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In this work, we used finite-field derivative techniques and density functional theory (DFT) to com-
pute the static isotropic polarizability series (α` with ` = 1, 2, 3) for the C60–C84 fullerenes and
quantitatively assess the intrinsic non-additivity in these fundamental response properties. By com-
paring against classical models of the fullerenes as conducting spherical shells (or solid spheres) of
uniform electron density, a detailed critical analysis of the derived effective scaling laws (α1 ∼ N1.2,
α2 ∼ N2.0, α3 ∼ N2.7) demonstrates that the electronic structure of finite-sized fullerenes—a unique
dichotomy of electron confinement and delocalization effects due to their quasi-spherical cage-like
structures and encapsulated void spaces—simultaneously limits and enhances their quantum me-
chanical response to electric field perturbations. Corresponding frequency-dependent polarizabilities
were obtained by inputting the α` series into the hollow sphere model (within the modified sin-
gle frequency approximation), and used to compute the molecular dispersion coefficients (Cn with
n = 6, 8, 9, 10) needed to describe the non-trivial van der Waals (vdW) interactions in fullerene-
based systems. Using first-order perturbation theory in conjunction with >140, 000 DFT calcula-
tions, we also computed the non-negligible zero-point vibrational contributions to α1 in C60 and
C70, thereby enabling a more accurate and direct comparison between theory and experiment for
these quintessential nanostructures.

INTRODUCTION

The molecular polarizability (α`) describes the tendency
of a molecule to form an induced multipole moment in
the presence of an electric field (α1, dipole polarizabil-
ity), field gradient (α2, quadrupole polarizability), field
Laplacian (α3, octupole polarizability), and/or higher
field derivatives.1–4 Knowledge of the α` series is cru-
cial when describing induction and dispersion/vdW inter-
actions,4–6 predicting/understanding the spectroscopic
signatures (i.e., Raman, sum-frequency generation) of
molecules and condensed matter,7,8 as well as develop-
ing next-generation polarizable force fields and machine-
learning based intra-/inter-molecular potentials. As
quantum mechanical response properties, the α` series is
governed by complex many-body interactions (e.g., elec-
tron correlation, charge delocalization, secondary polar-
ization), and tends to become more non-additive with
increasing order and molecular size/complexity.1–4,9–13

From a theoretical point of view, an accurate and reli-
able description of α` can be quite demanding, and often
requires sophisticated treatment of electron correlation in
conjunction with large (and diffuse) basis sets.14–19 Ex-
perimental α` measurements are also challenging and sus-
ceptible to (zero-point) vibrational contributions, ther-
mal effects, as well as origin and orientational dependen-
cies.20–22

Through the Casimir-Polder (CP) relationship,23 the
non-additivity in α` is also reflected in the dispersion
coefficients (Cn), which govern the strength of the vdW
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forces between molecules and materials. Since even slight
variations in the (effective) vdW power laws can impact
the structure, stability, and properties of a system,24–26

knowledge of how α` scales with system size is funda-
mental to understanding these ubiquitous non-bonded
interactions. At the nanoscale, non-additivity in Cn is
particularly important, as vdW forces are largely respon-
sible for directing self-assembly and the energetic con-
tributions from higher-order terms can be 50% of the
leading-order C6 component.27–29 Given that fullerenes,
nanotubes, and multi-layer graphene already exhibit un-
usual scaling behavior24–26,30–36 at the C6 level, enhanced
non-additivity in the higher-order Cn is expected to have
an even more profound effect on such nanostructures.

Of specific interest here are the fullerenes, which are
characterized by quasi-spherical cage-like structures, en-
capsulated void spaces, and nearly uniform surface elec-
tron densities, thereby making them unique systems for
studying non-additivity in the α` and Cn scaling land-
scapes.24,37–40 For the popular fullerenes (e.g., C60 and
C70), α1 and C6 have been well-investigated by the-
ory24,38,41–47 and experiment,22,48–53 with most studies
reporting qualitatively similar values for these leading-
order terms (although direct comparison between the-
ory and experiment has been difficult due to vibra-
tional and thermal effects.20–22,45,54–56) Theoretical stud-
ies24,38,40 have also shown that α1 and C6 exhibit strong
non-additivity with increasing fullerene size as well as
non-trivial quantum- and finite-size effects.39,57 However,
there has been little work dedicated to the higher-order
α` and Cn in the fullerenes, and many existing classical
models37,58–64 for these quantities—which have largely
been popularized by Tao, Perdew, and co-workers—have
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yet to be validated using quantum mechanics and still
rely on accurate α1 (or even α`) values as input.

