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Quantum computation of silicon electronic band structure†

Frank T. Cerasoli,1 Kyle Sherbert,1 Jagoda Sławińska,1 and Marco Buongiorno Nardelli,1,2

Development of quantum architectures during the last decade has inspired hybrid classical-quantum
algorithms in physics and quantum chemistry that promise simulations of fermionic systems beyond
the capability of modern classical computers, even before the era of quantum computing fully arrives.
Strong research efforts have been recently made to obtain minimal depth quantum circuits which
could accurately represent chemical systems. Here, we show that unprecedented methods used in
quantum chemistry, designed to simulate molecules on quantum processors, can be extended to
calculate properties of periodic solids. In particular, we present minimal depth circuits implementing
the variational quantum eigensolver algorithm and successfully use it to compute the band structure
of silicon on a quantum machine for the first time. We are convinced that the presented quantum
experiments performed on cloud-based platforms will stimulate more intense studies towards scalable
electronic structure computation of advanced quantum materials.

1 Introduction
Quantum computing aims to leverage superposition, entangle-
ment and interference of quantum bits in order to tackle com-
putational tasks that scale exponentially on classical comput-
ers.1,2 While renowned quantum algorithms, such as unsorted
database search or integer factorization require resources that re-
main out of reach,3,4 quantum chemistry calculations are gain-
ing steam as a key application performed on available quantum
architectures.5,6 The idea of so-called quantum simulations orig-
inally proposed by Feynman,7–9 relies on a mapping between the
fermionic system and the set of qubits, so that the dynamics of the
former is directly followed by the latter. Therefore, wave func-
tions of complex many-body systems could be effectively repro-
duced in quantum measurements performed on qubits, providing
a tool to compute desired quantities with an unprecedented accu-
racy. Even though available quantum computers contain merely
few tens of qubits,10 they have been employed to solve quan-
tum chemistry problems, such as the estimation of nuclear bind-
ing energies or molecular ground states.11–14 Remarkably, these
successful quantum experiments relied on variational approaches
that greatly reduced the required hardware resources, inspiring
more active research in order to solve elusive condensed matter
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systems beyond quantum chemistry.15–19

Here, we put forward an approach to calculate the electronic
structure of the periodic crystal on a quantum computer. While
developments of quantum computation for molecules were pri-
marily focused on the ground state energies, to evaluate a band
structure one needs to determine the excited states. We have
shown that a standard hybrid quantum/classical algorithm, vari-
ational quantum eigensolver (VQE) can be easily adapted to pro-
vide an accurate estimation of the electronic bands in the solid. In
particular, by casting a Si tight-binding (TB) Hamiltonian in terms
of fermionic operators, we have designed a low-depth quantum
circuit, enough robust to capture the electronic properties of a
crystal in the reciprocal space. The quantum measurements have
been performed on sets of qubits available remotely via cloud-
based platforms provided by IBM and Rigetti Computing. Im-
portantly, we have tested different classical optimization routines
that minimize expectation values, corrected beforehand against
the readout errors. Comparison between bands computed on the
quantum processors, the quantum virtual machine and by classi-
cal diagonalization revealed a satisfactory agreement, confirming
validity of the algorithm which could be generalized to explore
materials more complex than crystalline silicon.

2 Hamiltonian Representation
Let us consider a silicon lattice in the diamond cubic structure.
The Hamiltonian describing the electronic system can be approx-
imated, in atomic units, as

Ĥel =−∑
i

∇2
ri

2
−∑

i, j

Z j

|R j− ri|
+

1
2 ∑

i6=l

1
|rl − ri|

(1)

where ri (Ri) are the positions of electrons (nuclei) and Z j denotes
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the nuclear charge, respectively. We have assumed the Born-
Oppenheimer approximation and considered the nuclei as sta-
tionary charges, thus neglecting their kinetic energy and treating
the ion repulsion as a constant. The last term of Eq.1 represents
the electron-electron interaction, whose correct estimation is one
of the long-term goals of quantum simulation. However, we are
now primarily focused on the proof-of-principle band structure
calculations, and have disregarded the electronic correlations for
the purpose of the present study.

