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Abstract: 

Data-driven approaches have brought about a revolution in manufacturing; however, 

their application to the deterministic navigation of reaction trajectories to stabilize 

crystalline solids with precise composition, atomic connectivity, microstructural 

dimensionality, and surface structure remains much more challenging. The design of 

synthetic methodologies for the preparation of inorganic materials is oftentimes 

inefficient in terms of exploration of potentially vast design spaces spanning multiple 

process variables, reaction sequences, as well as structural parameters and reactivities 

of precursors and structure-directing agents. Reported synthetic methods are further 

limited in terms of the insight they provide into underlying chemical and physical 

principles. The recent surge in interest in accelerating the discovery of new materials 

can be considered as an opportunity to re-evaluate our approach to materials synthesis, 

and for considering new frameworks for exploration that are systematic and strategic in 

approach. Herein, we outline with the help of several illustrative examples, the 

challenges, opportunities, and limitations of data-driven synthesis design. The account 

collates discussion of design-of-experiments sampling methods, machine learning 

modeling, and active learning to develop experimental workflows that accelerate the 

experimental navigation of synthetic landscapes.  

Introduction:  

Data-driven approaches have brought about a revolution in manufacturing, 

enabling levels of customization and control that were unimaginable with traditional 

mass-manufacturing.1,2 Advances in digital manufacturing and nanoscale fabrication 

have further paved the way to the utilization of a much-expanded palette of materials in 

technological applications. Powerful as they are, digital manufacturing approaches 

remain constrained in their ability to structure matter at nanoscale dimensions. An 

important, yet unresolved, challenge lies at the interface of data science and materials 

synthesis. From the perspective of inorganic materials chemistry, a fundamental 
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obstacle to the precise structuring of matter that remains to be resolved is to control 

reaction trajectories to stabilize crystalline solids with precise composition, atomic 

connectivity (crystallization of a specific polymorph), microstructural dimensionality 

(particle size, shape, layer thickness, or grain size), and surface structure (texture or 

surface crystallographic facets). Typically, materials syntheses are developed almost 

entirely in an empirical manner, based on fragmented knowledge of the underlying 

sequences of chemical reactions, heterogeneous and homogeneous equilibria, and 

their coupling with mesoscale mass transport and energy transfer phenomena. Much of 

current research practice comprises Edisonian trial-and-error methods involving 

changing a single synthetic variable and observing the response. Such methods are not 

just inherently inefficient in their exploration of potentially vast design spaces (spanning 

multiple process variables, reaction sequences, as well as structural parameters and 

reactivities of precursors and capping ligands) but furthermore do not provide a 

satisfactory understanding of the underlying chemical and physical principles, ultimately 

stymying the application of modern process design tools. In this frontier article, we 

discuss the potential for data science to enable the more efficient navigation of 

materials design spaces. 

 The functionality of materials derive from complex convolutions of composition 

and (atomistic as well as mesoscale) structure, which in turn are determined by their 

processing history. The design of materials for a specific application requires unraveling 

the interplay between physical principles that underpin materials function; weighing 

trade-offs across frontiers of candidate solutions to identify optimal solutions that satisfy 

multiple constraints; and mapping efficient pathways from starting precursors to arrive at 

the target material composition and structure. Navigation of synthetic design spaces is 

challenging because often the structures that are of greatest use are metastable in 

nature, resident within shallow wells on rugged energy landscapes (Fig. 1A).3–5 

Considerable effort has focused on the application of data science methods to 

accelerate the investigation of structure—property relationships based on mining of 

crystallographic databases and first-principles calculations of known and putative 

structures in search of specific function.6–10 For instance, machine learning of 

experimental and computational data has enabled high-accuracy predictions of 

bandgap and crystal structure.11–15 However, explorations of reaction trajectories and 

mapping of response surfaces of materials synthesis spaces with a view towards 

learning process-structure and process-property relationships are much less 

common.4,16–20  
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Figure 1: A) Illustration of a rugged energy landscape showing metastable and 

equilibrium energy wells for polymorphs of HfO2. B) Schematic illustration of a data-

driven approach to feature engineering and inverse synthesis design. 

