ChemComm ### Reactivity of Borohydride Incorporated in Coordination Polymers toward Carbon Dioxide | Journal: | ChemComm | |---------------|--------------------------| | Manuscript ID | CC-COM-03-2020-001753.R1 | | Article Type: | Communication | | | | SCHOLARONE™ Manuscripts ### **COMMUNICATION** ## Reactivity of Borohydride Incorporated in Coordination Polymers toward Carbon Dioxide Kentaro Kadota, a Easan Sivaniah, a,b and Satoshi Horike*b,c,d,e Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x Borohydride (BH₄⁻)-containing coordination polymers converted CO_2 into HCO_2 ⁻ or [BH₃(OCHO)]⁻, whose reaction routes were affected by the electronegativity of metal ions and coordination mode of BH₄⁻. The reactions were investigated using thermal gravimetric analysis under CO_2 gas flow, infrared spectroscopy, and NMR experiments. Conversion of carbon dioxide (CO₂) into valuable chemicals is a key to realize a sustainable society. 1, 2 In particular, it is essential to establish chemical reactions that transform CO2 into various types of chemical moieties under mild conditions.3 However, the inherent inertness of CO₂ has hampered the utilization of CO₂ in transformation reactions. To overcome the inertness, various catalytic and stoichiometric reactions have been widely studied in both solution and solid-state, including metals, metal oxides, $^{4}\,\mathrm{metal}\,\mathrm{complexes}, ^{5,\,6}\,\mathrm{and}\,\,\mathrm{metal}\text{-free}\,\mathrm{organic}\,\mathrm{molecules}.^{7}$ Borohydride (BH₄-), a hydride-based complex anion, has been commonly utilized as a reducing agent. In solution phase, metal borohydrides (MBHs) stoichiometrically react with CO2 under ambient temperatures and pressures.⁸⁻¹¹ BH₄⁻ in solution is able to convert CO₂ into chemical species such as formate (HCO₂-) and formylhydroborate ($[BH_{4-x}(OCHO)_x]^-$, x = 1, 2, 3) depending on the reaction conditions, e.g. counter cations, temperatures, solvents, and pressures.8, 9, 12 Solid-state reactivity of BH₄toward CO₂ is also interesting from the viewpoint of heterogeneous catalysts and CO₂ scrubbers. Nevertheless, limited studies have been made on solid-state reactivity of MBHs toward CO₂. $^{13,\ 14}$ This is because slow diffusion of CO₂ in dense MBHs results in low reactivity under mild conditions. 14 Although porous structures are advantageous for the diffusion of CO₂, MBHs with the porous structure are limited except for a few examples, $e.g.\ \gamma\text{-Mg(BH_4)}_2.^{14,\ 15}$ Coordination polymers (CPs) and metal–organic frameworks (MOFs) are crystalline solids constructed from metal ions and bridging organic linkers. ¹⁶⁻¹⁸ Their open structures have offered an attractive platform for various gas–solid reactions, such as CO₂ sorption ¹⁹⁻²¹ and post-synthetic modification. ^{22, 23} In addition, rich structural and chemical tunability of CPs demonstrated the controlled reactivity of reactive species, *e.g.* radicals, ^{24, 25} imines ²⁶, and photoactive metal complexes. ²⁷ CPs are a promising platform for solid-gas reactions between BH₄ and CO₂. BH₄-containing CPs are constructed from metal ions (*e.g.* Mg²⁺, Ca²⁺, Mn²⁺, Zn²⁺, Th⁴⁺) and N-based neutral linkers and show various types of the chemical environment of BH₄-. ²⁸⁻³⁰ Here, we investigate the reactivity of BH₄-containing CPs to convert CO₂ into HCO₂- or [BH₃(OCHO)]- under mild conditions depending on their structures. $[M(BH_4)_2(pyz)_2]$ (**M-pyz,** M = Mg²⁺, Ca²⁺, pyz = pyrazine)^{28, 29} were selected to investigate the influence of metal ions on the reactivity of BH₄⁻ toward CO₂. The metal ion center shows an octahedral geometry and the two BH₄⁻ coordinate in the axial positions (Figure 1A). The extended structure of M-pyz comprises a 2D square grid constructed by [M₄pyz₄] units (Figure 1B). Electronic properties and reactivity of BH₄- are influenced by the electronegativity of counter metal ions.31,32 Attempts on the synthesis of isostructural M-pyz were made using a Mn²⁺-based MBHs precursor. [Mn(BH₄)₂·3THF]·NaBH₄ was prepared following the literature methods.