In order to convert the Hamiltonian into a computational prob-
lem, a suitable basis set needs to be selected. While different
representations were proposed for quantum computation,15 we
introduce here a simple basis of atomic orbitals at each lattice
site arising from the tight-binding (TB) approximation. The unit
cell of silicon contains two tetrahedrally coordinated ions and is
well described in terms of s, px, py and pz orbitals centered at
each atom. Because magnetic order is absent, the spin degrees of
freedom can be omitted in the analysis. Using the second quanti-
zation formalism, we can express the TB Hamiltonian via creation
and annihilation operators (a†

in and ain) acting at the orbital n and
the site Ri:

Ĥ = ∑
i,n

Ena†
inain− ∑

<i, j>,n,m
tin, jma†

ina jm (2)

In this expression, En correspond to the atomic energies and tin, jm
denote the hopping integrals whose numerical values have been
reported elsewhere.20 Only the tunneling between pairs of near-
est neighbors, denoted by the < i, j > summation, have been con-
sidered. The Hamiltonian can be then easily converted to the
momentum space via standard Fourier transform applied to the
raising and lowering operators. Last, such a representation (Ĥk)
needs to be mapped onto the system of qubits.

In practice, qubits are manipulated on a quantum processor
by operating on a set of Pauli matrices X , Y , Z and I, the latter
denoting 2× 2 identity matrix. Any Hermitian matrix can be de-
composed using a complete Pauli basis for matrices of dimension
N = 2n with n = dlog2Ne terms, that can be generated by taking a
tensor product:

{σ̂}n = {I,X ,Y,Z}⊗n (3)

Thus, TB Hamiltonian can be decomposed as follows:

Ĥk =
4n

∑
i=1

cikσ̂i (4)

where the set {σ̂}n is the set of 4n possible basis matrices, and
{ck}n is a set of complex coefficients. {ck}n is known as the spec-
tral decomposition and can be determined easily. In particular, we
can exploit the orthogonality of Pauli matrices and the trace inner
product between two of them:

Tr
(

σ̂
†
i σ̂ j

)
= 2n

δi j (5)

By taking the inner product Tr(Ĥk
†
σ̂i), we can eliminate all terms

but one from the sum, yielding:

ci =
Tr
(

Ĥ†
k σ̂i

)
2n (6)

Therefore, the Hamiltonian is represented by a list of coeffi-
cients corresponding to each of the 4n Pauli basis matrices suitable
for simulation on a QPU.21

3 Variational Quantum Eigensolver
We have computed the energy spectrum using the variational
quantum eigensolver in conjunction with overlap-based tech-
niques. VQE is a standard hybrid quantum-classical algorithm
capable to determine the lowest or highest eigenvalue of an op-
erator using minimal quantum resources, implemented by com-
bining measurements on a quantum computer with classical rou-
tines.22–24 The ground state wave function and energy can be
found based on Rayleigh-Ritz variational principle, whereby the
energy expectation value can be minimized by a specific set of pa-
rameters. In practice, the state preparation and the expectation
value measurements are implemented on a quantum machine,
while the optimization of the parameters is performed classically.
The whole algorithm used for the ground state calculation can be
summarized in three following steps:

1. We create a quantum circuit V̂ (θ) depending on a set of pa-
rameters θ , known as a variational form. Then, we prepare
a trial wave function (or ansatz) |ψ(θ)〉 = V̂ |0〉, where |0〉
denotes an initial state ensuring the measurement of each
qubit.

2. We measure the expectation value of Ĥk, which depend on
the parameters θ , E(θ) = 〈ψ(θ)|Ĥk|ψ(θ)〉. The Hamiltonian
is represented by series of operators. The wave function |ψ〉
is measured in the Pauli basis, yielding each 〈σi〉. We can
then reconstruct 〈Ĥk〉 with the spectrum {ck}:

〈Ĥk〉=
4n

∑
i=1

cik〈σ̂i〉 (7)

The measurement should be treated as a probabilistic ele-
ment of the algorithm and needs to be performed several
times. An arbitrary precision can be achieved with a suffi-
cient number of repetitions.

3. We apply a classical optimization routine to explore the
parameter space and minimize E(θ). We define ε0 =

〈ψ(θmin)|Ĥk|ψ(θmin)〉 as a ground state energy, where θmin

denotes the set of parameters minimizing the expectation
value of Ĥk.

