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Abstract 
Energy storage at all timescales, including the seasonal scale, plays a pivotal role in 

enabling increased penetration levels of wind and solar photovoltaic energy sources in 

power systems. Grid-integrated seasonal energy storage can reshape seasonal fluctuations 

of variable and uncertain power generation by reducing energy curtailment, replacing peak 

generation capacity, and providing transmission benefits. Most current literature focuses on 

technology cost assessments and does not characterize the potential grid benefits of seasonal 

storage to capture the most cost-effective solutions. We propose a model-based approach for 

comprehensive techno-economic assessments of grid-integrated seasonal storage. The 

approach has two major advantages compared to those presented in the literature. First, we 

do not make assumptions about the operation of the storage device, including annual cycles, 

asset utilization or depth of discharge. Rather, a model is used to calculate optimal storage 

operation profiles. Second, the model-based approach accounts for avoided power system 

costs, which allows us to estimate the cost effectiveness of different types of storage devices. 

We assess the cost competitiveness of three specific storage technologies including pumped 

hydro, compressed air, and hydrogen seasonal storage and explore the conditions (cost, 

storage duration, and efficiency) that encourage cost competitiveness for seasonal storage 

technologies. This study considers the Western U.S. power system with 24% to 61% of 

variable renewable power sources on an annual energy basis (up to 83.5% of renewable 

energy including hydro, geothermal, and biomass power sources). Our results indicate that 

for the Western U.S. power system, pumped hydro and compressed air energy storage with 

1 day of discharge duration are expected to be cost-competitive in the near future. In 

contrast, hydrogen storage with up to 1 week of discharge duration could be cost-effective 

in the near future if power and energy capacity capital costs are equal to or less than 

~US$1,507 kW-1 and ~US$1.8 kWh-1 by 2025, respectively. However, based on projected 

power and energy capacity capital costs for 2050, hydrogen storage with up to 2 weeks of 
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discharge duration is expected to be cost-effective in future power systems. Moreover, 

storage systems with greater discharge duration could be cost-competitive in the near future 

if greater renewable penetration levels increase arbitrage or capacity value, significant 

energy capital cost reductions are achieved, or revenues from additional services and new 

markets—e.g., reliability and resiliency—are monetized. 
 

The integration of high shares of variable renewable energy (VRE), such as wind and 

solar photovoltaic (PV) power, raises technical challenges that need to be solved to enable 

high renewable power systems. For example, VRE is weather dependent, and therefore the 

power generation is uncertain and exhibits variable diurnal and seasonal patterns. These 

properties cause more frequent and/or steeper net load—electricity demand minus VRE 

availability—fluctuations that require greater flexibility in the power system and can 

complicate grid operations. Energy storage devices can provide a variety of services to help 

support the integration of VRE, including better aligning the balance between supply and 

demand, supplementing transmission, and providing operating reserves1,2. Sub-hourly 

variation of VRE generation can largely be addressed by a variety of operational practices, 

such as better scheduling, but it can be also assisted by short-term storage devices with fast 

response rates and high power-to-energy ratios, e.g., high-power batteries and flywheels3–5. 

Diurnal shifts can be largely met with devices that have storage capacities of 4 to 8 hours, 

including certain batteries and pumped storage.  

Beyond diurnal storage, research has found that very high penetrations of VRE could 

be facilitated by storage technologies with even longer duration (12+ hours) to help shift 

energy during multi-day periods of supply and demand imbalance 6,7. Candidate technologies 

could include pumped hydro storage (PHS) and compressed air energy storage (CAES). 

Approaching 100% renewable power systems could require seasonal storage capacities of 

weeks or months, including hydrogen or other fuels3,4,8. Seasonal storage at the scale needed 
to make this transition has yet to be deployed at the large scale8,9. 

Significant research has been devoted to the techno-economic assessment of short-

duration storage technologies focusing on market value assessments10,11, many of which 

consider batteries12–14. However, there is a lack of understanding of the value of grid-

integrated seasonal energy storage technologies and their impacts on power system 
operations.  

Current seasonal storage studies have two major limitations. First, modeling seasonal 

storage has been based on the analysis of chronological time series of VRE generation and 

load without considering power system network constraints15–17. Including network 

constraints allows for a more realistic representation of the power system, the ability of 

seasonal storage to benefit from mitigating network congestion, which is particularly 

important on high renewable power systems, and more accurate characterization of storage 

operational parameters including cycles and depth of discharge. Including network 

constraints with the time series approach above can significantly increase computational 

Page 2 of 26Energy & Environmental Science



3 
 

requirements18,19. For short-duration storage this is mitigated by decomposing the problem 

into many smaller problems and running sequentially; however, for seasonal energy storage 

the model must consider the benefit of shifting energy across many months, thereby limiting 

the ability to decompose the problem temporally and again raising computational concerns. 

Second, the techno-economic assessment of seasonal storage has been limited to the cost 

estimation of storage technologies, i.e., without a corresponding profitability analysis1,9,20, 

the estimation of operational seasonal storage requirements for VRE integration3,15,16, or the 

optimal siting and/or sizing of a given seasonal storage technologie21,22.  

We propose a methodology for the comprehensive assessment of grid-integrated 

seasonal storage technologies. The proposed method uses a more detailed power system 

representation to better understand the type of storage asset needed on the power system 

(e.g., discharge durations, round-trip efficiencies) and the resulting operating parameters for 

that storage device (e.g., cycles, utilization, depth of discharge). while also overcoming 

computational limitations. We investigate the total system value—avoided production costs 

(operational value) and avoided capacity costs (capacity value) associated with the storage 

device—of PHS, CAES, and hydrogen seasonal storage technologies in the Western 

Interconnection of the United States; see Supplementary Fig. 1. The methodology assesses 

the cost effectiveness of seasonal storage technologies across different discharge durations 

and the conditions under which given storage devices are cost-competitive. 