³³ The general synthetic method is mechanochemical milling of MBH precursor and pyz under Ar. Mg-pyz is previously synthesized in solution phase, whereas the solvent-free condition affords the highly crystalline product as well (Figure S1). The powder X-ray diffraction (PXRD) pattern of Mn-pyz shows a good agreement with that of Mg-pyz (Figure S1). Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x ^{a.} Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan b. Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan ^c AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan ^d Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan e- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210. Thailand COMMUNICATION Journal Name Figure 1. (A) Local coordination geometry of M-pyz (M = Mg²⁺, Ca²⁺, Mn²⁺). (B) ABAB stacking structure of the extended 2D layers of M-pyz (M = Mg²⁺, Ca²⁺, Mn²⁺). (C) IR spectra of Ca-pyz before and after CO₂ adsorption at 25 °C. The solid-state synthesis of M-pyz proceeds without solvents at 25 °C within 30 min. The fast reaction kinetics in solid-state is ascribed to the low melting point of pyz (52 °C). The lower melting point of reactants leads to higher molecular mobility, enhancing the reactivity in solid-state.34 Mechanical milling is useful to synthesize CPs from MBHs because most of MBHs are poorly soluble in common organic solvents. The thermal property was characterized by thermal gravimetric analysis (TGA) under N₂ (Figure S2). Each compound exhibits a weight loss at relatively low temperatures; 50, 70, 70 °C for Mg-, Mn-, Ca-pyz due to the low boiling point of pyz (115 °C). Isothermal TGA measurements at 40 $^{\circ}$ C under N_2 indicate **Ca-pyz** shows higher thermal stability than Mn-pyz (weight loss after 6 hours; 0.2 vs. 3.2 wt%, Figure S3). In the case of MBHs, electropositive metal ions construct MBHs with higher thermal stability.35 Meanwhile, in the case of BH₄⁻-containing CPs, the strength of coordination bonds is also essential. The Hard and Soft Acids and Bases (HSAB) theory tells that electropositive metal ions (hard acids) form weaker coordination bonds with nitrogenbased linkers (soft bases) such as pyz. Therefore, the trend of thermal stability for M-pyz does not simply follow the electronegativity of metal ions (thermal stability: Mg < Mn < Ca, Pauling electronegativity: Ca < Mg < Mn). To characterize the chemical environment of BH_4^- in the CP, solid-state ^{11}B magic angle spinning (MAS) nuclear magnetic resonance (NMR) was carried out on non-paramagnetic **Ca-pyz**. ^{11}B NMR spectrum of **Ca-pyz** displays a peak at $^{-3}6$ ppm corresponding to the signal of BH_4^- (Figure S4). The total charge on BH_4^- is correlated with the chemical shift of ^{11}B NMR: electron-rich BH_4^- shows a peak in a lower frequency. 31 The low-frequency shift of the ^{11}B peak indicates that BH_4^- in **Ca-pyz** is more electron-rich than that of $Ca(BH_4)_2$. In the framework of **Ca-pyz**, the Lewis acidity of Ca^{2+} was reduced by electron donation from the coordinating pyz molecules, which leads to the formation of electron-rich $BH_4^{-.29}$ ${\rm CO_2}$ adsorption measurement was carried out to evaluate the reactivity of **Ca-pyz** in gas–solid equilibrium. ${\rm CO_2}$ isotherm at 25 °C displays irreversible adsorption (7 mL g⁻¹ at 100 kPa), which is characteristic of chemisorption behavior (Figure S5).