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Protein-protein interfaces play essential roles in a variety of 
biological processes and many therapeutic molecules are 
targeted at these interfaces.  However, accurate predictions of 
the effects of interfacial mutations to identify “hotspots” have 
remained elusive despite the myriad of modeling and machine 
learning methods tested. Here, for the first time, we 
demonstrate that nonlinear reweighting of energy terms from 
Rosetta, through the use of machine learning, exhibits 
improved predictability of ΔΔG values associated with 
interfacial mutations.

Protein-protein interactions mediate many essential biological 
processes. Cellular signaling, spatial and temporal regulation, 
and metabolism are deeply rooted in the formation of higher 
order protein quaternary structures.1 Complex formation is 
governed by the complementary structural and chemical 
features displayed by residues at the protein-protein interface, 
and mutations of these residues are highly correlated with 
dysfunction and disease.2 Moreover, the development of new 
biomaterials and catalysis strategies are largely dependent on 
the binding affinity of the involved protein partners.3, 4 
Therefore, a computational model capable of rapidly and 
accurately predicting the energy differences (ΔΔGs) associated 
with mutations would aid in the identification of protein-
protein hotspots, providing insight in disease and design.5, 6

To date, several approaches have been developed towards 
the accurate prediction of protein ΔΔG values. These include 
the use of statistical and contact potentials7-10, design of novel 
sampling schemes,11, 12 generation of weighted energy or score 
functions,13-16 and employment of supervised machine learning 
techniques.17-21 Additionally, within the Rosetta Modelling 
Suite, new sampling schemes, designed to mimic protein 

motions observed in solution, have afforded increased 
predictive accuracy.11, 22 Though these methods have shown 
some notable success, there is still a need for a single, 
generalizable, and facile approach capable of accurately 
predicting ΔΔG’s of mutations at protein/protein interfaces.

To this end, we envisioned that reweighting of energy terms 
from Rosetta through machine learning will provide a platform 
with improved ΔΔG prediction accuracy.  The full-atom score 
function in Rosetta has been repeatedly improved through the 
introduction of new energy terms and optimization of term 
weighting. Although Rosetta-based simulations can generate 
accurate structural models, correlations between the canonical 
score functions and experimental data remain relatively poor23. 
This suggests that that while the underlying set of terms may 
produce models with small RMSDs relative to experimental 
structures, energetically, they require differential weightings 
for specific applications like ΔΔG prediction. Therefore, we 
designed the first reported Custom Score Function (CSF, named 
SRS2020), which is a score function devised purely through the 
reweighting of Rosetta energy terms for optimal prediction of 
an experimentally measurable variable of interest. This method 
allows for the traditional Rosetta score function to be used for 
structural refinement, while SRS2020 can be used to more 
accurately predict ΔΔGs. This notion is not entirely novel as 
protein and small molecule design strategies in Rosetta have 
used supplementary criteria in the form of classifiers and filters 
to perform selection based on criteria not encompassed within 
scoring24. However, the approach presented herein is simpler in 
that it requires no additional terms to be constructed.

To test the utility of this approach, we focused on simulating 
the SKEMPI 2.0 database (https://life.bsc.es/pid/skempi2/) which is 
the largest curated database of protein-protein interfacial 
mutants. This database includes 348 different protein-protein 
complexes, and ΔΔG values for 6193 unique interfacial 
mutations of this protein set.25, 26 After removing complexes 
where the mutation location could not be accurately assigned 
due to ambiguities between the number of protein subunits and 
the generalized version of our computational protocol
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Fig. 1 Schematic of computational workflow for developing a custom score function to predict ΔΔG values of mutations at protein/protein interfaces.

employed within PyRosetta.27 First, wild-type complexes are 
cleaned (removal of solvent, ligands, or ions), renumbered, and 
subjected to initial minimization. Subsequently, mutations are 
introduced, and both the wild-type and mutant complexes are 
subjected to another round of structural optimization followed 
by the computation of Rosetta energies which in turn are fed 
into a variety of machine learning protocols. Sampling was 
varied both in the initial, structural stage where only wild-type 
complexes were considered, as well as in the mutational stage 
where both the wild-type and mutants were sampled under a 
uniform scheme. In the structural sampling stage, we assessed 
the impact of relaxing the input structure compared to using the 
structure directly from the SKEMPI 2.0 server. Additionally, we 
tested the impact of local and global sampling during the 
mutational sampling stage, where either only the mutant 
residue was packed, or repacking was performed on the entire 
complex. Lastly, we computed energies for each sampling 
combination using both REF2015,28 the most recently published 
score function, and BETA_NOV16,29 the newest score function 
available in Rosetta.

