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Hydrogen-Bonded Nickel(I) Complexes  

Jessica R. Wilson, a Matthias Zeller b and Nathaniel K. Szymczak a*

A series of nickel(II) tris(2-pyridylmethyl)amine (TPA) complexes 

featuring appended hydrogen bonds (H-bonds) to halides (F, Cl, Br) 

was synthesized and charcterized. Reduction to the corresponding 

nickel(I) state provided access to an unusual nickel(I) fluoride 

complex stabilized by H-bonds, enabling structural and 

spectroscopic characterization. 

Exploration into redox interconversions of nickel-based 

coordination complexes is motivated by relevance to both the 

bioinorganic1 and organometallic fields.2 In the latter, Ni has 

recently emerged as a prominent metal with catalytic 

applications. A key difference between Ni and its congeners (Pd 

and Pt) is the propensity to undergo single- rather than double-

electron transfer during bond cleavage reactions, a feature that 

has facilitated an expansion of the available chemical 

landscape.3 Single electron reduction of the common Ni(II) state 

affords Ni(I) complexes, many of which react with a variety of 

small molecule substrates.4 One feature typically used to enable 

the isolation of higher-coordinate Ni(I) complexes is 

incorporation of supporting ligands that contain soft donor 

and/or π-acceptor groups (e.g. phosphine, CO, CN-).5  

 In contrast to synthetic systems, less ligand diversity is 

available within the active sites of metalloenzymes, and 

stabilization of reduced states/substrates/intermediates is 

augmented by a network of secondary sphere interactions.6 

These secondary sphere interactions are critical to the function 

of many biological transformations including H+/e- 

interconversions,7 and CO2 reduction.8 To emulate this design 

principle, study, and ultimately develop synthetic analogues, 

complexes containing appended H-bond donors are 

increasingly used in biomimetic design6a,9 and catalytic 

transformations.9b,10 However, a key limitation in synthetic 

systems is the general incompatibility of H-bond donors with 

low-valent metal complexes.11 Thus, most studies are limited to 

mid- to high-oxidation-state transformations, and/or undergo 

proton transfer if reduced to a low-valent state.12 One synthetic 

strategy to achieve reductive stability is to use weakly acidic H-

bond donors that can engage with metal-coordinated 

substrates.13 Such donor/acceptor interactions are 

straightforward to access and study using halides, the strongest 

acceptor of which is fluoride.  

 Low valent late transition metal-fluoride complexes are 

uncommon,14 a consequence of electron pair repulsion 

between occupied p- and d- orbitals on fluorine and the metal, 

respectively.15 This destabilizing interaction can be overcome by 

engaging secondary sphere H-bonds with fluoride, which 

alleviates the filled-filled repulsive interactions through 

donor/acceptor interactions. We recently demonstrated this 

and related principles using –EH-appended TPA based ligands (E 

= O, NAr),16 and in one case, the secondary coordination sphere 

served to capture fluoride in a molecule that would otherwise 

undergo dissociation.16b Although both –NHAr and –OH groups 

engage in highly directed H-bonding interactions,16,17a –NHAr 

groups are less acidic, and thus, more stable at reduced 

potentials.17b We hypothesized that reductively stable, directed 

H-bonds could provide necessary stabilization to isolate low 

valent metal complexes, including Ni(I) (Fig. 1). 

Fig. 1 Outline of design strategy to stabilize low-valent Ni complexes with H-bonds. 

 We targeted a series of nickel(II) halide complexes 

containing the  tris(6-phenylamino-2-pyridylmethyl)amine 

ligand (LH). NiX2 compounds, where X = Cl or Br, were prepared  
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Fig. 2 (A) General structure of complexes 1X-PF6, L = CH3CN. (B) Paramagnetic 1H 
NMR spectra of series 1x-PF6. (C) Molecular structures (50% probability) of 1Br-PF6, 
and 1F-PF6 (counterions excluded for clarity). 