³⁶ The IR spectrum of **Ca-pyz** after ${\rm CO_2}$ adsorption displays a new peak at 1600 cm⁻¹, corresponding to C=O stretching (Figure 1C). The solid-state $^1{\rm H}$ - $^{13}{\rm C}$ cross-polarization (CP) MAS NMR spectrum of **Ca-pyz** after CO₂ adsorption shows peaks at 170 and 145 ppm. The peaks correspond to the signals of HCO_2^- and pyz, respectively (Figure S6). The results indicate BH_4^- in **Ca-pyz** reduces CO_2 into HCO_2^- with the release of diborane (B_2H_6) as a by-product.¹⁰ Kinetic reactivity of M-pyz toward CO2 was evaluated using isothermal TGA under CO₂ flow. Figure 2 displays the TGA profiles of each powder sample (10 mg) under CO₂ flow (0.1 MPa, 30 mL min⁻¹) at 40 °C. Mg-pyz and Ca-pyz exhibit higher weight increases than Mn-pyz (25.5, 21.9, and 3.2 wt% after 400 min, respectively). Ca-pyz was amorphous after the CO₂ reaction, confirmed by PXRD (Figure S7). To identify the chemical species after CO₂ reaction, solution NMR was carried out on the **Ca-pyz** dissolved in DMSO- d_6 . Solution ¹³C NMR spectrum of the Ca-pyz after CO₂ reaction displays the peaks at 167, 146, 53, 50, 47 and 44 ppm (Figure S8). The peaks at 167 and 146 ppm correspond to the ¹³C signals of HCO₂⁻ and pyz, respectively. The peak at 47 ppm is assigned as piperazine formed by the reduction of pyz by B₂H₆, whereas the rest of the peaks are not able to be assigned.^{29, 37} The higher reactivity of Ca-pyz toward CO₂ is attributed to the preferable electronic interaction between Ca²⁺ (hard acid) and HCO₂⁻ (hard base) rather than BH₄- (soft base). Figure 2. Isothermal TGA profiles of M-pyz (M = Mg $^{2+}$, Ca $^{2+}$, Mn $^{2+}$) under CO $_2$ flow (0.1 MPa, 30 mL min $^{-1}$) at 40 °C. The formation of $[BH_{4-x}(OCHO)_x]^-$ from BH_4^- and CO_2 was investigated at a BH_4^- -containing CP. Given that $[BH_{4-x}(OCHO)_x]^-$ is bulky than HCO_2^- , $[Mn(BH_4)_2(dpe)_{1.5}]$ (**Mn-dpe**, dpe = dipyridylethane) having voids was selected.²⁸ The two BH_4^- Journal Name COMMUNICATION Figure 3. (A) Local coordination geometry of Mn-dpe. (B) Packing structure of the extended 1D ladders of Mn-dpe. (C) Isothermal TGA profiles of Mn-dpe and NaBH₄ under CO₂ flow (0.1 MPa, 30 mL min⁻¹) at 40 °C. coordinate to the Mn²⁺ center in a bidentate manner, which was confirmed by single-crystal X-ray diffraction (SC-XRD) in Figure 3A. The extended structure of **Mn-dpe** comprises a 1D ladder constructed from [Mn4dpe4] units (Figure 3B). The coordination mode of BH₄⁻ was confirmed by IR spectroscopy as well. IR spectrum of **Mn-dpe** displays two stretching peaks in the B–H stretching region at 2378 and 2127 cm⁻¹, respectively (Figure 4B). The peak at 2378 cm⁻¹ corresponds to B–H bond coordinating to the Mn²⁺ center, whereas the peak at 2127 cm⁻¹ corresponds to the non-coordinating B–H.³⁸ In contrast to the broaden B–H stretching peak of **Ca-pyz** (Figure 1C), **Mn-dpe** displays distinct two peaks of B–H stretching, which is originated from a stronger binding interaction between Mn²⁺ (soft acid) and BH₄⁻ (soft base). The kinetic curve of CO₂ reaction with Mn-dpe was collected in the same procedure as M-pyz (Figure 3B). Mn-dpe demonstrates a weight increase of 26.2 wt% after 600 min at 40 °C, which corresponds to a value of 1.1:1 molar ratio of reacted CO₂ per BH₄-. After the CO₂ reaction, Mn-dpe shows small diffraction peaks different from the original peaks (Figure S9). Solution ¹¹B NMR measurement was carried out to determine the chemical species after CO₂ reaction. ¹¹B{¹H} NMR spectrum of digested Mn-dpe after CO₂ reaction displays the peaks at -33, -11, and 2.2 ppm in Figure 4A. The broad peaks were observed due to the paramagnetic effect of Mn²⁺. The ¹¹B peaks correspond to BH₄-, [BH₃(OCHO)]- and [BH₂(OCHO)₂]-, respectively. 