We first focused on assessing the performance of the 
traditional Rosetta score function in predicting mutational ΔΔGs 
from the SKEMPI 2.0 database. As expected, differences in 
sampling impacted the correlation of Rosetta total energy 
scores with ΔΔG. Initial minimization of wild-type complexes, 

prior to mutational sampling, was found to improve correlation 
between total Rosetta Energy Units (REUs), and experimental 
ΔΔG values for both the REF2015 and BETA_NOV16 score 
functions. This was unsurprising as it is widely recognized that 
structures determined from crystallographic data require initial 
relaxation prior to sampling within Rosetta to produce more 
correlative simulations.30 Although we observe an 
improvement in the predictive capacity following minimization 
during initial structural sampling, which is likely due to the 
approximate five REU reduction in the average residue score, 
we observe only a minimal change in conformation (ESI, Fig. S1).

Across all sampling and scoring schemes, we see a maximum 
average RMSD of 0.45 Å compared to input structures from 
SKEMPI 2.0. Additionally, score values derived from local 
packing only at the mutation site prior to minimization showed 
a higher predictive capacity than global repacking following 
mutation. A Wilcoxon t-test was performed to identify Rosetta 
energy terms that differed between these simulations. The 
difference in predictability between these models is likely due 
to the drastic differences in Lennard-Jones, Dunbrack, and 
solvation terms produced by these simulations (see ESI). Lastly, 
it is notable that the most recent score function, BETA_NOV16, 
afforded a higher correlation with experimental data than the

Fig. 2 Models for predicting interfacial ΔΔG, REF2015 (red), BETA_NOV16 (purple). Rosetta total score in Rosetta energy units, or REU (A), multiple linear regression (MLR) of Rosetta 
energy terms (B), polynomial support vector regression (SVR, C), and gradient boosted random forest (GBT) regression (D). MAE: Mean absolute error in kcal/mol.
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benchmarked REF2015 score function. This may be due to 
increased accuracy in weightings or the additional terms added 
in the BETA_NOV16 score function.

We sought to improve the predictive power of the models 
generated by both the REF2015 and BETA_NOV16 score 
functions using machine learning. Given the results of the 
structure preparation comparisons, we elected to focus 
exclusively on improving the predictability of simulations where 
structures are initially relaxed and only locally sampled 
following mutation. Multiple linear regression (MLR) is a basic 
machine learning technique that uses several explanatory 
variables to predict a single output. Here, those variables are 
the Rosetta energy terms generated during simulation which 
will be reweighted to optimize the correlation to experimental 
ΔΔG. As illustrated in Fig. 2, even this simple MLR approach (Fig. 
2B) results in an improved correlation with experimental data 
compared to the traditional score functions (Fig. 2A). Using both 
five and ten-fold cross validation, we determined that using an 
MLR improved testing set correlation by a factor of at least 1.58 
(ESI, Table S1, S2). We also observed, again, that application of 
the BETA_NOV16 score function displayed a higher 
predictability than the REF2015 score function. Interestingly, 
the most important terms in the MLR scoring correlated well 
with the terms that differed between sampling schemes (ESI, 
Table S3). While this improvement was encouraging, the 
usability of this reweighted score function is still poor as the 
Pearson correlation coefficient was only 0.51 and the mean 
absolute error (MAE) was 1.28 kcal/mol. 

In order to further improve our ΔΔG predictions, additional 
inputs were considered, as well as the introduction of more 
complex machine learning algorithms. Inputs were extracted 
from simulated structures as the change in energy following 
sampling. Several different values were computed to capture 
global vs. specific and local vs. distal differences. Global terms 
correspond to the change of the total values of the decomposed 
Rosetta energy terms across the whole mutant and wild-type 
complexes. Specific values refer directly to the differences 
between the decomposed Rosetta energy terms of only the 
mutated and wild-type residues. To distinguish local and distal 
terms, an 8 Å contacting shell was created around the mutation 
site. This was used for the calculation of local and distal terms, 
which correspond to the change in total decomposed scores 
within or beyond this sphere. In addition to alternative inputs, 
we employed more sophisticated machine learning algorithms: 
Kernel Ridge Linear Regression (KRR, see S10, S11), support 
vector regressions (SVRs), and Gradient Boosted Random 
Forrest Regression (GBT). Our reasons for choosing these 
methods are outlined in ESI.  Training and testing sets were 
specifically designed to ensure that no mutational redundancy 
existed between the sets. Curation of training and testing sets 
in this manner allows for the greatest predictive power of 
generated models31. Additionally, more rigorous investigation 
describing the robustness of our models as a function of training 
and testing sets is found in ESI Table S9.

