Journal of Materials Chemistry C

Controlling the threshold voltage of β -Ga₂O₃ field-effect transistors *via* remote fluorine plasma treatment

Journal:	Journal of Materials Chemistry C
Manuscript ID	TC-ART-05-2019-002468.R1
Article Type:	Paper
Date Submitted by the Author:	13-Jun-2019
Complete List of Authors:	Kim, Janghyuk; Korea University, Tadjer , Marko ; US Naval Research Laboratory Mastro, Michael; US Naval Research Laboratory, Kim, Jihyun; Korea University, Department of Chemical and Biological Engineering

SCHOLARONE[™] Manuscripts

Controlling the threshold voltage of β-Ga₂O₃ field-effect transistors *via* remote fluorine plasma treatment

Janghyuk Kim[†], Marko J. Tadjer[‡], Michael A. Mastro[‡] and Jihyun Kim^{†,*}

[†]Department of Chemical and Biological Engineering, Korea University, Seoul 02841 Korea

[‡]US Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 USA

ABSTRACT

β-phase gallium oxide (β-Ga₂O₃), emerging as an ultra-wide bandgap semiconductor, suffers from negative threshold voltage (V_{th}) characteristics, which only allow depletion-mode (Dmode) operation; however, enhancement-mode (E-mode) operation is preferred to ensure fail-safe operation and simplify circuit topologies. Therefore, in this study, the V_{th} is controlled via remote fluorine plasma treatment in β-Ga₂O₃ metal-insulator-semiconductor field-effect transistors (MISFETs). Under the top-gate modulation, the V_{th} of the fluorinated β-Ga₂O₃ MISFET was positively shifted by +4 V, exhibiting high on/off ratio (~10⁷) and low sub-threshold swing (175 mV/dec). Under the double-gate modulation, the E-mode β-Ga₂O₃ MISFET was demonstrated, where the V_{th} was estimated to be +2.2 V. The obtained results suggest that the fluorine plasma treatment is an effective method to control the V_{th} of the β-Ga₂O₃ FETs from D-mode to E-mode, pointing out monolithic integration of β-Ga₂O₃ transistors for future smart power electronics.

KEYWORDS: gallium oxide; field-effect transistors; enhancement-mode; plasma treatment

*Corresponding Author: E-mail: <u>hyunhyun7@korea.ac.kr</u> (Jihyun Kim)

INTRODUCTION

β-phase gallium oxide (β-Ga₂O₃) is a promising semiconductor material for nextgeneration high-power electronics because of its ultra-large energy bandgap of 4.8 eV (room temperature) and a theoretical critical field strength of approximately 8 MV/cm.^{1–3} The Baliga's figure of merit,⁴ which is the metric of conduction loss in power devices, of β-Ga₂O₃ (at 3214) is considerably higher than those of SiC (at 317) and GaN (at 846). This indicates that β-Ga₂O₃-based power electronics are more efficient than other competing wide bandgap materials. As the proportion of electrical energy passing through power electronics has been increasing considerably, near-future power electronics utilizing β-Ga₂O₃ as an active layer can lead to a considerable reduction in energy consumed. ⁵ Furthermore, another prominent feature of β-Ga₂O₃ compared to other wide-bandgap semiconductors is that high-quality single crystals can be synthesized cost-effectively using melt growth techniques such as the floating zone, Czochralski and edge-defined film-fed growth. Therefore, it can be concluded that β-Ga₂O₃ has an economical advantage over SiC and GaN.

β-Ga₂O₃ device technology has developed rapidly in recent years and various transistors, including MOSFETs, MESFETs, and FinFETs, have been successfully demonstrated. Higashiwaki et al. pioneered single-crystal β-Ga₂O₃-based transistors.⁶ Tadjer et al. demonstrated a β-Ga₂O₃ MOSFET with HfO₂ gate dielectric layer.⁷ Interestingly, a single crystalline β-Ga₂O₃ with a monoclinic structure can be exfoliated into ultra-thin flakes along a (100) plane owing to its strong in-plane force and weak out-of-plane force,⁸⁻¹⁰ demonstrating various β-Ga₂O₃ nano-layer based transistors.^{10–13} β-Ga₂O₃ typically contains oxygen vacancies, and therefore, β-Ga₂O₃ has been considered as an n-type semiconductor.¹⁴ Recently, it is reported that the oxygen vacancy cannot contribute to the conductivity because they are deep donors.¹⁵ Furthermore, n-type dopants including Si and Sn have been incorporated to achieve higher carrier concentrations.² Therefore, most of the fabricated β-