9, 39 Successive CO₂ insertions into B-H bond of BH₄to produce $[BH_{4-x}(OCHO)_x]^-$, and the number of reacted CO_2 molecules is affected by the reaction conditions such as pressure and temperature in solution phase.8,9 The reaction of NaBH₄ in acetonitrile with 0.1 MPa of CO₂ for 10 minutes produces [BH(OCHO)₃]⁻ as a major product, and [BH₃(OCHO)]⁻ is not observed. 9 This is because all the hydrogen atoms of BH₄dissociated in acetonitrile are available for the reaction with CO₂. On the other hand, in the case of Mn-dpe, two of the hydrogen atoms of BH₄⁻ are pinned with the Mn²⁺ center by coordination bond as confirmed by SC-XRD and IR spectroscopy. After CO₂ reaction, non-coordinating B-H stretching peak was not observed, and this is because of the reaction with CO2 to form $[BH_3(OCHO)]^-$ and $[BH_2(OCHO)_2]^-$ in Figure 4B. The coordinating B-H stretching peak is preserved after CO₂ reaction, indicating the coordinating bonds between Mn2+ and $[BH_3(OCHO)]^-$ or $[BH_2(OCHO)_2]^-$. A sluggish kinetics of dense NaBH₄ in solid-state toward CO₂ indicates that the open structure of **Mn-dpe** is essential for the diffusion of CO₂ (Figure 3C). Based on the results, the reaction between **Mn-dpe** and CO₂ to produce $[BH_3(OCHO)]^-$ and $[BH_2(OCHO)_2]^-$ is proposed (Figure S11). The results indicate that the anisotropic coordination geometry of BH_4^- in **Mn-dpe** affects the reaction route with CO₂. **Figure 4.** (A) Solution $^{11}B\{^{1}H\}$ NMR of digested **Mn-dpe** after CO₂ reaction. (B) IR spectra of **Mn-dpe** before and after CO₂ reaction. In conclusion, we demonstrated the reactivity of BH₄- toward CO₂ which is correlated with crystal structures of BH₄⁻containing coordination polymers. The reactivity Mn²⁺, $[M(BH_4)_2(pyrazine)_2]$ (M = Mg²⁺, Ca²⁺) and $[Mn(BH_4)_2(dipyridylethane)_{1.5}]$ toward CO_2 at 40 °C was investigated by use of isothermal TGA under CO₂ flow, IR and NMR. BH_4^- in $[Ca(BH_4)_2(pyrazine)_2]$ converted CO_2 into HCO_2^- . The $\mathrm{BH_4}^-$ pinned by coordination bonds with $\mathrm{Mn^{2+}}$ in [Mn(BH₄)₂(dipyridylethane)_{1.5}] regulated the successive CO₂ COMMUNICATION Journal Name insertion reaction and produced $[BH_3(OCHO)]^-$ as a major species. The structural diversity of coordination polymers provides a new approach to regulate the reaction routes between BH_4^- and CO_2 in solid-state. The work was supported by the Japan Society of the Promotion of Science (JSPS) for a Grant-in-Aid for Scientific Research (B) (JP18H02032), Challenging Research (Exploratory) (JP19K22200) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Strategic International Collaborative Research Program (SICORP), Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from the Japan Science and Technology, Japan, Inamori Research Grants, and Tokuyama Science Foundation. #### **Conflicts of interest** The authors declare no conflict of interest. #### References - T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007, 107, 2365-2387. - 2 J. Artz, T. E. Muller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow and W. Leitner, *Chem. Rev.*, 2018, **118**, 434-504. - Q. Liu, L. Wu, R. Jackstell and M. Beller, *Nat. Commun.*, 2015, 6, 5933. - J. L. White, M. F. Baruch, J. E. Pander Iii, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev and A. B. Bocarsly, *Chem. Rev.