4 Energies Beyond the Ground State
After having determined the ground state, we can calculate ex-
cited states using a procedure similar to the quantum deflation
algorithm that exploits orthogonality of the Hamiltonian eigen-
vectors.25–27 In particular, we define an effective Hamiltonian
(Ĥ ′) whose lowest eigenstate is the excited state of the original
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one (Ĥ). By subtracting from the latter a corresponding ground
state projector weighted by the ground state energy, we obtain:

Ĥ ′k = Ĥk− ε0|ψ0〉〈ψ0|=
4n

∑
i=1

(ci− ε0
〈σ̂i〉
2n )σ̂i (8)

We observe that the last equality provides the following spectral
decomposition of the excited Hamiltonian:

c′i = ci− ε0
〈σ̂i〉
2n (9)

The procedure is used iteratively to determine as many eigen-
values as desired. Updating the spectral decomposition ci →
ci− ε0

〈σ̂i〉
2n effectively removes all ground state contributions from

the Hamiltonian.
We note that the effect of subtracting the ground state den-

sity matrix weighted by its corresponding eigenvalue is to project
that eigenstate onto the zero value. Because an arbitrary Her-
mitian matrix can have both positive and negative eigenvalues,
special care must be taken to ensure that the zero is not erro-
neously computed as a ground state after all negative eigenvalues
are determined. One reconciliation is to subtract a value greater
than the maximum eigenvalue from the diagonal elements of the
Hamiltonian, ensuring that all eigenvalues are lower than zero.
Therefore, projecting an eigenstate to zero would not affect the
remaining eigenvalues that need to be determined. Such a shift
requires the modification of only one coefficient of the spectral
decomposition, which stands before the identity matrix.

5 Data Acquisition
Before discussing the results of quantum experiments, let us re-
mark on the various techniques that we have employed to com-
pute the band structure of silicon. A careful distinction must be
made between the use of quantum processor, quantum virtual
machine and quantum state simulation. In particular, simulated
qubits helped us analyze the performance of variational forms
and the effect of measurement uncertainty on a noiseless ma-
chine. Three independent techniques will be further referenced:

1. Quantum Processor Unit (QPU) is prepared for measure-
ments under subsequent sets of parameters. The measure-
ments are performed in real time. The available APIs com-
pile quantum programs and directly manipulate qubits, pro-
viding measured expectation values in the form of bitstrings.

2. Quantum Virtual Machine (QVM) chooses one of the possi-
ble outcomes to be "measured", weighted by its respective
probability computed with the quantum state simulator (see
below). The quantum processor is mimicked, providing a
noiseless (unless noise is simulated) simulation of the mea-
surement process. This method helps to analyze the effects
in the band structure determined by discrete measurements
of the energy expectations values.

3. Quantum State Simulator (QSS) carries out linear algebra to
obtain an exact wave function which would represent the
simulated state of a qubit on a quantum processor after the

application of specified gates. It can serve as an analyti-
cal guideline for quantum measurements. Optimization can
be easily performed with the quantum state simulator, pro-
viding a convenient framework to test the performance of
variational forms.

6 Quantum Experiments
Quantum computations of the band structure have been per-
formed following two different techniques, both yielding a cor-
rect spectrum while compared with the classical diagonalization
of the TB Hamiltonian. The first approach relies on a true quan-
tum measurement, employing one qubit that we access on remote
quantum machines Rigetti Aspen and IBMQ Armonk. Although
these cloud platforms permit the use of larger resources, the prac-
tical realization of the VQE algorithm for diagonalization of the
8× 8 Hamiltonian of Si required a substantial amount of time.
Therefore, we have started with a reduced Hamiltonian, consid-
ering only the interactions between s-states which give rise to the
lowest bands of silicon. After neglecting s− p hopping parameters
in the original Ĥk, a smaller 2×2 matrix block can be decoupled
and diagonalized using VQE on the QPU. Figure 1 shows the two-
gate circuit acting on a single qubit, often referred to as the mean
field ansatz,28 which has been used in the experiment. In princi-
ple, to ensure that finding the true minimum is possible, circuits
must be designed to span every state allowed by the operating
qubits, unless the space is restricted by physical arguments, such
as fermionic commutation relations in the UCC strategies.29 The
ansatz below takes a pure state |0〉 and applies two rotations de-
scribed by the angles θ = (θ ,φ). A polar rotation brings the qubit
into a superposition of |0〉 and |1〉 states, while an azimuthal rota-
tion scans the sphere’s latitude. The two rotations produce a state
represented by the following wave function:

|ψ(θ ,φ)〉= cos
(

θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (10)