 Ga_2O_3 transistors exhibit n-type characteristics with a negative threshold voltage (V_{th}).^{6,12,16,17} The negative V_{th} of n-type β -Ga₂O₃ transistors allows only depletion mode (D-mode) operation, which limits their implementations in electronic circuits. Enhancement-mode (E-mode) operation is preferred for power transistors, which enables simple circuit designs and fail-safe operation under high voltage conditions.^{18,19}

Various techniques have been suggested to control V_{th}, including forming trench- or Fin-shaped channels,^{20,21} partial Si doping,²² and thickness control of β -Ga₂O₃ channel.²³ In addition, incorporating fluorine close to the channel is an efficient method to modulate the V_{th} of FETs. Fluorine plasma treatment has been previously used to control the V_{th} of AlGaN/GaN high electron mobility transistors (HEMTs) and amorphous InGaZnO (a-IGZO) thin-film transistors.^{24–28} The incorporated fluorine atoms, which have high electronegativity, are negatively charged and increase the potential in the AlGaN or a-IGZO barrier, which results in a positive shift of V_{th}. Yang et al. reported that when the fluorine plasma was exposed, the barrier height of β -Ga₂O₃ Schottky barrier diodes was increased; this was because the Si donors were compensated by fluorine atoms, forming neutral complexes.²⁹ In this work, we demonstrate a facile, efficient, and reproducible method to control the V_{th} of β -Ga₂O₃-based metal insulator field-effect transistors (MISFETs) via remote CF₄ plasma treatment. E-mode operation was achieved under the double gate condition, presenting a potential for β -Ga₂O₃-based smart power integrated circuit (IC) applications.

EXPERIMENTAL DETAILS

Two MISFETs in series were fabricated on a single β -Ga₂O₃ flake. Figures 1(a–d) show optical microscope images that present the fabrication sequence of pristine and fluorinated β -Ga₂O₃ MISFETs on a single flake. β -Ga₂O₃ flakes were obtained from a (-201)

 β -Ga₂O₃ single crystal by a mechanical exfoliation process. The β -Ga₂O₃ single crystal, which is unintentionally n-doped with an effective carrier density (N_d-N_a) of approximately 3x10¹⁷ cm⁻³, was produced by the edge-defined film-fed method (Tamura Corp.). Exfoliated β -Ga₂O₃ flakes were then dry-transferred onto a SiO₂ (300 nm)/p⁺⁺-Si (500 µm) substrate, which was pre-patterned with Ti/Au (20 nm/80 nm) as a bottom-gate electrode (Fig. 1(a)). Source and drain electrodes (Ti/Au 20 nm/80 nm) were defined using an electron-beam (ebeam) lithography and lift-off process (Fig. 1(b)). The channel length and width of β -Ga₂O₃ FETs were 20 µm and 4 µm, respectively. Rapid thermal annealing in an argon atmosphere was performed for 60 sec at 480 °C to form ohmic contact with the exfoliated β-Ga₂O₃ flake. As shown, part of the channel (red box) was opened to the CF₄ plasma treatment by an ebeam lithography after the sample was coated with the electron-beam resist (Fig. 1(c)). The CF_4 plasma was introduced to the surface of the β -Ga₂O₃ flake using a conventional reactive ion etching (RIE) system (RIE 5000, SNTEK). To avoid damage by direct ion bombardment, the sample was placed face-down between the high supports in the RIE chamber, which is similar to the remote plasma configuration. The precursor gas used was CF_4 (50 sccm) at the pressure of 3 mTorr, and the etching power and time were 100 W and 60 sec, respectively. Multilayer h-BN nanosheets were mechanically exfoliated from a bulk powder (Momentive Corp.) and were dry-transferred onto the β -Ga₂O₃ flake. Two h-BN flakes were deposited as a gate dielectric layer. The top gate electrode was defined by depositing Pt/Au (20/80 nm) after e-beam lithography (Fig. 1(d)). A schematic of the fabricated β-Ga₂O₃ MISFETs on a single flake is shown in Fig. 1(e).