SVRs were performed using various kernels, including 
Polynomial (degrees 2, 3, 4, and 5), radial base function, and 
Sigmoid. Using these algorithms, correlation to ΔΔG from 

Table1. Machine Learning Models Using the SKEMPI Database

Method R Value MAE

FoldX 0.34 1.33
Pred1 0.45 1.14
BeAtMuSiC 0.46 1.09
Pred2 0.54 1.07
MLR         0.31 1.18
SVR 0.53 1.09
SRS2020 0.65 0.92

Alternative methods for predicting ΔΔG using the SKEMPI database. R value is the 
Pearson correlation coefficient and MAE is mean absolute error in kcal/mol.

similarly to many other literature models.14  (Fig. 2C and Table 
1) SVR analysis also demonstrated that the BETA_NOV16 score 
function performed better than the REF2015 score function 
(Fig. 2C). For GBT, we found that after an exhaustive grid search 
of tuneable parameters, this technique was the most predictive 
of all models tested as it produced the highest correlation as 
well as lowest MAE. Interestingly, GBT models were invariant to 
which Rosetta score function was used for simulation as 
BETA_NOV16 and REF2015 score functions tested identically.

To further identify any potential differences between these 
two models, feature importance analysis was performed. The 
two models were extremely similar with the only notable 
differences coming from a slight enrichment in the importance 
of solvation and hydrogen bonding terms in the BETA and REF 
GBT models respectively. In both models, terms corresponding 
to phi-psi or rotameric preferences (Fig. 3, Struct. category) 
were found to be most important. These terms were followed 
by solvation (Solv.), van der Waals (Atr. and Rep.), the single 
value of Rosetta total energy (REU), electrostatic (Elec.), and 
hydrogen bonding terms (H-Bond). Considering that the 
database is primarily comprised of mutations to alanine, the 
typical reduction in size and increase in hydrophobicity 
associated with these changes likely explains the importance of 
solvation and nonpolar, attractive interactions over hydrogen 
bonding or electrostatics. Further analysis of how SRS2020 
predicts specific subsets of SKEMPI2.0 data is found in ESI.

After identifying that the GBT-based CSF derived from 
BETA_NOV16 optimized structures was our best model, we 
have named it SRS2020 (information on using this code can be 
found on our github https://github.com/Sam-Giannakoulias/RML_ddG/ 
or automated prediction can be performed with our Jupyter 
web app deposited there. Table 1 compares our results to other 
machine learning models utilizing a subset of the SKEMPI 
database to predict ΔΔG. All values in this table represent five- 
fold cross validation of the exact same subset of single 
alternative methods and are thus directly comparable. In 
addition to these baseline comparisons, a more extensive set of 
benchmarking, including comparable performance against 
standard hold-out sets such as S487 can be found in Tables S10- 
1631-39.  SRS2020 represents not only the first reported CSF but 
is the most accurate predictor of ΔΔG in both correlation and 
MAE, highlighting the potential utility of CSF-based approaches. 
SRS2020 was trained and regressed from the largest protein 
interaction data set available in the literature and has proven 
robust to alterations in sampling and scoring, demonstrating 
the strength of CSF approaches for specific applications.
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Fig. 3 Important features in GBT models derived from REF2015 (red) and 
BETA_Nov16 (purple). Feature importance (%) determined as described in ESI.

Furthermore, while our algorithm may be slower than GPU 
accelerated approaches, the freedom from sampling 
optimization removes the need to find the perfect simulation 
and results in an incredibly rapid approach. Prediction of the 
ΔΔG values upon mutation for interfacial residues can be 
computed in <60 s on a single intel core i5 8th generation CPU.

We intend to extend this methodology to encompass more 
complex sampling methods, such as the ensemble-based 
Backrub approach.33 Although this CSF contains no additional 
energy terms or metrics, one can also easily introduce a variety 
of bioinformatics terms to further strengthen these models. 
Additionally, even more complex machine learning methods 
such as Extreme Gradient Boosted Random Forrest Regressions 
(XGBoost) or neural networks (NNs)32 may be employed to 
further improve ΔΔG prediction. Finally, we hope to extend the 
SRS2020 model beyond the prediction of interfacial ΔΔG and 
use it to design protein-protein interfaces as well as peptides or 
peptidomimetics targeting such interfaces.
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