 

Towards Machine-Learning-Aided Inverse Synthesis Design 

Challenges in the application of data science methods to materials synthesis 

stem from the high dimensionality of problems where n synthesis variables create an n-

dimensional space for exploration, the sparsity and expense of available data, and the 

non-monotonicity and extreme non-linearity of many thermodynamic functions 

(evidenced as phase transitions).21–24 Furthermore, understanding synthesis requires 

elucidation of process-structure relationships or using processing-function relationships 

as a proxy. Modeling the former requires the decoding of structure into numerical 

descriptor(s) or limits the modeling to expressions that accept categorical variables at 

inputs. The latter, in turn, requires that the entire design space be reasonably 

represented by a single or small subset of properties. This would typically translate the 

task of ‘learning’ a synthesis to the task of optimizing a specific property (e.g., particle 

size). The strength of coupling between spin, charge, orbital, lattice, and compositional 

degrees of freedom determine the shape of thermodynamic energy landscapes of 

periodic solids.4,24 Strong coupling amongst the degrees of freedom can make it difficult 

to traverse along pathways to arrive at specific polymorphs.  

In conventional high-temperature synthesis, as a system relaxes towards 

equilibrium, from an initial high-energy state, it scans the landscape for efficient paths to 

enable dissipation of the available free energy. Conventional metallurgical and ceramic 

processing provide a large excess of energy, enabling the material to readily find its way 

towards equilibrium, without being trapped in a metastable state, although there are 

notable examples, particularly in phase-transforming materials, in which the trapping in 

metastable states is highly history/processing-dependent.25 However, given the 

challenges with ensuring homogeneous energy and mass flows across the system, and 

the sensitivity of crystallization processes to mesoscale phenomena, such processes 
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can be difficult to control. Solution-phase synthesis, chimie douce routes, and templated 

processes (e.g., molecular beam epitaxy and pulsed laser deposition) can potentially 

allow for more deterministic navigation of energy landscapes such as to trap the 

material in a local minimum (Fig. 1A). However, the intrinsic path-dependence of these 

methods increases the dimensionality and complexity of the reaction space.26–29 Data 

science methods hold promise for “learning” the design space and enabling the design 

of synthetic pathways that connect starting precursors and the target structure. In 

principle, machine learning allows for the possibility of inverse design synthesis (Fig. 

1B); the generation of models which can take a target structure as the input and predict 

synthetic routes to generate materials with those properties as outputs.30–33 Increasingly 

complex problems have been addressed working towards modeling systems with high 

costs of experimentation, optimization with multiple target objectives, and providing 

greater understanding of error in systems with relatively limited amounts of data.  

Statistical regression and machine learning methods can aid the mapping of 

pathways between the target material and precursors based on the fusion of disparate 

types of data. First, data mined from the literature provide access to specific 

hyperplanes, in that it is typically data collected through consideration of one-variable-

at-a-time (OVAT), which is analogous to examining a singular plane of experiments 

within a high dimensional reaction space wherein each variable adds another dimension 

to the space. These hyperplanes oftentimes reflect chemical intuition, serendipity, 

accessibility of specific precursors, or a combination thereof in terms of experimental 

design, and can provide valuable inputs to algorithms and provide a means of seeding 

initial experiments (albeit failed experiments typically go unreported and thus vast 

sections of the design space are underrepresented in the literature). Codified prior 

knowledge of thermodynamics and chemical concepts allow for the application of 

specific constraints (e.g., knowledge of decomposition temperatures or solubility guide 

precursor selection). Results from first-principles calculations and molecular dynamics 

simulations, oftentimes coupled with metaheuristic algorithms (simulated annealing or 

basin hopping),32,33 algorithms that screen different optimization procedures for their 

facility with converging at a minimum, can guide exploration of the adjacent phase 

space to identify potential intermediates that can be exploited as waystations to the 

target, or conversely, to avoid thermodynamic dead ends. Accurate first-principles 

descriptions of entire systems and energy landscapes are inaccessible in most cases 

owing to inadequate energy resolution and high computational costs. The available 

inputs can then inform the targeted navigation of the synthesis design spaces without 

having to perform full factorial experiments across multiple dimensions of chemical, 

process, and temporal variables. Microfluidic platforms,18 high-throughput robotic arm 

dispensation systems, entirely mobile robots,34 and parallelized hydrothermal 

platforms35 have emerged as alternatives for rapidly acquiring data to test the validity of 

data-driven synthesis models.  