The thickness and surface morphology of β -Ga₂O₃ and h-BN were characterized using atomic force microscopy (AFM) (XE100, PSIA). Micro-Raman spectroscopy was conducted with back-scattering geometry using the 532 nm line of a diode-pumped solid-state

laser (Omicron) to analyze the structural properties of the exfoliated β -Ga₂O₃ and h-BN layers. X-ray photoelectron spectroscopy (XPS) (Thermo, K-alpha) using the monochromated Al Ka line as the X-ray source was employed to study changes in the bonding structure of the β -Ga₂O₃ flakes after the CF₄ plasma treatment. The electrical and transport characteristics of the fabricated β -Ga₂O₃ MISFETs were obtained using an Agilent 4155C semiconductor parameter analyzer connected to a probe station.

RESULTS AND DISCUSSION

The morphology and thickness of the β -Ga₂O₃ and h-BN nanosheets in the fabricated FETs were analyzed, as shown in Figs. 2(a–b). The β -Ga₂O₃ and h-BN nanosheets were approximately 250 and 25~28 nm thick, respectively. The thickness of the pristine β -Ga₂O₃ was identical to that of the fluorinated one, as shown in Fig. S1, indicating that there was no significant degradation or etching of β -Ga₂O₃ during the remote CF₄ plasma treatment. The crystal quality of the β -Ga₂O₃ flake and h-BN nanosheets was evaluated using micro-Raman spectroscopy (Fig. 2(c)). Phonon peaks corresponding to the β -Ga₂O₃ flake are observed in the range 60–800 cm⁻¹. The peaks near 200, 347, 416, and 767 cm⁻¹ correspond to the Ag³, Ag⁵, Ag⁶, and Ag¹⁰ vibration modes of β -Ga₂O₃, respectively.^{30,31} The peak at approximately 1350 cm⁻¹ corresponds to the E_{2g} vibration mode of h-BN.³² The Raman spectra also indicate that there was no significant disruption of the sample by remote CF₄ plasma treatment. XPS measurement was performed to investigate the chemical property of the surface of β -Ga₂O₃ flakes after CF₄ plasma treatment. Figure 3(a) shows XPS survey scans of the pristine and CF₄ plasma-treated β -Ga₂O₃, where F1s and F KLL signals appear. A more detailed analysis of the F1s core levels indicates the influence of the CF₄ plasma treatment, where the peak of a

Ga–F bond appears at 684.7 after the CF_4 plasma treatment. This suggests that the remote CF_4 plasma treatment effectively forms a Ga–F bond.^{33,34}

Prior to the deposition of the top-gate electrode, the bottom-gated β-Ga₂O₃ FET was characterized to observe the effects of the CF₄ plasma treatment. The I_{DS}–V_{DS} output and transfer characteristics of a bottom-gated β-Ga₂O₃ MOSFET with a thermally grown SiO₂ dielectric, before and after the CF₄ plasma treatment, are compared in Fig. S2 (a–b). After the CF₄ plasma treatment, the V_{th} shifted positively, indicating the F-induced depletion of the channel. The negatively charged fluorine atoms incorporated into the β-Ga₂O₃ partially deplete carriers in the n-channel. For a more detailed analysis of device performance, two h-BN layers as top-gate dielectrics were deposited on top of each channel, making two topgated MISFETs. Figures 4(a–b) exhibit the I_{DS}–V_{DS} output characteristics of pristine (Fig. 4(a)) and fluorinated (Fig. 4(b)) β-Ga₂O₃-based MISFETs, respectively, both showing good saturation and sharp pinch-off characteristics. The transfer curve for pristine β-Ga₂O₃ topgated MISFET (Fig. 4(c)) shows a V_{th} of -5.1 V with a current on/off ratio ~10⁸ at V_{DS} = +10 V. An estimated field effect carrier mobility (μ_{FE}) and a sub-threshold swing (SS) were about 18.9 cm² V⁻¹ s⁻¹ and 350 mV dec⁻¹, respectively. The μ_{FE} can be obtained from the following equation:

$$\mu_{FE} = \frac{L}{W} \frac{2}{C_g} \left(\frac{\partial \sqrt{I_{DS}}}{\partial V_{TG}} \right)^2$$