*, 2015, 115, 12888-12935. - A. J. Morris, G. J. Meyer and E. Fujita, Acc. Chem. Res., 2009, 42, 1983-1994. - B. J. Cook, G. N. Di Francesco, K. A. Abboud and L. J. Murray, J. Am. Chem. Soc., 2018, 140, 5696-5700. - 7 D. W. Stephan and G. Erker, Angew. Chem. Int. Ed., 2015, 54, 6400-6441. - 8 G. La Monica, G. A. Ardizzoia, F. Cariati, S. Cenini and M. Pizzotti, *Inorq. Chem.*, 1985, **24**, 3920-3923. - 9 I. Knopf and C. C. Cummins, *Organometallics*, 2015, **34**, 1601-1603 - 10 S. Murugesan, B. Stöger, M. Weil, L. F. Veiros and K. Kirchner, *Organometallics*, 2015, **34**, 1364-1372. - 11 J. G. Burr, W. G. Brown and H. E. Heller, *J. Am. Chem. Soc.*, 1950, **72**, 2560-2562. - 1930, **72**, 2300-2302. 12 K. Kadota, N. T. Duong, Y. Nishiyama, E. Sivaniah and S. Horike, *Chem. Commun.*, 2019, **55**, 9283-9286. - 13 J. Zhang and J. W. Lee, Carbon, 2013, 53, 216-221. - 14 J. G. Vitillo, E. Groppo, E. G. Bardaji, M. Baricco and S. Bordiga, *Phys. Chem. Chem. Phys.*, 2014, **16**, 22482-22486. - 15 Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov and H. Hagemann, Angew. Chem. Int. Ed., 2011, 50, 11162-11166. - 16 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375. - 17 O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, *Nature*, 2003, **423**, 705-714. - 18 G. Férey, Chem. Soc. Rev., 2008, **37**, 191-214. - 19 T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. - Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer and J. R. Long, *Nature*, 2015, **519**, 303-308. - 20 A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe and O. M. Yaghi, *Acc. Chem. Res.*, 2010, **43**, 58-67. - 21 E. González-Zamora and I. A. Ibarra, *Mater. Chem. Front.*, 2017, **1**, 1471-1484. - 22 M. Servalli, M. Ranocchiari and J. A. Van Bokhoven, *Chem. Commun.*, 2012, **48**, 1904-1906. - 23 V. Guillerm, H. Xu, J. Albalad, I. Imaz and D. Maspoch, J. Am. Chem. Soc., 2018, 140, 15022-15030. - 24 H. Sato, R. Matsuda, K. Sugimoto, M. Takata and S. Kitagawa, *Nat. Mater.*, 2010, **9**, 661-666. - 25 T. B. Faust and D. M. D'Alessandro, RSC Advances, 2014, 4, 17498-17512. - 26 T. Haneda, M. Kawano, T. Kawamichi and M. Fujita, J. Am. Chem. Soc., 2008, 130, 1578-1579. - 27 S. S. Kaye and J. R. Long, J. Am. Chem. Soc., 2008, 130, 806-807 - 28 K. Kadota, N. T. Duong, Y. Nishiyama, E. Sivaniah, S. Kitagawa and S. Horike, *Chem. Sci.*, 2019, **10**, 6193-6198. - 29 M. J. Ingleson, J. P. Barrio, J. Bacsa, A. Steiner, G. R. Darling, J. T. A. Jones, Y. Z. Khimyak and M. J. Rosseinsky, *Angew. Chem. Int. Ed.*, 2009, 48, 2012-2016. - J. McKinven, G. S. Nichol and P. L. Arnold, *Dalton Trans.*, 2014, 43, 17416-17421. - 31 Z. Łodziana, P. Błoński, Y. Yan, D. Rentsch and A. Remhof, *J. Phys. Chem. C*, 2014, **118**, 6594-6603. - 32 Y. Nakamori, H. Li, K. Miwa, S.-i. Towata and S.-i. Orimo, Mater. Trans., 2006, 47, 1898-1901. - 33 33. V. D. Makhaev, A. P. Borisov, T. P. Gnilomedova, É. B. Lobkovskii and A. N. Chekhlov, *Bull. Acad. Sci. USSR Div. Chem. Sci.*, 1987, **36**, 1582-1586. - 34 A. Pichon and S. L. James, CrystEngComm, 2008, 10, 1839-1847. - 35 Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A. Züttel and S. Orimo, *Phys. Rev. B*, 2006, **74**, 045126. - 36 J. G. Bell, S. A. Morris, F. Aidoudi, L. J. McCormick, R. E. Morris and K. M. Thomas, J. Mater. Chem. A, 2017, 5, 23577-23591. - 37 B. Chatterjee and C. Gunanathan, J. Chem. Sci., 2019, 131. - 38 T. J. Marks and J. R. Kolb, *Chem. Rev.*, 1977, **77**, 263-293. - 39 C. V. Picasso, D. A. Safin, I. Dovgaliuk, F. Devred, D. Debecker, H.-W. Li, J. Proost and Y. Filinchuk, *Int. J. Hydrog. Energy*, 2016, **41**, 14377-14386.