A major advantage afforded by machine-learning-aided approaches is the ability 

to progress beyond expensive one-variable-at-a-time (OVAT) sampling methods to 
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more efficiently explore synthetic landscapes, minimization of sampling bias often 

inherent in human intuition, and a decrease in likelihood of arrival at a local minimum 

hyperplane. Perhaps more importantly, machine learning algorithms are generalizable 

and can thus be used as a means of “rule discovery”, thereby unraveling hidden 

correlations and providing fundamental chemical and physical insight of the underlying 

reactivity.36 Here, we will outline the use of design of experiments in exploration of 

synthetic landscapes and discuss how machine learning algorithms can complement 

these statistical sampling techniques in order to accelerate materials discovery 

referencing some illustrative examples from the literature.  

Beyond Guess and Check: Design-of-Experiments and Connections to Machine 

Learning  

Data is at the core of any machine learning model, and for applications in 

materials science, the lack of data, format of data, and quality of data can frequently 

represent a bottleneck to progress. For problems in which data is not available 

elsewhere, starting with the design-of-experiments (DOE) sampling techniques, rather 

than OVAT methods, can often afford a more richly diverse dataset that is readily 

amenable to modeling with machine learning algorithms.37–39 An abiding challenge is to 

determine the best approaches to represent chemical structure and composition in a 

manner amenable to the application of statistical regression tools. A major research 

question is thus to identify the structural and compositional motifs, processing 

conditions, and reaction sequences that are most strongly associated with the synthetic 

outcomes. Such “feature engineering” (Fig. 1B) is pivotal to developing a scored 

experimental design approach that allows for identification of the key descriptors 

underpinning a specific synthetic output and enables iterative improvement of the 

synthesis models.   

Predating the use of machine learning methods, DOE methodologies have 

shown considerable value in materials synthesis.18,40–44 These methods aim to first 

broadly sample large design spaces with as few experiments as possible utilizing 

approaches such as full and fractional factorial designs, random sampling, or, more 

recently, Bayesian optimization in which probability estimates from the model are 

continuously updated as new data is acquired. These sampling methods are typically 

coupled with response surface modeling to generate a rough model of the system 

through use of a simple regressor.45,46 As a notable example of this approach, Murphy 

and co-workers47 explored the seed-mediated silver-assisted growth of gold nanorods 

using fractional factorial DOE along eight independent experimental parameters. In the 

synthesis, gold seeds are prepared by combining a solution containing a gold precursor 

and capping ligand (e.g., cetyltrimethylammonium bromide (CTAB)) with a solution 

containing the reducing agent. The seed solution is then added to a solution containing 

a capping ligand, additional gold precursor, a weaker reducing agent, and silver nitrate. 

Numerous studies had previously evaluated effects of different reaction parameters 

using traditional OVAT methods and had determined that the concentration of gold 
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seeds, temperature, amount of silver nitrate, and concentration of the ascorbic acid 

reducing agent were all of relevance to determining the aspect ratio of nanorods.48–51 

Using DOE methods, the authors not only demonstrated all of the trends observed 

previously with the separate OVAT studies but also determined that the interaction of 

variables was significant. They demonstrated that while there is a positive correlation 

between concentration of silver nitrate and the nanorod length, it has no primary effect 

on the length and instead demonstrates a secondary interaction with the amount of 

reducing agent. These results provided much needed insight into the true role of silver 

nitrate and the general mechanisms of anisotropic growth. While it was previously 

postulated that silver or silver bromide absorbed on the gold surface may serve as a 

blocking layer resulting from underpotential deposition on certain crystallographic faces, 

the correlation of AgNO3 concentration with the concentration of reducing agent 

indicates that it more likely shields charge for negatively charged species headed 

towards the negatively charged (as a result of Br- adsorption) nanocrystal surface. The 

authors postulated that surface adsorption of Br- ions directs anisotropic growth.  

In DOE studies, the initial round of sampling is frequently used as a means of 

down-selecting to variables with the highest influence on synthetic outcomes through 

feature selection (Fig. 1B), allowing for the possibility of a second round of more dense 

sampling of the design space of interest. In the steepest ascent approach this involves 

iterative sampling in the direction which heads towards an optimum in output. While the 

data is ascending, a first-order model is used which does not account for curvature in 

the output data. Once near the apex in data, a second order model which accounts for 

curvature of the data provides a better fit.45 Mora-Tamez et al.18 explored the colloidal 

synthesis of Ni2P nanoparticles to generate a model predicting particle size. In the first-

order design, six possible factors were screened for influence on the size of 

nanoparticles followed by a second-order design model of the dependence on the 

strongest influencing factors; triphenylphosphine/nickel ratio and temperature. This 

model was then corroborated with four additional samples all resulting in particles with 

excellent agreement to the predicted values well within experimental error. The high 

monodispersity of nanoparticles and low experimental noise of the chosen synthetic 

method implemented within a microfluidic platform combined with the lack of complex 

variable correlation in this study allowed an accurate response surface model to be built 

from a relatively small (9 sample) DOE chosen dataset. This methodology is useful for 

analyzing the trends, magnitude of influence, and correlation of a large set of variables.  