In this work, we address these limitations by comput-
ing ab initio values for the α` series (` = 1, 2, 3) in the
C60–C84 fullerenes using DFT and finite-field derivative
techniques. With these values in hand, we obtain the
molecular dispersion coefficients (Cn with n = 6, 8, 9, 10),
quantitatively ascertain the intrinsic non-additivity in
the α` (and Cn) series, and derive the corresponding ef-
fective scaling laws as a function of fullerene size. De-
tailed analysis of the ab initio data with respect to clas-
sical models that treat the fullerenes as conducting spher-
ical shells or solid spheres demonstrates how the unique
electronic structure of single-walled fullerenes—a com-
plex dichotomy between electron confinement and de-
localization effects—simultaneously limits and enhances
their response to electric field perturbations. Analo-
gous to the deviations from asymptotic vdW scaling
laws observed at finite (nanoscale) distances, this anal-
ysis also demonstrates how quantum- and finite-size ef-
fects markedly alter the α` (and Cn) scaling landscapes
in these quintessential nanostructures. We conclude this
work by computing the non-negligible (≈ 1−2%) zero-
point vibrational corrections20,65–67 to α1 for C60 and
C70, enabling a more accurate and direct comparison be-
tween experiment and theory for this fundamental re-
sponse property.

RESULTS AND DISCUSSION

To begin, we computed static isotropic (electronic) polar-
izabilities (α` with ` = 1, 2, 3) for the lowest-energy iso-
mers of the C60, C70, C76, C78, and C84 fullerenes using
finite-field derivatives at the SCAN0/Sadlej//SCAN0/6-
31G(d) level (see the Electronic Supplementary Informa-
tion (ESI) for computational details, Table S1 for iso-
mer comparisons, and Tables S7–S11 for optimized struc-
tures). Since the SCAN068 hybrid functional, which ad-
mixes 25% exact exchange into the SCAN69 meta-GGA
functional, combined with the Sadlej14 triple-ζ basis set,
which has been optimized for molecular properties such
as moments/polarizabilities, furnishes α` values to ≈ 1%
of benchmark quantum chemical methods for C20 (the
smallest cage-like fullerene70), this level of theory was
used for the larger fullerenes in this work (see Table
S2). Corresponding frequency-dependent polarizabili-
ties (α`(iu)) were obtained within the modified single-
frequency approximation (MSFA)63 by inputting α` into
the hollow sphere (HS) model of Tao and Perdew,61 and
used to compute Cn (n = 6, 8, 9, 10) via the CP inte-
gral.23 All calculations were performed using Q-Chem71

and FHI-aims.72

The computed α` (and Cn) are plotted in Fig. 1 and
summarized in Table I. For α1 and C6, our values
are in excellent agreement with the available theoretical
data for the fullerenes (see Table S6). In particular, we
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FIG. 1. Multipole polarizabilities (α` with ` = 1, 2, 3)
and homo-molecular dispersion coefficients (Cn with n =
6, 8, 10) plotted as a function of system size in the C60–
C84 fullerenes. Quantities for the larger fullerenes (CN with
N = 70, 76, 78, 84) are plotted relative to the corresponding
C60 values. Also plotted are the effective scaling laws for α`

(solid lines) and Cn (dashed lines), which were derived from
fitting the data to a power law (aNb) ansatz and depict the
increasing non-additivity in the higher-order quantities.

find that the SCAN0/Sadlej α1 value for C60 (536.8 au)
is significantly closer to the LR-CCSD/Zm3PolC value
(555.3 au, with an error of 3.3%)42 than the LR-
CC2/aug-cc-pVDZ value (623.7 au).47 Since the LR-
CCSD/Zm3PolC value42 is arguably the most accurate
quantum mechanical calculation of this quantity avail-
able in the literature to date, this provides further ev-
idence (in addition to our comparative study on C20

in the ESI) that SCAN0/Sadlej will offer an acceptable
compromise between accuracy and feasibility when com-
puting the higher-order multipole polarizabilities in the

TABLE I. Values (in au) for the multipole polarizabilities (α`

with ` = 1, 2, 3; computed at the SCAN0/Sadlej//SCAN0/6-
31G(d) level) and homo-molecular dispersion coefficients (Cn

with n = 6, 8, 10; computed by inputting α` into the
HS/MSFA model) in the C60–C84 fullerenes. Also provided
are the effective scaling law parameters (and R2 values) re-
sulting from non-linear fits to power law (aNb) ansätze (see
Fig. 1). Higher-precision values for α` and all homo-/hetero-
molecular Cn (n = 6, 8, 9, 10) can be found in Tables S3–S5.