, where L and W denote the length and width of the channel, respectively. C_g is the gate dielectric capacitance per unit area, and V_{TG} is the top gate bias. These transfer properties are comparable to previous reports of FETs using unintentionally doped β -Ga₂O₃. For fluorinated β -Ga₂O₃ MISFET, V_{th} of -1.1 V and μ_{FE} of 37.2 cm² V⁻¹ s⁻¹ with a current on/off ratio ~10⁷ were extracted at $V_{DS} = +10$ V, as shown in Fig. 4(c). The SS of fluorinated β -Ga₂O₃ MISFET (~172 mV·dec⁻¹) is lower than that of a pristine β -Ga₂O₃ MISFET, and the gate

leakage currents for both pristine and fluorinated β-Ga₂O₃ MISFETs are almost equivalent, implying nominal plasma-induced damage. The positive shift of V_{th} from -5.1 to -1.1 V is observed in fluorinated β-Ga₂O₃ when compared with pristine β-Ga₂O₃ under the top-gate operation, where V_{th} was extracted from the plot of the square root of drain current versus gate voltage. The F atom adsorbed on the β-Ga₂O₃ has a strong electronegativity (3.98), increasing the depletion region in the β-Ga₂O₃ channel. Figure 4(d) shows the energy band diagram of the interface between β-Ga₂O₃ and h-BN before and after the CF₄ plasma treatment. The fluorine atoms on the surface increased the $V_{th} (= \psi_{bi} - \psi_P)$ by lowering the pinch-off potential ($\psi_P = \frac{qN_D d^2}{2\varepsilon_s}$), where ψ_{bi} , q, N_D, d and ε_s are the built-in potential, electronic charge, carrier concentrations, channel height, and the channel material's permittivity, respectively.³⁵ The edge of the conduction band of fluorinated β-Ga₂O₃ at the interface between β-Ga₂O₃ and h-BN bends upward, and the depletion width extends.

Double gate operation of pristine and fluorinated β -Ga₂O₃ MISFETs was performed, sweeping top-gate bias with varying bottom gate (V_{BG}) bias as shown in Fig. 5. V_{th} of the pristine β -Ga₂O₃ MISFET shifted from -5.1 V to -3.1 V as the V_{BG} varied from 0 to -9 V. Meanwhile, V_{th} of the fluorinated β -Ga₂O₃ MISFET gradually shifted from -1.1 V to +2.2 V, demonstrating an E-mode operation. As shown in Fig. 5(c), the incorporation of F into the top surface facilitated the positive V_{th} under the double gate operation. The formation of an Emode MISFET and a D-mode MISFET in the single β -Ga₂O₃ flake via partial the CF₄ plasma treatment can be utilized to fabricate various circuit designs. Our approach allows the fabrication of E-mode β -Ga₂O₃ FETs as well as the monolithic integration of E/D-mode FETs, both of which are expected to give valuable circuit applications, such as logic inverters.³⁶ These results suggest that the CF₄ plasma treatment, which is controllable and compatible with the CMOS process, provides a simple approach to achieve V_{th} control of β -Ga₂O₃ FETs, proposing β -Ga₂O₃-based logic devices for future miniaturized smart power and harsh environment electronics.

CONCLUSION

The V_{th} of β -Ga₂O₃ FETs was controlled from D-mode to E-mode through the remote CF₄ plasma treatment, demonstrating a β -Ga₂O₃-based E/D-mode FETs in a single β -Ga₂O₃ flake. The V_{th} was positively shifted by +4 V compared with a pristine β -Ga₂O₃ FET owing to the incorporated fluorine atoms with high electronegativity. A Ga–F bond was formed on β -Ga₂O₃ using the remote CF₄ plasma treatment. The fluorinated β -Ga₂O₃ MISFET displayed excellent transistor characteristics with I_{DS} on/off ratio of ~10⁷, μ_{FE} of 37.2 cm²·V⁻¹·s⁻¹ and a subthreshold swing of 175 mV·dec⁻¹. The E-mode operation of the double-gate fluorinated β -Ga₂O₃ grants a facile way to achieve the V_{th} modulation of β -Ga₂O₃ FETs and the realization of β -Ga₂O₃-based smart power electronics.

ACKNOWLDEGEMENTS

Research at the U.S. Naval Research Laboratory was supported by the Office of Naval Research. The research at Korea University was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation funded by the Ministry of Science and ICT (2017M1A2A2087351) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Korea (No. 20172010104830).