by metalation of LH with either NiCl2•6H2O or NiBr2(DME) in 

CH3CN solvent. After 1 h, the precipitated compounds were 

decanted to afford NiCl2LH and NiBr2LH in moderate to high 

yields. To prepare the fluoride congener, NiF2LH, 2 equiv. CsF 

were combined with NiCl2LH, and a pale blue-green solid was 

isolated after 24 h (see ESI). The 1H NMR spectrum revealed 

broad resonances ranging from 7 to 85 ppm.18 Structural 

characterization of NiCl2LH revealed a monomeric octahedral 

complex (see ESI). Salt metathesis of NiX2LH with TlPF6 or TlBAr'4 

(BAr'4 = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) 

afforded the monohalide species [NiXLH]+, [1X]+.  

 Complexes [1X]+ were characterized by 1H NMR and 

electronic absorption spectroscopy. The soluble, paramagnetic 

complexes exhibit C3-symmetric 1H NMR spectra, similar to 

previously characterized Ni(II)TPA complexes (Fig. 2).19 

Although 1Br-BAr'4 and 1Cl-BAr'4 are similar (Br: 656 nm, ε = 13 

cm-1M-1
, ~1075 nm, ε = 20 cm-1M-1; Cl:  638 nm, ε = 19 cm-1M-1, 

1046 nm, ε = 28 cm-1M-1), complex 1F-BAr'4 features bands that 

are shifted to higher energy (581 nm, ε = 11 cm-1M-1; 937 nm, ε 

= 15 cm-1M-1), consistent with higher ligand field strength.20,21 

 Across the halide series, we evaluated the structural metrics 

obtained from single crystals of 1Br-PF6, 1Cl-PF6, and 1F-PF6. All 

three complexes exhibit octahedral geometry, with a 

coordinated CH3CN molecule. In all cases, the halide engages in 

trifurcated H-bonding interactions to the appended aniline –NH 

groups, with average N-X distances decreasing from -Br to -F (Br 

= 3.271 Å, Cl = 3.159 Å, F = 2.731 Å). These results are consistent 

with moderate H-bond strength and increasing H-bond 

accepting ability across the halide series, Br < Cl < F.22 Of note, 

complexes 1Br-PF6 and 1Cl-PF6 crystallize in the same space 

group (P21/c) and are isomorphous, in contrast to 1F-PF6 (Pbca) 

(Fig. 2; for overlaid structures, see ESI). The similarities between 

1Br-PF6 and 1Cl-PF6 may be a composite of H-bonding as well as 

crystal packing forces, which we note can have similar 

strengths.23  

We interrogated H-bonding interactions in 1X by examining 

the NH stretching frequencies in the infrared spectra.24 For the 

strongest acceptor, fluoride, we observed a shift in the νNH from 

3400 cm-1 to 3250 cm-1 for LH and 1F-BAr'4, respectively, 

consistent with an H-bond interaction between –NH and the F-

Ni (for νNH assignment, see ESI).16a Across the halide series, νNH 

decreases as F > Cl > Br, which is opposite from their respective 

acceptor abilities. We attribute this feature to distortions from 

planarity of the aniline N atoms as the halide size increases (see 

ESI).25  

 Although [1X]+ exhibit octahedral solid-state structures, 

room temperature 1H NMR spectroscopy experiments indicated 

C3-symmetry. The spectra of 1Cl-PF6 and 1Br-PF6 are nearly 

identical, in contrast to 1F-PF6, which exhibits resonances that 

are shifted downfield (see Fig. 2). To assess the role(s) of 

fluxional exchange processes on the solution structure, we 

performed a variable temperature 1H NMR experiment. When 

a THF solution of 1F-PF6 was cooled to -75°C, additional 

resonances appeared (30-70 ppm). These additional resonances 

were replicated at room temperature by adding 1 equiv. of a 

strongly coordinating ligand, N,N-dimethylaminopyridine (see 

ESI). Collectively, these results are consistent with a dynamic 

ligand association in solution, in which the 5-coordinate Ni(II) 