Ab Initio Ab Initio + HS/MSFA

Molecule α1/102 α2/104 α3/106 C6/105 C8/107 C10/109

C60(Ih) 5.368 4.281 3.319 0.990 4.207 14.620

C70(D5h) 6.638 5.800 5.150 1.462 6.891 26.963

C76(D2) 7.248 6.871 6.539 1.735 8.861 37.417

C78(C2v) 7.542 7.217 6.910 1.863 9.639 41.138

C84(D2d) 8.086 8.301 8.336 2.143 11.872 53.827

a 3.903 13.487 54.633 10.328 168.062 2505.686

b 1.206 1.970 2.696 2.246 3.041 3.812

R2 0.994 1.000 0.998 0.996 0.999 0.999
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FIG. 2. Top: System-size dependence of the semi-classical
`-dependent fullerene radii (obtained using quantum mechan-
ical α` in the classical conducting spherical shell/solid sphere

model formula, R` = α
1/(2`+1)
` ) in the C60–C84 fullerenes.

Also depicted are the corresponding estimated physical radii
(〈R〉).74 Bottom: Percent errors when predicting the higher-
order α` and Cn under the classical assumption of a single
radius (R = R1) per fullerene.

fullerenes. For the higher-order terms, α2 and α3 in
Fig. 1 and Table I are the only ab initio values available
to date. In previous studies,37,40,60–64 these quantities
have been estimated using a classical formula derived by
Tao, Perdew, and co-workers by considering a conduct-
ing spherical shell (or solid sphere) of uniform electron
density with outer radius R and thickness t, namely,37,73

α` ≈ αmodel
` = R2`+1 0 < t ≤ R. (1)

Since these are among the simplest physically sound mod-
els for the fullerenes,37,57 we first discuss the models’
assumption that α` can be derived using a single ra-
dius per fullerene by inverting this formula to obtain

an `-dependent radius, i.e., R` = α
1/(2`+1)
` . These R`

values—along with the estimated (outer) physical radius
of each fullerene 〈R〉74—are plotted against N in Fig. 2.
From this figure, one can see that R1 ≈ R2 ≈ R3 ≈ 〈R〉
for C60–C84; with mean signed deviations of −2.9% (R1),
+0.2% (R2), and +1.5% (R3), each R` agrees fairly well
with 〈R〉, and the emerging picture is, as expected, qual-
itatively consistent with these classical models. In the
same data, we also observe a weak (but still increas-
ing) dependence of R` on ` as R3 & R2 & R1 for each
fullerene. Here, we argue that both of these observations
can be rationalized by considering the unique electronic
structure of the fullerenes, whose quasi-spherical cage-
like structures and encapsulated void spaces lead to an
essentially metallic electron density that is delocalized
across the entire fullerene surface, yet largely confined
to a thin surrounding shell. Unlike the classical spheri-
cal shell and solid sphere models—in which the density
is confined to an infinitesimally thin shell surrounding
the conductor37—surface electrons on the fullerenes still

retain some degree of radial flexibility, which serves to
enhance their (relative) response to electric field per-
turbations. This property manifests itself in the (albeit
weak) growth of R` with ` observed above, which indi-
cates enhanced non-additivity in the fullerenes beyond
that due to the increasingly higher-order powers in the
classical α` formula. In the same breath, the fact that
the electrons on the fullerene surface are largely confined
to a surrounding thin shell also simultaneously limits the
radial extent of their quantum mechanical response to
external electric fields. Evidence of this is seen in the
qualitatively similar R` values in Fig. 2 that only weakly
depend on `; although higher-order α` data is scarce, the
dependence of R` on ` seems to be stronger for extended
molecular systems like n-alkanes,75 and is expected to be
even more pronounced in conjugated systems like s-trans
alkenes and polyacenes.76