Supporting information

Height profile of pristine and fluorinated β -Ga₂O₃ flakes, output characteristics and transfer curves of bottom gated β -Ga₂O₃ MOSFETs before and after the CF₄ plasma treatment (PDF)

REFERENCES

Higashiwaki, M.; Sasaki, K.; Murakami, H.; Kumagai, Y.; Koukitu, A.; Kuramata,
 A.; Masui, T.; Yamakoshi, S., Recent Progress in Ga₂O₃ Power Devices. Semicond. Sci.
 Technol. 2016, *31*, 034001.

2. Mastro, M. A.; Kuramata, A.; Calkins, J.; Kim, J.; Ren, F.; Pearton, S., Perspective— Opportunities and Future Directions for Ga₂O₃. ECS J. Solid State Sci. Technol. **2017**, *6*, P356–P359.

Pearton, S.; Yang, J.; Cary IV, P. H.; Ren, F.; Kim, J.; Tadjer, M. J.; Mastro, M. A.,
 A Review of β-Ga₂O₃ Materials, Processing, and Devices. Appl. Phys. Rev. 2018, *5*, 011301.

4. Baliga, B. J., Semiconductors for High Voltage, Vertical Channel Field effect Transistors. J. Appl. Phys. **1982**, *53*, 1759–1764.

5. Reese, S. B.; Remo, T.; Green, J.; Zakutayev, A., How Much Will Gallium Oxide Power Electronics Cost?. Joule **2019**, *3*, 903-907

6. Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Hoi Wong, M.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S., Depletion-mode Ga_2O_3 Metal-Oxide-Semiconductor Field-effect Transistors on β -Ga₂O₃ (010) Substrates and Temperature Dependence of their Device Characteristics. Appl. Phys. Lett. **2013**, *103*, 123511.

Tadjer, M. J.; Mahadik, N. A.; Wheeler, V. D.; Glaser, E. R.; Ruppalt, L.; Koehler, A. D.; Hobart, K. D.; Eddy, C. R.; Kub, F. J., Editors' Choice Communication—A (001) β-Ga₂O₃ MOSFET with +2.9 V Threshold Voltage and HfO₂ Gate Dielectric. ECS J. Solid State Sci. Technol. 2016, *5*, P468–P470.

8. Swinnich, E.; Hasan, M. N.; Zeng, K.; Dove, Y.; Singisetti, U.; Mazumder, B.; Seo, J.

H., Flexible β Ga₂O₃ Nanomembrane Schottky Barrier Diodes. Adv. Electron. Mater. **2019**, *5*, 1800714.

Barman, S. K.; Huda, M. N., Mechanism Behind the Easy Exfoliation of β-Ga₂O₃
 Ultra Thin Film Along (100) Surface. Phys. Status Solidi RRL 2019, 1800554.

10. Hwang, W. S.; Verma, A.; Peelaers, H.; Protasenko, V.; Rouvimov, S.; Xing, H.; Seabaugh, A.; Haensch, W.; de Walle, C. V.; Galazka, Z., High-Voltage Field Effect Transistors with Wide-Bandgap β -Ga₂O₃ Nanomembranes. Appl. Phys. Lett. **2014**, *104*, 203111.

 Kim, J.; Mastro, M. A.; Tadjer, M. J.; Kim, J., Quasi-two-dimensional h-BN/β-Ga₂O₃ Heterostructure Metal–Insulator–Semiconductor Field-effect Transistor. ACS Appl. Mater. Interfaces 2017, 9, 21322–21327.

12. Li, Z.; Liu, Y.; Zhang, A.; Liu, Q.; Shen, C.; Wu, F.; Xu, C.; Chen, M.; Fu, H.; Zhou, C., Quasi-two-dimensional β -Ga₂O₃ Field Effect Transistors with Large Drain Current Density and Low Contact Resistance via Controlled Formation of Interfacial Oxygen Vacancies. Nano Res. **2019**, *12*, 143–148.

13. Kim, J.; Mastro, M. A.; Tadjer, M. J.; Kim, J., Heterostructure WSe₂–Ga₂O₃ Junction Field-Effect Transistor for Low-Dimensional High-Power Electronics. ACS Appl. Mater. Interfaces **2018**, *10*, 29724–29729.

Hajnal, Z.; Miró, J.; Kiss, G.; Réti, F.; Deák, P.; Herndon, R. C.; Kuperberg, J. M.,
Role of Oxygen Vacancy Defect States in the n-type Conduction of β-Ga₂O₃. J. Appl. Phys. **1999**, *86*, 3792–3796.