species coordinates a sixth ligand, which imparts a geometrical 

change from C3-symmetry to octahedral geometry: the latter 

geometry is common in related Ni(II)TPA complexes.26 

 In contrast to the ~100 structurally reported Ni(II)TPA (or 

TPA-related) complexes, there are no structurally characterized 

low valent variants.27 To our knowledge, the only report of a 

Ni(I)TPA complex  forms from [(Ni(Me2-TPA)(H)2]2+, which was 

not characterized in the solid state.19b We employed cyclic 

voltammetry experiments to assess the accessibility of a 

reduced Ni(I) state. The free ligand, LH, is reductively stable up 

to -3 V (glassy carbon vs. Fc+/Fc; 0.1M [NBu4][OTf] in CH3CN). 

Complexes 1X-BAr'4 exhibit a reversible reduction event at E1/2 

= -1.81 V, -1.56 V and -1.48 V for 1F-BAr'4, 1Cl-BAr'4 and 1Br-BAr'4, 

respectively (Fig. 3).  

 Chemical reduction of 1F-PF6 with potassium graphite (KC8) 

in THF at -78 oC immediately formed a dark blue-green complex 

(2F). Reductions of 1Cl-PF6 and 1Br-PF6 proceeded similarly to 

afford 2Cl (blue) and 2Br (purple). These complexes gradually 

decompose in THF at room temperature (t1/2 = 5.1 h; 2Cl) but are 

stable at lower temperatures (<-35 oC). Characterization of the 

series of 2x by electronic absorption spectroscopy revealed a 

single broad absorbance in the visible region (for 2Cl, λ = 593 nm, 

ε = 1950 cm-1M-1; for 2F, λ = 706 nm, ε = 1444 cm-1M-1; and 2Br, 

λ = 550 nm, ε = 3030 cm-1M-1). An X-band EPR spectrum of 2Cl 

(110 K) revealed g values of 2.28, 2.21, and 2.02, consistent with 

a d9 Ni(I) system,19b,28 with similar spectra for 2F and 2Br (see 

ESI).29 

 The solid-state structure of 2F revealed a trigonal 

bipyramidal geometry (τ5 = 0.94)29 with an axial fluoride ligand. 

In this arrangement, the three appended –NH groups of the 

pendent anilines engage in moderately strong H-bonding 

interactions with the Ni-F (avg. N-X bond distance = 2.666 Å).30 

Upon reduction of 1F-PF6 to 2F, the Ni-F distance increases from 

2.007(1) Å to 2.097(2) Å.  We propose that elongation of the Ni-

F bond imparts a higher H-bond acceptor strength, which is 

consistent with the shorter –NH-F contacts in 2F, compared to 

1F-PF6.31 Although most reported Ni(I) complexes contain soft 

donor ligands, the primary coordination sphere comprising 2F 

contains comparatively hard donors. Complex 2F represents a  
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Fig. 3. (A) Synthesis of 2X (X = F, Cl, Br). (B) Cyclic voltammetry of series 1X-BAr'4, 
showing reversible Ni(II/I) couple. (C) Molecular structure (50% probability) of 2F 
(co-crystallized solvent molecules excluded for clarity).  

structurally rare example of a 5-coordinate Ni(I) complex 

featuring halide ligands,28b,32 a feature that we propose is 

enabled by directed H-bonding interactions. Furthermore, 2F 

represents the first example of a Ni(I) complex containing 

secondary sphere H-bonding groups. 

 Several examples of formally Ni(I) complexes containing 

pyridine-based ligands are best described as Ni(II)-L•, rather 

than Ni(I).33 Wieghardt and co-workers showed that these two 

limiting cases can be distinguished by scrutinizing the pyridine 

intraligand bond distances.34 The bond lengths of the pyridines 

in 2F and 1F-PF6 are normal for both C–C (2F: 1.387(5), 1F-PF6: 

1.390(3)) and C–N bonds (2F: 1.353(5), 1F-PF6: 1.56(2)), (typical 

values for C–C and C–N: 1.38 ± 0.1 Å and  1.35 ± 0.1 Å, 

respectively), which is inconsistent with pyridine-based 

reduction.34a These crystallographic bond metrics, along with 

the EPR spectrum are consistent with a Ni-centered 

metalloradical (vide supra) for complex 2F (and by extension, 2Cl 

and 2Br).  