Although the differences among R` seem small, the er-
rors made when predicting α` (and Cn) under the classi-
cal assumption of a single radius per fullerene can be sub-
stantial and warrant further discussion. Since an accu-
rate determination of α1 is most straightforward among

the α` series, we first set R = R1 = α
1/3
1 for each

fullerene (following previous work in Refs.40,60,62–64,73)
and re-compute α2 and α3 via the classical formula,
α` ≈ αmodel

` = R2`+1. The corresponding errors, εα`
≡

(αmodel
` − α`)/α`, are also plotted in Fig. 2, from which

one can immediately see that these higher-order proper-
ties are substantially underestimated in C60–C84. With
mean deviations of 14.8 ± 1.5% (α2) and 26.9 ± 1.6%
(α3), these errors are significant in magnitude and in-
crease with `; such discrepancies can be traced back to
the variability in R` (e.g., R3 & R2 & R1), which be-
comes amplified by the increasingly higher-order pow-
ers in the classical formula. Also depicted are the errors
which propagate into C8 and C10 when inputting these α`
values into the HS/MSFA model; with mean deviations of
13.0±1.3% (C8) and 24.4±2.0% (C10), the non-additivity
in these quantities is also substantially underestimated,
rendering them unsuitable for describing the non-trivial
vdW interactions between fullerenes. Here, the errors
in C8 and C10 are quite similar to those in α2 and α3,
which follows from factoring α` out of the CP integral
(which yields C8 ∝ α1α2 and C10 ∝ α1α3 + α2α2).40,61

We further note that the R values used to generate the
error profile in Fig. 2 are not unique. Setting R = 〈R〉 is
also physically justifiable, and overestimates α1 by 9.4%
and underestimates α2 and α3 by 1.0% and 9.9%, re-
spectively;77 since 〈R〉 ≈ R2, the error is still substan-
tial and simply redistributed onto α1 and α3. Another
logical choice for R arises from treating each fullerene
as a spherical dielectric shell78 with ε derived from the
homo–lumo gap.57,79 For C60, this yields an R that is
only 1.5% larger than R1 and hence a similar error profile
to that in Fig. 2; this also demonstrates that the mod-
els’ assumption that each fullerene is metallic is far less
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important than the classical single-radius approximation.
Connections to modern vdW radii theory80,81 might also
be interesting to consider here.

As the system size increases, the error introduced by
using a single radius to predict α2 and α3 (or C8 and
C10) is fairly constant and does not increase with N (see
Fig. 2). Such system-size-independent deviations are re-
flected in the relatively small (≈ 1.5%) standard devi-
ations in εα`

(and εCn
), and are primarily due to the

fact that the variability among R` values also does not
increase with N for C60–C84 (cf. R2/R1 = 1.04 (1.03)
versus R3/R1 = 1.05 (1.05) for C60 (C84)). Physically
speaking, this can be attributed to the unique topology
of the fullerenes, in which the electron density is largely
confined to a thin shell whose thickness does not grow
with N ;40,57,63 as discussed above, this limits the radial
extent of the fullerene quantum mechanical response and
suppresses the growth of R` with `. Since this salient
feature of the fullerenes can be qualitatively captured
using a single radius (per fullerene), the classical spher-
ical shell and solid sphere models are able to qualita-
tively account for the system-size dependence of α` (and
Cn) in C60–C84. In the same breath, one can also at-
tribute these system-size-independent deviations to the
models’ treatment of each fullerene as a single object in-
stead of a collection of atoms;63 in doing so, many-body
interactions and electron delocalization effects—both of
which are size-dependent, quantum mechanical in nature,
and largely responsible for the non-additivity in these
quantities—are also partially accounted for by these clas-
sical models. Quantitatively speaking, the classical ap-
proximation of a single radius per fullerene is simply not
flexible enough for an accurate prediction of α` and Cn;
when computing Cn (in particular), more sophisticated
models that account for the non-trivial `-dependence of
R` (e.g., HS/MSFA61,63)—in conjunction with the high-
quality ab initio α` values provided herein—are crucial
for an accurate and reliable description of any vdW in-
teractions involving these quintessential nanostructures.