15. Varley, J. B.; Weber, J. R.; Janotti, A.; Van de Walle, C. G., Oxygen vacancies and donor impurities in β -Ga₂O₃. Appl. Phys. Lett., **2010**, *97*, 142106.

16. Ahn, S.; Ren, F.; Kim, J.; Oh, S.; Kim, J.; Mastro, M. A.; Pearton, S., Effect of Front

and Back Gates on β -Ga₂O₃ Nano-Belt Field-Effect Transistors. Appl. Phys. Lett. **2016**, *109*, 062102.

Zhou, H.; Maize, K.; Noh, J.; Shakouri, A.; Ye, P. D., Thermodynamic Studies of β-Ga₂O₃ Nanomembrane Field-effect Transistors on a Sapphire Substrate. ACS Omega **2017**, *2*, 7723–7729.

18. Hu, Z.; Nomoto, K.; Li, W.; Zhang, Z.; Tanen, N.; Thieu, Q. T.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D., Breakdown Mechanism in 1 kA/cm² and 960 V E-mode β-Ga₂O₃ Vertical Transistors. Appl. Phys. Lett. **2018**, *113*, 122103.

 Roy, S.; Gao, Z., Direct-write Fabrication of a Nanoscale Digital Logic Element on a Single Nanowire. Nanotechnology **2010**, *21*, 245306.

20. Chabak, K. D.; Moser, N.; Green, A. J.; Walker Jr, D. E.; Tetlak, S. E.; Heller, E.; Crespo, A.; Fitch, R.; McCandless, J. P.; Leedy, K., Enhancement-mode Ga_2O_3 Wrap-Gate Fin Field-effect Transistors on Native (100) β -Ga₂O₃ Substrate with High Breakdown Voltage. Appl. Phys. Lett. **2016**, *109*, 213501.

21. Chabak, K. D.; McCandless, J. P.; Moser, N. A.; Green, A. J.; Mahalingam, K.; Crespo, A.; Hendricks, N.; Howe, B. M.; Tetlak, S. E.; Leedy, K., Recessed-Gate Enhancement-Mode β-Ga₂O₃ MOSFETs. IEEE Electron Device Lett. **2018**, *39*, 67–70.

22. Wong, M. H.; Nakata, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M., Enhancement-mode Ga₂O₃ MOSFETs with Si-ion-implanted Source and Drain. Appl. Phys. Express **2017**, *10*, 041101.

23. Zhou, H.; Si, M.; Alghamdi, S.; Qiu, G.; Yang, L.; Peide, D. Y., High-Performance Depletion/Enhancement-mode β -Ga₂O₃ on Insulator (GOOI) Field-Effect Transistors with Record Drain Currents of 600/450 mA/mm. IEEE Electron Device Lett. **2017**, *38*, 103–106.

24. Cai, Y.; Zhou, Y.; Chen, K. J.; Lau, K. M., High-performance Enhancement-mode AlGaN/GaN HEMTs using Fluoride-based Plasma Treatment. IEEE Electron Device Lett.

2005, 26, 435–437.

25. Cai, Y.; Zhou, Y.; Lau, K. M.; Chen, K. J., Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-based Plasma Treatment: From Depletion Mode to Enhancement Mode. IEEE Trans. Electron Devices **2006**, *53*, 2207–2215.

26. Zaidi, Z.; Lee, K.; Guiney, I.; Qian, H.; Jiang, S.; Wallis, D. J.; Humphreys, C. J.; Houston, P., Enhancement Mode Operation in AlInN/GaN (MIS) HEMTs on Si Substrates using a Fluorine Implant. Semicond. Sci. Technol. **2015**, *30*, 105007.

27. Qian, L. X.; Lai, P. T., Fluorinated InGaZnO Thin-Film Transistor with HfLaO Gate Dielectric. IEEE Electron Device Lett. **2014**, *35*, 363–365.

28. Ruan, D.-B.; Liu, P.-T.; Chiu, Y.-C.; Yu, M.-C.; Gan, K.-J.; Chien, T.-C.; Chen, Y.-H.; Kuo, P.-Y.; Sze, S. M., Performance Improvements of Tungsten and Zinc Doped Indium Oxide Thin Film Transistor by Fluorine based Double Plasma Treatment with a High-K Gate Dielectric. Thin Solid Films **2018**, *665*, 117–122.

