six each) were used as input of the ML models to 

predict the limiting potentials of these 260 M@NxCy SACs towards ORR/OER/HER. 

The whole prediction process took only several seconds, and their limiting potentials 

were obtained without any geometry optimization and energy computations. Among 

these 260 SACs, six catalysts show high UL values (~0.55 V) for ORR (corresponding 

to overpotential  ~0.68 V), four achieve low UL values for OER (~1.64 V,  ~0.41 

V), and 12 have close-to-zero UL values for HER ( < 0.04 V) (for details, see Table 

S1 in Supporting Information). 

We then examined the common characteristics of the top 3/4/12 M-N-Cs 

catalysts (ranked by overpotentials). The ML-recommended M-N-Cs for ORR are 

Fe@N3C1, Fe@pyrrole-N2C2, and Fe@pyrrole-N1C3; for OER are Ir@pyridine-N3C1, 
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Ir@pyrrole-N3C1, Ir@pyrrole-N2C2, and Ir@pyrrole-N3C1; for HER are 

Mo@pyridine-N2C2, Zn@N1C2, Pd@N2C1, Re@pyridine-N2C2, Rh@N3, Pt@N2C1, 

Rh@N1C2, Zn@N3, Ni@pyridine-N3C1, Re@pyrrole-N4, Re@pyrrole-N1C3, 

Ni@pyrrole-N2C2, and Ni@pyrrole-N3C1. Interestingly, for ORR all the 

recommended SACs contain Fe as the metal center, while for OER, Ir serves as the 

best active site. These data clearly demonstrate that Fe and Ir are eminent active 

centers for ORR and OER, respectively, which echo with previous experimental and 

theoretical findings65-69. 

To examine the accuracy of ML models, we computed the limiting potentials of 

these top M-N-Cs for ORR/OER/HER (three for ORR, four for OER, and 12 for HER) 

by DFT computations. The SACs with the highest limiting potentials (lowest 

overpotentials) for ORR are Fe@pyrrole-N1C3 and Fe@pyrrole-N2C2, i.e. 

Fe@pyrrole-N1C3 has the highest UL value of 0.61 V (Figure 5a,  = 0.62 V), and 

Fe@pyrrole-N2C2 has the second highest UL value of 0.55 V (Figure 5a,  = 0.68 V). 

For SACs towards OER, Ir@pyridine-N3C1 has the lowest limiting potential (UL = 

1.51 V,  = 0.28 V) (Figure 5b), followed by Ir@pyrrole-N2C2 (UL =1.55 V,  = 0.22 

V). These two ML-selected OER catalysts perform better than the generally regarded 

best OER catalysts, such as RuO2 (UL = 1.60 V)70, IrO2 (UL = 1.88 V)21, and doped 

carbon materials (P-doped graphdiyne (UL = 1.58 V)70, and previous studied M@N/C 

system (UL > 1.52 V)21. The average errors of the ML predicted limiting potential 

values (relative to the DFT values) of the three ORR and four OER catalysts are 0.09 
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and 0.06 V, and the corresponding MSE values are 0.11 and 0.03, respectively, which 

demonstrate the robustness and accuracy of our ML models.

Figure 5. Free-energy diagrams and geometries of prominent M@NxCy SACs for (a) 

ORR and (b) OER at zero electrode potential. The rate-determining steps are 

highlighted by shades; and the blue and gray balls stand for nitrogen and carbon 

atoms, respectively.

When compared with the DFT computed values, the average error of the 12 

ML-predicted limiting potentials is 0.07 V, and the corresponding MSE value is 0.18, 

which demonstrate the rather high reliability of our ML models. The best catalyst for 

HER is Ni@pyridine-N3C1 with a UL value of only 0.003 V, which is very close to 0 

V (Figure 6,  = 0.003 V). Ni@pyridine-N3C1 also outperforms the conventional 

HER catalyst-Pt (UL of Pt is around -0.09 ~ 0.03)71, previous studied Tc@C3 (UL ~ - 

0.03 72), and has similar performance as Fe@C3 (UL ~ 0.00) 72.
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Figure 6. Free-energy diagram and geometry of the best-performed SAC for HER, 

Ni@pyridine-N3C1, at zero electrode potential. Blue ashes, navy, and gray balls stand 

for transition metal, nitrogen, and carbon atoms, respectively.

4. CONCLUSION

In summary, by machine learning techniques, we built up three models to 

describe the underlying pattern of physical properties and limiting potentials towards 

ORR/OER/HER of 104 graphene-supported SACs, and quantitatively unveiled the 

significance of various descriptors. Furthermore, we employed these ML models to 

directly predict the limiting potentials of 260 M@NxCy SACs, and screened out the 

most promising ORR/OER/HER catalysts. The excellent catalytic performances of 

these ML-recommended SACs were verified by DFT computations, and the best 

candidates possess limiting potentials of 0.61, 1.51, and 0.003 V for ORR, OER, and 

HER. Especially, two OER catalysts (Ir@pyridine-N3C1, UL=1.51 V; 

Ir@pyridine-N2C2, UL=1.55 V) outperform the most commonly used noble metal 
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oxides (RuO2 and IrO2); and one HER catalyst (Ni@pyridine-N3C1, UL=0.003 V) also 

outperform the commonly used noble metal (Pt). 

By utilizing only a few easily available intrinsic physical features of M-N-Cs, 

our ML models can well predict the limiting potentials of graphene-supported SACs 

towards ORR/OER/HER. Without any geometry optimization, total energy 

calculation, or examining reaction pathways, this ML process takes only seconds, but 

can dramatically narrow down the candidate list of M-N-C SACs. This strategy can be 

used to screen and design other electrochemical catalysts, such as towards nitrogen 

reduction reactions and CO2 reduction reactions. Directly predicting catalytic 

performance of electrocatalysts from the easily obtainable parameters of catalysts is 

bringing us a revolutionary approach for future catalysts design, and will dramatically 

accelerate the discovery of more efficient catalysts towards important chemical 

processes in the very near future.  
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