To further explore how α` (and Cn) scale with fullerene
size, we now derive the corresponding effective scaling
laws by fitting our data to power law (aN b) ansätze.
The fitted functions are plotted in Fig. 1, and the result-
ing parameters (and R2 values) are provided in Table I.
With R2 > 0.99 in all cases, these fits accurately describe
the system-size dependence in these quantities, yield-
ing negligible fitting errors of −0.04%, −0.02%,−0.22%
for α1, α2, α3 (−0.21%,−0.22%,−0.38% for C6, C8, C10).
Here, we find that α1, α2, and α3 scale as∼ N1.2, ∼ N2.0,
and ∼ N2.7 for the C60–C84 fullerenes; with exponents
that substantially deviate from unity, these quantities are
all strongly non-additive and become increasingly more
so for larger `. For α1, our finding that b = 1.21 is in
excellent agreement with the TD-DFT results of Kauc-
zor et al. (b = 1.25)38 (see Table II); here, we note
that the b values obtained from aN b fits of the TD-HF,

TABLE II. Effective scaling law exponents (b) for the polariz-
abilities (α`) and dispersion coefficients (Cn) in the fullerenes.

α1 α2 α3 C6 C8 C10

Ab Initioa 1.21b 1.97b 2.70b − − −
Ab Initio + HS/MSFAa − − − 2.25b 3.04b 3.81b

N∝R2 (spherical shell)c 1.50b 2.50b 3.50b 2.75d 3.75d 4.75d

N∝R3 (solid sphere)e 1.00b 1.67b 2.33b 2.00d 2.67d 3.33d

Gobre et al.24f − − − 2.25 − −
Kauczor et al.38g 1.25 − − 2.19 − −

Saidi et al.39h 1.46 − − 2.80 − −
Tao et al.40i 1.19 1.65 2.11 2.26 2.73 3.20

aC60–C84. bThis work. cClassical conducting spherical shell model;
R→∞ limit. dRef.37. eClassical conducting solid sphere model; all
R values. fSelf-consistent screening (SCS) model; C20–C540. gTime-
dependent DFT (B3LYP); Nb fit for C60–C84. hCapacitance-polarizability
interaction (CPI) model; C60–C720. iTwo-point formula (αA

` /NA = αB
` /N

b
B)

based on approximate α` (and Cn) for C60 and C3840.

TD-B3LYP, and TD-CAM-B3LYP data in Ref.38 are all
within 1%−2% of the SCAN0/Sadlej value, which sug-
gests that the non-additivity in α1 is largely independent
of the underlying exchange-correlation functional. Due
to the scarcity of higher-order α`, the b values obtained
herein for α2 and α3 are the only ab initio values avail-
able to date. We note in passing that comparisons to
the values provided by Saidi et al.39 and Tao et al.40

would not be appropriate, as these values correspond
to a much wider range of finite-sized fullerenes (e.g.,
C60–C720

39 and C60–C3840.40) Furthermore, we stress
that the value of b can largely depend on the choice of
ansatz and the fitting procedure, wherein one can expect
some variability in the results obtained using the single-
parameter N b ansatz employed by Kauczor et al.,38 and
significantly larger variability when using the two-point
(αA` /NA = αB` /N

b
B) formula employed by Tao et al.40

To characterize how finite-size effects influence the α`
(and Cn) scaling landscape for C60–C84, we therefore dis-
cuss our findings with respect to the formal (R → ∞)
limits of the classical conducting spherical shell and solid
sphere models. Since N ∝ R2 for a spherical shell (in
the R→∞ limit) and N ∝ R3 for a solid sphere (for all
R values), these models agree in how α` grows with R,
but differ in how α` grows with N , i.e., α` = R2`+1 =
N (2`+1)/δ with δ = 2 (spherical shell) and δ = 3 (solid
sphere). The corresponding scaling law exponents for α`
(and Cn) based on these models are provided in Table II,
from which one can see that the growth of α` with N for
a classical solid sphere conductor is slower than that in
the C60–C84 fullerenes, which in turn is markedly slower
than that predicted by the R → ∞ limit of the spher-
ical shell model. Again, both of these observations can
be rationalized by considering the dichotomous electronic
structure of the finite-sized fullerenes, wherein a complex
interplay between electron confinement and delocaliza-
tion governs their quantum mechanical response to elec-
tric field perturbations. On one hand, confinement of the
electrons to a thin shell unusually far from the fullerene
center leads to a substantially more polarizable electron
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density than the distribution of the same number of elec-
trons throughout the volume of a solid sphere (with a
necessarily smaller R), thereby leading to enhanced α`
values compared to the classical solid sphere model. On
the other hand, the curvature in the finite-sized fullerenes
(due to their encapsulated void spaces) suppresses many-
body polarization26 of the electrons across the surface,
which limits the extent of the electronic response and
leads to reduced α` values compared to the graphene-
like R → ∞ limit of the classical spherical shell model.
As such, finite-size effects have a marked impact on the
growth of α` with N in the C60–C84 fullerenes, and are
analogous to the distance-dependent effective vdW power
laws observed in both finite and extended systems across
the nanoscale.25,26,30–36,82