Yang, J.; Fares, C.; Ren, F.; Sharma, R.; Patrick, E.; Law, M. E.; Pearton, S.;
Kuramata, A., Effects of Fluorine Incorporation into β-Ga₂O₃. J. Appl. Phys. 2018, *123*, 165706.

30. Zhu, Y.; Yu, Q.-K.; Ding, G.-Q.; Xu, X.-G.; Wu, T.-R.; Gong, Q.; Yuan, N.-Y.; Ding, J.-N.; Wang, S.-M.; Xie, X.-M., Raman Enhancement by Graphene-Ga₂O₃ 2D Bilayer Film. Nanoscale Res. Lett. **2014**, *9*, 48.

Sun, Z.; Yang, L.; Shen, X.; Chen, Z., Anisotropic Raman Spectroscopy of a Single
 β-Ga₂O₃ Nanobelt. Sci. Bull. 2012, *57*, 565–568.

32. Reich, S.; Ferrari, A.; Arenal, R.; Loiseau, A.; Bello, I.; Robertson, J., Resonant Raman Scattering in Cubic and Hexagonal Boron Nitride. Phys. Rev. B **2005**, *71*, 205201.

33. Huang, S.; Chen, H.; Chen, K. J., Effects of the Fluorine Plasma Treatment on the Surface Potential and Schottky Barrier Height of $Al_xGa_{1-x}N/GaN$ Heterostructures. Appl.

Phys. Lett. 2010, 96, 233510.

34. Wang, Y.-H.; Liang, Y. C.; Samudra, G. S.; Huang, C.-F.; Kuo, W.-H.; Lo, G.-Q., The Physical Mechanism on the Threshold Voltage Temperature Stability Improvement for GaN HEMTs with Pre-fluorination Argon Treatment. Appl. Phys. Lett. **2016**, *108*, 233507.

35. SZE, Simon M.; NG, Kwok K., Physics of semiconductor devices. John wiley & sons, 2006.

36. Tang, G.; Kwan, A. M.; Wong, R. K.; Lei, J.; Su, R.; Yao, F.; Lin, Y.; Yu, J.; Tsai,
T.; Tuan, H., Digital Integrated Circuits on an E-mode GaN Power HEMT Platform. IEEE
Electron Device Lett. 2017, *38*, 1282–1285.

Figure 1 Optical microscope images of each fabrication step of a series of pristine and fluorinated β -Ga₂O₃ MISFETs; (a) β -Ga₂O₃ flake was transferred onto the SiO₂/p⁺⁺–Si substrate pre-patterned with Ti/Au back-gate electrode (b) Source and drain electrodes were defined on a single β -Ga₂O₃ flake. (c) After the sample was coated with ER, part of the β -Ga₂O₃ flake was opened for remote CF₄ plasma treatment. (d) Two h-BN nanosheets were deposited on each channel and Pt/Au gate electrodes were defined on each channel. The scale bars are 10 µm. (e) Schematic of the series of pristine and fluorinated β -Ga₂O₃ MISFETs with the front (Pt/Au) and back (Ti/Au) gate electrodes.

Figure 2 (a) AFM image of the fabricated series of pristine and fluorinated β -Ga₂O₃ MISFETs. The scale bar is 5 µm. (b) Height profile of the β -Ga₂O₃ and multilayer h-BN in both pristine and fluorinated regions. (c) Raman spectra before and after the dry transfer.

Figure 3 (a) XPS survey scans from the pristine and fluorinated β -Ga₂O₃ surfaces. (b) XPS spectrum of F1s for pristine and fluorinated β -Ga₂O₃

Figure 4 (a–b) I_{DS} – V_{DS} output characteristics of pristine and fluorinated β -Ga₂O₃ MISFETs. (c) Transfer curves of pristine and fluorinated β -Ga₂O₃ MISFETs. (d) Energy-band diagram of a h-BN/ β -Ga₂O₃ flake before and after CF₄ plasma treatment .

Figure 5 Transfer curves of the double-gated (a) pristine and (b) fluorinated β -Ga₂O₃ MISFETs with varying the back gate (V_{BG}) and the top gate (V_{TG}) at V_{DS}=+10 V (c) the energy band diagram of the fluorinated β -Ga₂O₃ channel under V_{BG}<0 V (note that V_{TG} is not biased).