As it is typically implemented, DOE is best suited for optimization problems. The 

interpolation offered with response surfaces can be predictive for small design areas 

with linear or quadratic trends but often is constrained in its ability to analyze design 

spaces with more complex responses and systems where exploration, rather than 

optimization, is the focus. When coupled with the capabilities of machine learning 

algorithms and with the incorporation of features representative of chemical structure 

and composition, the opportunities for systematic exploration of synthetic landscapes 
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are greatly expanded. Figure 2 depicts a workflow for machine-learning-aided 

navigation of synthetic design space.  

 

Figure 2: Schematic depiction of an example of a machine-learning workflow for the 

iterative exploration and exploitation of a synthetic design space for inorganic materials. 

 

Efficient Routes to Complex Predictivity: 

Canonical machine learning techniques are particularly well suited to large 

amounts of data with complex prediction or optimization-based goals.52,53 While the 

goals of prediction and optimization remain the same for materials synthesis, the cost of 

data is much higher. While response-surface DOE provides a distinct edge over OVAT 

sampling and allows for reliable inferences from a small amount of data, it is often 

unable to handle data that has a more complex response. Machine learning methods 

have the ability to provide valuable insight and to develop useful models that can be 

further iteratively improved. However, the sparsity of datasets and the substantial costs 

of experiments have limited its application in the exploration of synthesis design spaces.  

In recent work, we have performed a study using existing OVAT data 

supplemented with random sampling to build a predictive model of a nanocrystal 

synthesis.17 The study used only 74 samples to create a model that was able to predict 

both the conditions that will lead to quantum confined CsPbBr3 nanoplatelets and their 

average thickness for a given sample. This relation of three experimental parameters 

(temperature, ligand choice, and ligand concentration) generated a highly nonlinear 

response that was mapped within one unit cell layer of accuracy using support vector 

machine regression (SVM, Figure 3). This supervised learning model chooses the fit 

that minimizes the length of vectors perpendicular to the fit that connect the model to 

the data. The model was physically interpretable in terms of the competition between 

enthalpic and entropic considerations and in distinguishing thermodynamic and kinetic 

regimes under different synthetic conditions. The observed resolution of mapping, ability 
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to handle imperfect data, and insight into a nonlinear reaction space was made possible 

by using machine learning. Despite the positive use case shown in this work, the 

number of experiments was high, and parts of the design space may have been under 

sampled. To increase efficiency and lower variability of the response space, more 

targeted sampling and iterative design methods are desirable. 

 

Figure 3: Machine learning flowchart (left) and interpretation of the SVM regression 

results (right) from the study of CsPbBr3 perovskite nanocrystal growth by Braham et 

al.17 Regression heatmaps of the particle thicknesses along the modeled axes of ligand 

chain length and ligand concentration is shown at two temperatures of 82 and 150°C. 

Interpretation and illustration of 9 selected growth regimes are depicted in A-I showing 

findings of chemical significance with a global minimum thickness regime with a close 

packed monolayer (B), entropy-driven monolayer misalignments for high chain lengths 

or concentration (A,C,D), incomplete monolayer formation owing to low ligand 

concentrations or weak intermolecular interactions (E,F,H,I,) and a local minimum at 

high temperature illustrating the shift in ideal monolayer packing conditions as a function 

of temperature (G). Reprinted with permission from ref. 15; Copyright 2019, the 

American Chemical Society.17 

Cao et al. have described and demonstrated this synergistic relationship between DOE 

and ML in a perspective article examining the optimization of the power conversion 

efficiency for a bulk heterojunction photovoltaic device created via spin casting a 

mixture of a low-band-gap donor polymer and fullerene as an acceptor with the addition 

of diiodooctane, which is thought to decrease donor-acceptor phase segregation.37 

These authors specifically considered the influence of the weight percentage of the low-

band-gap polymer, total solution concentration, spin-casting speed, and the volume 

percent of the diiodooctane additive. They sampled the reaction space using a fractional 

factorial, analyzed variance in the data using ANOVA analysis to understand feature 

correlations, and fitted the data using an SVM with a radial basis function kernel. The 
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SVM was then used to generate a visual map of the space, which informed the design 

of a second round of fractional factorial sampling, eliminating the addition of 

diiodooctane as a variable and narrowing the range of the other factors to target the 

area of the space demonstrating the highest power conversion efficiency values. While 

this second round of sampling narrowed in on the optima, a purely exploitative approach 

can potentially converge on local rather than global optima. However, this study 

exemplifies the promise of using a combination of DOE and ML to sample, model, and 

explore a synthesis space. While ML algorithms can oftentimes uncover hidden 

correlations among variables and provide some predictivity, a ‘one-shot’ fitting of a 

model to a space often lacks predictive capability beyond that of interpolation. 