With α1 values in hand, finite-size effects in the ef-
fective power laws for α2 and α3 can be approximately
accounted for (to within 1%−2%) by fitting the cor-
responding semi-classical α` values (α` = R2`+1 with

R = R1 = α
1/3
1 ) to the aN b ansatz. As described above,

this finding is reflected in the system-size-independent er-
ror profile in Fig. 2, and largely follows from the models’
holistic treatment of each fullerene as a molecule (instead
of a collection of atoms) with a fixed radius. Hence, the
rather sizable errors in α2 and α3 depicted in Fig. 2 pri-
marily result from a marked (≈ 20%−40%) difference in
the a values obtained with ab initio and classical treat-
ments of the C60–C84 fullerenes, and are therefore indica-
tive of a substantial quantum-size effect on the power law
pre-factor.

For the Cn, we find that C6, C8, and C10 scale as
∼ N2.2, ∼ N3.0, and ∼ N3.8, which is again indicative of
strong non-additivity that increases with ` (and n). Since
this non-additivity primarily originates from the intrin-
sic non-additivity in the underlying α`, our discussion
of the Cn scaling laws will be brief. For C6, our find-
ing that b = 2.25 is in excellent agreement with previous
studies employing time-dependent DFT (b = 2.19)38 (see
Table II); due to the scarcity of higher-order Cn, the b
values obtained herein for C8 and C10 in C60–C84 are the
only ab initio values available to date (and even these val-
ues still rely on the HS/MSFA model for the frequency
dependence of the underlying polarizabilities). Following
the analysis performed above for α`, we again find that
our results lie between the Nn/3 and N (n−1/2)/2 depen-
dence of the solid sphere and spherical shell models;37

as such, our data unambiguously confirms that the Cn in
C60–C84 grow much faster than a pairwise-additive model
(like the classical solid sphere model) would suggest.

Returning to the ab initio α` provided herein, we con-
clude this work by investigating the zero-point vibra-
tional contributions (zpvc) to α1 in the popular C60 and
C70 fullerenes, as these often non-negligible contributions
enable a more direct comparison between experiment and
theory. For a molecule in its ground vibrational state,
αzpvc

1 can be computed using first-order perturbation the-

ory65–67 as αzpvc
1 =

∑
i κi, in which

κi ≡
1

4

(∂2α1

∂q2
i

)
0

−
∑
j

φiij
ωj

(
∂α1

∂qj

)
0

 , (2)

is the contribution from the i-th vibrational mode. In
this expression, (∂nα1/∂q

n
j )0 are the n-th partial deriva-

tives of α1 (evaluated at the equilibrium structure) with
respect to (dimensionless) normal mode qj with fre-
quency ωj , φiij are the anharmonic (cubic) force con-
stants, and the sum includes all vibrational modes; see
ESI and Ref.18 for more details. To obtain ab initio
values for these quantities, we performed an extensive
series of (>140, 000) DFT calculations, and found that
αzpvc

1 = 8.5 au (C60) and 9.6 au (C70); these vibrational
contributions are non-negligible in magnitude and ac-
count for ≈ 1.6% and ≈ 1.4% of α1. Individual contribu-
tions (κi) to αzpvc

1 from each vibrational mode in C60 are
plotted in Fig. 3. Similar to αzpvc

1 in water,18 the primary
vibrational contributions are due to high-frequency bond-
stretching modes;83 (i.e., ≈ 1400−1600 cm−1 largest con-
tribution from the Hu mode at ω = 1564 cm−1), and not
low-frequency squashing (≈ 250 cm−1) and/or breathing
(≈ 500 cm−1) modes.84–86 From Table III, one can see
that our (electronic) α1 value is slightly smaller than the
DOSD estimate22,52 for C60, while αtot