The band structure has been computed along a high-symmetry
line X −Γ− L by repeating the whole algorithm for each of the
k-points. Figures 2(a-b) report the two-band electronic structure
evaluated on the quantum machines of IBM (red squares) and
Rigetti (green circles), complemented by the data from the clas-
sical diagonalization (black solid line). In addition, we present
the results obtained via quantum-classical algorithm performed
on QSS (blue squares) and QVM (yellow circles). While the lat-
ter directly follow the bands calculated classically, the quantum
data reveal tiny deviations that can be noticed around the high-
symmetry points Γ and L for Rigetti and IBM, respectively. The
sources of errors in the experiment can be manifold. The proba-
bilistic aspect can obviously play a role, despite a large number of

Fig. 1 Mean-field circuit acting on a single qubit has been employed
to determine the lowest bands of silicon. It consists of a polar rotation
(Ry) followed by an azimuthal rotation (Rz). In last step, the expectation
value of Ĥk is measured.
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Fig. 2 (a) The two-band electronic structure of silicon computed along X −Γ−L line using classical diagonalization (black solid line) and hybrid
quantum-classical algorithm on quantum state simulator (blue squares) and quantum virtual machine (yellow circles). (b) Same as (a) realized on the
QPUs of IBM (red squares) and Rigetti (green circles). We report the data from Rigetti before and after correcting for the readout errors, marked as
open and closed circles, respectively. (c) Energy expectation value sampled over the entire parameter space [−π,π] in the azimuthal angle and [0,π]
in the polar angle on QSS (blue), IBM (red) and Rigetti (red). Darker (brighter) colors denote lower (higher) values of the energy expectation value.

measurements (8192) taken for each parameterization. Impor-
tantly, simulation of noise on QVM have revealed that any gate
noise or readout error tends to increase the measured energy,
shifting the expectation value toward different eigenstates. As
described in the next sections, we have attempted to characterize
and reduce the effects of errors arising from the qubit manipula-
tion.

We note that the standard optimization routines have not been
here applied. Instead, we have used the mean-field circuit to mea-
sure a dense grid of parameter angles in order to find the mini-
mum expectation value. Sampling the entire parameter space
provides a visual tool for analyzing the structure of parameter
space. Figure 2(c) shows examples of the expectation value sur-
faces computed for one selected point k = π

4a 〈1,1,1〉. The three
subsequent panels report the surfaces obtained analytically on
QSS (blue) and experimentally on IBM (red) and Rigetti (green).
The two latter have been smoothed by minimizing the root-mean-
square error across all data points. Again, the data collected on
IBM reveals largest irregularities in the energy contour lines, es-
pecially compared with the analytical surface evaluated on QSS.

The second approach, employed to diagonalize full 8×8 Hamil-
tonian, relies on QSS. Figure 3 presents a robust three-qubit cir-
cuit that we have designed to variationally minimize the expecta-
tion value of Ĥk at any k-point and each level of excitation. The set
of twelve parameters θ = (θ1,θ2, ...,θ12) in this ansatz, measured
in the Pauli word basis from the Hamiltonian decomposition de-
fined in Eq.(4), are varied to minimize the energy expectation val-
ues. Figure (4) displays the electronic structure computed using
this circuit, demonstrating that it is indeed capable of represent-
ing the silicon Hamiltonian anywhere along the k-line. Although
small discrepancies are again visible, the overall agreement with
the bands calculated classically seems to be sufficient. We note
that now the results do not depend on external factors that can

perturb the behavior of qubits. The deviations are related to the
optimization procedures whose proper choice is essential to cor-
rectly determine the energy spectrum.