Active learning, sometimes referred to as sequential learning, is an iterative process 

where a utility or acquisition function is applied to the output of an initial surrogate model 

(typically a ML model) to strategically select a new area of the design space to 

sample.54–56 Such an approach, illustrated in Figure 2, allows for rapid updating of the 

model and enables efficient exploration of the synthetic design space. Active learning 

approaches often leverage exploration strategies from global optimization methods with 

a Bayesian-optimization-based approach being most popular.57 In this particular 

iterative approach, the acquisition functions are based on Bayes Theorem and leverage 

information previously observed to find a posterior distribution using scores from the 

surrogate model. The acquisition function then chooses the most valuable experiment to 

perform next, balancing a preference towards choosing samples that would either be 

the most helpful to improve the extent to which the model captures the dataset 

(exploration) or move towards a predicted maximum or minimum of the surrogate 

function (exploitation). This typically limits use of the Bayesian optimization strategy to 

problems using regression-based models. Just as no single ML model works well to fit 

every dataset, various active learning workflows are better suited for different 

problems.56 Utility or acquisition functions vary in the degree to which they favor 

exploration or exploitation of the data, allowing for users to focus more on creating 

either the most accurate design space model or finding an optimal solution. Xue et al. 

demonstrated the efficacy of this approach in the systematic exploration of the synthesis 

of a Ti50 (Ni50-x-y-zCuxFeyPdz) shape memory alloy.58 In order to optimize the 

transformation temperature, the authors synthesized an initial set of 53 alloys, and 

applied a polynomial model to serve as the surrogate model coupled with iterative 

sampling using expected improvement as the acquisition function. The model effectively 

identified samples with increased transformation temperatures and captured the 

influence of atomic size on local strain and influence of bond strength on the 

transformation temperature. While this process can in principle be used to explore a 

wide variety of synthetic landscapes, examples involving active learning of experimental 

synthesis spaces are still limited. The iterative framework adds another layer of 

constraints on the framing of the problem, as the data must be suitably modeled by a 

regressor in order to reasonably predict the subsequent samples to be measured. 

Strategies for Bayesian sequential learning are currently being developed to overcome 

challenges.54,59–62 For example, Wang et al. developed a Bayesian optimization 
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approach to enable nested-batch sampling.59 In this method the algorithm predicts the 

most beneficial batch of samples to run next, rather than a ranked list of single 

experiments. It additionally allows for the user to rank variables to avoid variance within 

a given batch of variables that would not be feasible within a batchwise process. This 

addresses two problems which are unique to synthesis; some variables are more 

expensive to vary than others and sampling two drastically different samples may be 

much more expensive than sampling two similar samples. For example, it is often 

simple to vary concentration, as a single stock solution can be made and then diluted to 

different extents. However, varying the reaction temperature may be limited by the 

number of independent thermal profiles accessible within a single autoclave, or varying 

the solvent may negate the opportunity to work with a stock solution. To consider this 

constraint, the acquisition function estimates the value of information for each batch of 

samples that could be generated.  

 Most Bayesian optimization efforts have focused on single-objective optimization. 

However, in materials chemistry, multiple objectives (along a Pareto frontier) must be 

optimized at once. For instance, minimizing defect density and positioning dopant atoms 

within a particle while controlling particle size. This problem can be framed as identifying 

the optimal sequence of observations (via experiments or simulations) that is most 

efficient at identifying the Pareto frontier of candidate solutions, which is a graphical 

representation of the tradeoffs between two output parameters. In common Bayesian 

optimization methodologies, it is assumed that the search for the global optimum of the 

descriptive function is sequential, evaluating the function one step at a time, regardless 

of the number of objectives to optimize. This means that even in multi-objective 

Bayesian optimization it is necessary to quantify the utility of a potential experiment as a 