  To assess the requirement of H-bonding interactions 

with Ni-X to isolate Ni(I) complexes, we evaluated the analogous 

syntheses using unsubstituted TPA. [NiCl(TPA)]+
 was prepared in 

quantitative yield from NiCl2TPA,19a when subjected to 

analogous reaction conditions as for [1Cl]+. In contrast, when 

conditions used to prepare NiF2LH were applied to TPA, we did 

not observe the formation of NiF2TPA, in line with the absence 

of prior reports. Reduction of [NiCl(TPA)]BAr'4 with KC8 afforded 

a deep teal solution, which was characterized by 1H NMR, 

electronic, and EPR spectroscopies. The electronic absorption 

spectrum features a single broad absorbance at 720 nm (ε = 

4271 cm-1M-1).35 The X-band EPR spectrum (110 K) reveals g 

values of 2.10, 2.20, and 2.09. These data are similar to a prior 

report that analyzed an in situ generated Ni(I)(CH3CN)2(Me2-

TPA) at low temperature (7 K).19b Despite their spectroscopic 

similarities, the solution behaviors of 2Cl and NiCl(TPA) are 

distinct. The unsubstituted variant is prone to rapid 

decomposition (t½ = 0.3 h at 25°C) in comparison to 2Cl (t1/2 = 5.1 

h). These data indicate large differences in stability (2Cl is >15 x 

more stable than NiCl(TPA)), a feature that we propose is due 

to halide H-bonding interactions present in 2Cl.  

 Given the high affinity of halides to engage in H-bonding 

interactions to the pendent aniline groups, we sought to 

investigate dehalogenation reactivity induced by the strongest 

H-bond acceptor halide, fluoride. We accessed defluorination 

reactions using a putative halide-free [2]+ by adding TlBAr’4 to a 

solution of 2Br to -78°C, followed by NaBF4. We observed [1F]+ 

as the only NMR active species.  

Directed H-bonding interactions to fluoride have been 

shown to induce E-F bond cleavage from B-F36 and C-F37 

moieties. The favorability of such reactions may be predicted 

using fluoride ion affinity values (FIAs). Since fluoride 

abstraction from BF4
- (FIA of BF3 = 82.7 kcal mol-1)38 occurs 

readily in this system, the FIA value provides insight into the 

fluorophilicity of the H-bonding pocket of [1F]+. In contrast to 

NaBF4, NaSbF6 did not form [1F]+, consistent with a higher 

fluorophilicity of SbF5 (118.5 kcal mol-1)38 than fluoride-free [1]+. 

Finally, we evaluated defluorination reactions with organic 

substrates containing N-F bonds. Using the protocol described 

above with both neutral N-fluorosulfonimide (BDE = 63.4 kcal 

mol-1)39 and ionic 1-fluoro-2,4,6-trimethylpyridnium triflate 

(BDE = 77.8 kcal mol-1)39 (see Fig. 4), we observed exclusive 

formation of [1F]+ (see ESI).40 In contrast, reactions using 

NiCl(TPA) afforded multiple species. The disparate reactivity of 

otherwise identical complexes containing distinct secondary 

coordination sphere environments highlights the reactivity-

controlling role of H-bonding interactions and fluoride ion 

affinity to bias a defluorination reaction. 

Fig. 4. Reaction of 2Br with E-F substrates to form 1F-BAr'4 (E = B, N) 

 In summary, we prepared a series of Ni(II) complexes 

featuring H-bonds to halides. These secondary sphere 

interactions are critical for the isolation and enhanced stability 

of Ni(I) complexes. The H-bond interactions remain intact, even 

at < -1.8 V (vs Fc), showcasing the reductive stability of 

appended aniline H-bond donors. The H-bond donor/acceptor 

interactions represent an attractive strategy wherein classically 

hard ligands, such as fluoride, can be rendered compatible with 

highly reduced and soft late metals.  
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