Several classical optimization routines have been tested in con-
junction with the three-qubit circuit used for the evaluation of full
electronic structure. Minimizing a function in parameter space of
twelve dimensions is rather challenging and requires a compro-
mise between the number of measurements and the smoothness
of the space being optimized. We have found that the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) and Constrained Optimization
BY Linear Approximation (COBYLA) routines30 yielded the most
accurate results. The former requires fewer function evaluations
to reach a minimum, but it suffers from instability due to the
rough surface in parameter space. The latter, being a direct search
method, entirely omits the idea of gradient decent which makes it
more robust against becoming trapped in a local minimum. Even
though it may provide more reliable global minima,31 it occa-
sionally fails to settle on the correct set of parameters. Figure 4
clearly shows that especially the excited energy levels are sensi-
tive to fluctuations in the determined parameters. The compari-
son of both routines, BFGS and COBYLA, eventually indicates the
superior performance of the former, at least in the present case.

7 Additional Remarks on Measuring Expectation
Values

While the previous section was entirely focused on the realiza-
tion and results of quantum experiments, the measurements of
expectation values need a more detailed discussion. The quan-
tities we have measured on the quantum computer are the ex-
pectation values 〈σk〉, where the operator σk is an n-length Pauli
word consisting of an I, X , Y , or Z for each qubit. They depend
on the state |ψ〉 of the qubits, and could be written as the inte-
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Fig. 3 The circuit used to diagonalize the 8×8 Hamiltonian. Each qubit is initialized as a pure zero state.

Fig. 4 Electronic structure of silicon computed via hybrid classi-
cal/quantum algorithm on QSS. Different optimization routines BFGS
and COBYLA are compared on analytic surface. Black solid lines denote
the bands calculated classically.

gral 〈ψ|σk|ψ〉. Because we do not know |ψ〉, we must measure
the state of each qubit in the computational basis, resulting in a
single bitstring (eg. |00101〉). Repeating the measurement a large
number of times M, we construct the expectation value 〈σk〉 from
the ensemble of bitstrings. In the following paragraphs, we will
first consider the simple single-qubit case σk = Z, then the multi-
qubit case where σk consists only of I and Z operators and last,
the general case including X and Y operators.

The Pauli operator Z can be written in a matrix form:

Z =

[
1 0
0 −1

]

It is a diagonal matrix with eigenvalues +1, corresponding to the
state |0〉, and −1, corresponding to the state |1〉. The expectation
value 〈Z〉 is the average of these two eigenvalues, weighted by
the number of measurements in each state. If p is the probability
that we measure |0〉 rather than |1〉, the expectation value 〈Z〉 is
given by:

〈Z〉= (+1)p+(−1)(1− p) = 2p−1

Now, consider an operator Â defined as a Kronecker product of
I and Z operators, each acting on their own qubit. It is a degener-
ate operator with half the eigenvalues +1 and half−1. Because its

matrix form is diagonal, each bitstring we measure corresponds
exactly to an eigenstate. The parity (±1) of a given bitstring z is
precisely the parity of the substring z′ which omits any index cor-
responding to an I operator in A. For example, if A = I5Z4Z3I2Z1

and z = |00101〉, the substring z′ leaves off the second and fifth
indices: z′ = |011〉. This string has a weight of two, which is an
even parity and therefore corresponds to the eigenvalue +1. The
expectation value 〈A〉 is once again an average of +1 and −1,
weighted by the frequency of bitstrings corresponding to each of
the two states.

Last, let us consider a general Pauli word σk. Half its eigenval-
ues are again +1 and half −1, but bitstrings in the computational
basis do not correspond exactly to the eigenstates. We therefore
need to diagonalize σk. Let Ak be the Pauli word which replaces
all X and Y in σk by Z, and the operator Uk changes the basis
so that σk = U†

k AkUk. Then, for each expectation value we have

〈σk〉=
〈

U†
k AkUk

〉
. This is equivalent to measuring the expectation

value 〈Ak〉 in a new state |ψ ′〉=Uk |ψ〉. Thus, we may apply at the
end of the variational circuit the sequence of gates representing
Uk, and then apply the methods of the previous paragraph to eval-
uate 〈σk〉. One example of Uk could be an operator applying the
Hadamard gate H to each qubit corresponding to an X operator
in σk, and the sequence of gates HSZ to each qubit corresponding
to a Y operator.