scalar quantity. A powerful scalar utility metric used in multi-objective optimization is the 

so-called Expected Hyper-Volume Improvement (EHVI).63 Similar to the utility functions 

used in single-objective Bayesian optimization, EHVI is constructed by balancing the 

exploration and exploitation of the design space in order to efficiently locate the Pareto 

frontier. Recently, we have developed a multi-objective (up to three objectives) optimal 

materials discovery framework64 and demonstrated its efficacy by identifying regions in 

the microstructural space that yielded optimal performance in a precipitation-

strengthened NiTi-based shape memory alloy. The alloy composition as well as 

microstructural features (specifically, the precipitate volume fraction) of precipitation-

hardened nickel—titanium alloys have been optimized within a pre-defined budget of 

experimental steps.64 This approach demonstrates the promise of multi-objective 

Bayesian optimization methods to develop optimal sequence of experiments allowing 

for simultaneous control of different synthetic outcomes.  

An alternative approach to overcome the constraints of a Bayesian-based active 

learning approach was demonstrated by Moosavi and co-workers, who decoupled the 

tasks of learning and exploring the space by using a ML algorithm to understand 

correlations among variables and gain insight into the reaction mechanisms, while using 

a metaheuristic global optimization strategy to iteratively explore the space in their 
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search for a metal-organic framework (HKUST-1) with the highest surface area.65 In 

doing so, they relax the need for a good initial fit to a surrogate model and gain greater 

flexibility in choice of ML model, as the model does not need to work well within an 

optimization workflow. Looking broadly for opportunities to leverage tools in adjacent 

areas of work will likely be key in increasing the use and diversity of spaces explored 

experimentally using iterative methods. 

The consistency of microstructure in an alloy is an excellent case study in not 

only synthetic optimization but building fundamental scientific understanding of 

process—structure relationships though statistical learning. The influence of 

microstructure on key materials properties such as tensile strength and cycling fatigue 

creates a crucial need for a clear understanding of processing-structure-property 

relationship that go beyond empirical constructs. Recent studies by Elwany and co-

workers have applied statistical learning methods to reveal processing—

microstructure/mesostructure relationships in additive manufacturing techniques, 

specifically laser powder-bed fusion.66,67 Using a Ni-Nb alloy as a model system, this 

work utilizes machine learning and a set of materials properties/processing features 

(melt pool depth, diffusivity of liquid, the Gibbs-Thomson coefficient, and the equilibrium 

partition coefficient) to model an experimental “base truth” dataset of microsegregation 

in the grain structure of the alloy.67 The statistical model showed a level of predictivity to 

the experimentally compiled dataset but was not able to reach the level of multiphysics 

phase-field simulations. The approach demonstrates that with a sufficient dataset and 

by investigating alternative machine learning or featurization methods, design principles 

underpinning processing-structure relationships can be revealed.  

 

Looking Forward  

The salient features of OVAT, DOE, ML, and active learning sampling and modeling 

methods are summarized in Figure 4. OVAT sampling is limited largely by the sampling 

bias of the scientist and in its limitations in demonstrating correlation among variables. 

While DOE is an excellent and efficient qualitative strategy for unraveling the impacts of 

different variables on a synthetic outcome, the standard response surface methodology 

falls short in fitting highly non-linear responses. Iterative processes in DOE are 

generally exploitative (rather than exploratory) in nature. DOE is also incompatible with 

working from found/sparse data. When designing a new modeling or optimization 

experiment, DOE sampling methods represent an excellent choice for building an initial 

dataset that can be used in conjunction with ML.  

When refining and improving a ML model, emerging active learning techniques provide 

excellent targeted sampling to achieve a certain goal or for multi-objective optimization, 

given that the function most appropriate for the goal/s and modeling method is used. 

The combination of DOE, ML, and active learning would allow for a more robust and 

efficient path to navigating the design space of materials synthesis. The sparsity of data 
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and the relative cost of synthesis and characterization represent significant barriers. 

Greater flexibility in automated synthesis platforms, either based on microfluidic 

systems or robotic arms performing multiplexed synthesis, hold promise for resolving 

these bottlenecks.10,34 DOE techniques, ML, and automation of synthesis together 

represent a promising toolbox for accelerating materials synthesis, providing 

foundational understanding of the underlying chemical reactivity, and for extracting 

design principles in order to precisely control reaction trajectories.  

 

 

Figure 4: Schematic contrasting the sampling and modeling features contained in 

OVAT, DOE, ML, and sequential/active learning.  
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