1 = α1 + αzpvc
1 are

well within the error bars measured by molecular beam
deflection48,50 and time-of-flight spectrometry49 for C60

and C70. While our values are consistently smaller than
those obtained using matter-wave interferometry,51,53 the
experimental ratios of αtot,C70

1 /αtot,C60

1 = 1.22 (believed
to be more accurate than the absolute α1 values) using
this technique are in excellent agreement with our ab ini-
tio ratio of 1.23. Although not directly comparable to the
αzpvc

1 values computed herein, we note in passing that
previous theoretical estimates (in the double-harmonic
approximation) of αv1 in C60, i.e., the so-called “pure vi-

Squashing Mode

Breathing Mode

Tangential Double-Bond 
Stretching Mode

FIG. 3. Individual mode contributions (κ in au) to αzpvc
1

in C60 (computed at the SCAN/tier-1//SCAN/tier-1 level).
The corresponding plot for C70 is provided in Fig. S1.
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TABLE III. Summary of the ab initio electronic (α1,
computed at the SCAN0/Sadlej//SCAN0/6-31G(d) level),
zero-point vibrational (αzpvc

1 , computed at the SCAN/tier-
1//SCAN/tier-1 level), and total (αtot

1 ≡ α1 + αzpvc
1 ) polariz-

abilities for C60 and C70 along with the available experimental
data.

Theory Experiment
α1 αzpvc

1 αtot
1 αtot

1

C60 536.8 8.5 545.3 516.2±54a, 533.1±27b, 599.9±41c

558.6±17d, 589.8±20e

C70 663.8 9.6 673.4 688.3±95f , 732.2±55c, 718.0±9e

aMolecular beam deflection.48 bTime-of-flight spectrometry.49
cMatter-wave interferometry.51 dDipole oscillator strength distri-
bution (DOSD) estimate of α1.22,52 eMatter-wave interferome-
try.53 fMolecular beam deflection.50

brational” contribution to α1,67,87 ranged from 3.9 au56

to 5.3 au;45 this higher-order term accounts for vibra-
tional effects beyond αzpvc

1 and should be included when
comparing to experimental α1 values determined at finite
frequencies. Furthermore, we also note that experimen-
tal estimates for the vibrational contributions to α1 in
C60 (i.e., including αzpvc

1 and higher-order terms) have
been obtained for the C60 molecular crystal and range
from 2.5 au and 8.4 au54 to 13.5 au.55

CONCLUSIONS

In conclusion, the α` (and Cn) provided herein for C60–
C84 are the most accurate and reliable theoretical values
obtained to date, and unequivocally demonstrate that
these quantities are strongly non-additive and become
increasingly more so for larger ` (and n). Derivation of
the corresponding effective scaling laws in addition to
a critical analysis of the α` and Cn data in the con-
text of the classical spherical shell and solid sphere mod-
els provides new insight into how the unique electronic
structure of the single-walled fullerenes—a complex in-
terplay between electron confinement effects and charge
delocalization due to the structure and topology of these
nanosystems—serves to both limit and enhance their re-
sponse to electric field perturbations. Of particular in-
terest are the quantum- and finite-size effects observed
in these scaling laws, which are analogous (and inti-
mately related) to the deviations from asymptotic vdW
scaling laws observed in both finite and extended sys-
tems at nanoscale distances,25,26,30–36,82 and undoubt-
edly impact the structure, function, and properties of
these quintessential nanostructures.
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A. Tkatchenko, Phys. Rev. Lett., 2018, 121, 183401.
82 K. A. Makhnovets and A. K. Kolezhuk, Phys. Rev. B,

2017, 96, 125427.
83 L. T. Chadderton, J. Phys. Chem. Solids, 1993, 54, 1027–

1033.
84 H.-J. Eisler, S. Gilb, F. H. Hennrich and M. M. Kappes,

J. Phys. Chem. A, 2000, 104, 1762–1768.
85 H.-J. Eisler, F. H. Hennrich, S. Gilb and M. M. Kappes,

J. Phys. Chem. A, 2000, 104, 1769–1773.
86 D. Jing and Z. Pan, Eur. J. Mech. A-Solid, 2009, 28, 948–

954.
87 J. Mart́ı and D. M. Bishop, J. Chem. Phys., 1993, 99,

3860–3864.

Page 7 of 7 Physical Chemistry Chemical Physics