8 Error Analysis and Mitigation
Quantum error correction, or more often error mitigation is essen-
tial for a reliable attainment of computations on a real QPU.32–34

The quantum measurement, an integral element of any algo-
rithm, is by itself probabilistic. In particular, expectation values
of an operator are estimated over a large number (M) of discrete
measurements. On a noiseless quantum computer, the variance
in the expectation value of the Hamiltonian is limited by

〈ε2〉 ≤ E2

M
(11)

where E2 is the average of the squared energy. It defines an un-
certainty and can be resolved to an arbitrary level of precision by
increasing the number of measurements.

Importantly, the qubits may accumulate errors either due to the
imprecise manipulation or interactions with environment. One of
the major sources of errors that we have identified while collect-
ing the data from the quantum processors is the readout error,
emerging due to a certain probability that a qubit in a true |0〉
state is measured as a |1〉 or vice versa. Repeated measurements
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of prepared |0〉 or |1〉 states reveal transition rates w01 and w10,
defined as the probability that |0〉 is erroneously measured as |1〉
or |1〉 is measured as |0〉, respectively. Moreover, the application
of a particular circuit element may result in an imperfect trans-
formation of the qubit state. The so-called gate noise is typically
classified as a separate source of error but for the purpose of this
study we have assumed it to be intrinsic to the readout error.

The procedure of error mitigation is based on the computation
of the transition rates w01 and w10 and deriving an appropriate
expression to correct the measured expectation values. In order
to estimate these rates, we have explicitly prepared the state |0〉
(|1〉) 100,000 times and counted how many |1〉s (|0〉s) were mea-
sured, which determines the probability that a bit flip occurs on a
readout for a given computational state of each qubit. The transi-
tion rates need to be measured and updated often to ensure that
the correction scheme remains effective across the duration of the
trials. In fact, they are calculated every time before the optimiza-
tion step is reached to take into account changes in behavior of
a specific qubit. Figure 6 reports the transition rates w01 and w10

evaluated for each qubit while computing band energies. The
transition rates are sampled once per minute across the duration
of a 50 minute run. The rates corresponding to a flip from |1〉
to |0〉 seem to oscillate with a period of roughly 18 minutes, sug-
gesting that environmental effects indeed modulate the behavior
of qubits.

Fig. 5 Transition rates estimated for a qubit on Rigetti’s QPU. Blue
circles denote the rates from state |1〉 to state |0〉, while red circles cor-
respond to the rates from state |0〉 to state |1〉. The fitted trend in
transitions suffering from less noise is marked with the gray line. We
believe these transitions to arise due the environmental coupling.

The measured expectation value, on a single qubit, can be cor-
rected using the following expression, derived in the Supplemen-
tary Material (SM):

〈σ̂c〉=
〈σ̂〉− p−

1− p+
(12)

with p± defined in terms of the transition probabilities for the
single qubit, p± = w10±w01. The procedure can be easily gen-

eralized to any number of qubits measured in the computational
basis,35 as follows:

〈Z...Z〉= ∑
zεZn

2

p(z)
n

∏
i=1

(−1)zi − p−

1− p+
(13)

where zi is the ith element of bitstring z, and z is among the set
of bitstrings of length n (Zn

2). The fraction of measured bitstrings
resulting in z is denoted as p(z). The correction have been success-
fully applied to the quantum computation of two-band electronic
structure performed on Rigetti. Figure 2(b) shows a comparison
between the corrected and uncorrected data points (closed and
open circles, respectively), demonstrating that the errors have
been significantly reduced.

9 Summary and perspectives
In summary, we have computed the band structure of silicon
along high symmetry lines in the momentum space using quan-
tum machine accessible via cloud. In order to perform quantum
simulations beyond the tractability of modern supercomputers,
we need to establish methods of translating a desired physical
system to the language of qubits founded with quantum logic
gates. The VQE algorithm adapted from quantum chemistry
seems to be suitable for electronic structure computation and re-
markably, is able to leverage even minimal quantum resources, as
demonstrated by the results discussed in this work. In analogy to
early quantum chemistry computation tackling the problems with
known analytical solutions, we have selected the electronic struc-
ture of silicon which is considered trivial in materials science. The
presented studies can be thus regarded as a first step towards scal-
able electronic structure quantum computation that would not be
limited to a specific interaction or one particular quantum sys-
tem. Even though the analyzed Hamiltonian was quite simple,
we are convinced that adding interactions, field effects, or correc-
tive terms will be possible in the nearest future.
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