Modeling framework and techno-economic assessment 
The most common approach for modeling seasonal storage is to use net load 

analysis16,17,22. Net load analysis is easy to implement and uses simplified assumptions 

regarding the behavior and control of the storage device, but there are some critical 

drawbacks to this approach. Most notably, power system network constraints are not 

considered, and the interactions of the seasonal storage device with other power system 

elements—e.g., generators, transmission, and other storage devices—are not captured. This 

could lead to an underestimation of VRE curtailment and/or storage needs because 

congestion-related VRE surpluses as well as start-up and ramping constraints of thermal 

generators are neglected22. Thus, to improve the assessment of seasonal energy storage, 

power system models with higher temporal and spatial granularity should be used11,21,23.  

Proposed modeling framework 
This paper evaluates seasonal energy storage in four steps involving three types of 

decision-support models for each year analyzed, as described in Fig. 1. First, the ReEDS 

(Regional Energy Deployment System) model24,25 is used for the capacity expansion planning 

problem. ReEDS determines the cost-optimal power generation, transmission, and short-

term (up to 8 hours of discharge duration at rated power before its energy capacity is 

depleted26) storage capacity expansion. ReEDS is run for the entire U.S. power system from 

2018–2050 based on technology cost projections, fuel costs, projected electricity demand, 

and reliability constraints. To look at high shares of VRE, an 80% national renewable 
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portfolio standard (RPS) is assumed27,28. Second, the generation, short-term storage fleet, 

and transmission network from ReEDS are transferred to a production cost tool (PLEXOS29) 

to perform the chronological simulation of power system operations. In these initial 

simulations, PLEXOS is run without the seasonal storage device for the Western 

Interconnection power system in the years 2024, 2032, 2036, 2040, and 2050 (5 base cases). 

Next, a 2-GW storage device with characteristics described later is added to a single location, 

and a price-taker model, RODeO (Revenue Operation and Device Optimization)30,31, is used 

to optimize the yearly operation of the seasonal storage device based on locational marginal 

prices (LMPs) from the PLEXOS output in the previous step and nodal net load constraints. 

The storage dispatch from RODeO is used to generate state-of-charge (SOC) targets for the 

end of each day. Finally, PLEXOS is run again including the optimized storage operation 

results from RODeO as constraints for the seasonal storage device; thus, PLEXOS optimizes 

the hourly operation of the storage device while following the seasonal dispatch shape 

defined by RODeO. In this way, RODeO establishes the seasonal storage dispatch, while 

PLEXOS optimizes unit commitment and dispatch in line with current markets (i.e., day-

ahead with limited future knowledge). This method is able to effectively address 

computational limitations associated with the simultaneous optimization of power system 

operations for the entire year by allowing the problem to be discretized into days and run 

sequentially. Alternative approaches include expanding the optimization period within the 

production cost model, which can be computationally challenging, particularly when 
retaining the hourly resolution needed to capture intraday market opportunities. 

After running PLEXOS with the seasonal storage device included, we collected 

information on production cost, electricity mix, LMPs, curtailment, and emissions. The 

following section provides additional details regarding the modeling tools and the 
implementation of the proposed framework. 

 
Fig. 1: Multi-model approach for the assessment of seasonal storage. Gray boxes denote 

input data (techno-economic assumptions) or information for the simulation and optimization of 

the power system or the storage device. Blue boxes denote power system or storage device 

simulation and optimization models, e.g., capacity planning model (ReEDS24,25), production cost 

model (PLEXOS29), and storage device price-taker model (RODeO 30,31). Green dashed boxes denote 

outputs from power system or storage device simulation and optimization models. 
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Power system and seasonal storage modeling tools 
Capacity expansion model 

The power generation and transmission capacity planning model ReEDS, which uses 

high-fidelity modeling and high spatial resolution, is used to determine the optimal power 

generation and transmission as well as short-term storage fleet for the 2024–2050 U.S. 

electricity system (see Fig. 1 and Supplementary Fig. 1 ). In ReEDS, each season is modeled 

using a representative day of four chronological time slices24,25. The corresponding techno-

economic assumptions—e.g., electricity demand growth, fossil fuel prices, technology cost, 

and existing fleet retirements—are provided in the RPS reports27,28. 

Production cost and Price-taker models 
The production cost model PLEXOS is used to perform the annual simulation, i.e., the 

minimization of the total production cost, of the unit commitment and economic dispatch 

decisions for the 2024–2050 Western Interconnection power system configurations (with 

and without the seasonal storage device) based on the capacity deployment provided by 

ReEDS (see Supplementary Fig. 1). The unit commitment and economic dispatch problems 

are implemented as mixed-integer linear programming models using the direct current 

optimal power flow formulation in PLEXOS. For every scenario, the day-ahead electricity 

market for the corresponding calendar year is simulated with a 1-day optimization window 

with hourly resolution plus 1-day look-ahead with 4-hour resolution. The relative optimality 

gap was set to 0.05%. The price-taker model RODeO was run to determine the optimal 

seasonal dispatch for each seasonal storage case. The objective function is the maximization 

of the energy arbitrage revenue based on the LMPs time series from the PLEXOS runs of the 

corresponding base case. The net load data (net load for 2024–2050 Western 

Interconnection power system configurations at the Southern California Edison (SCE) zone) 

were used to define the operational constraints for the seasonal storage device in RODeO as 

follows: for every seasonal storage case analyzed, VRE hourly surplus, i.e., 𝑆ℎ =

max{0, −𝑁𝑒𝑡𝐿𝑜𝑎𝑑ℎ}, where 𝑁𝑒𝑡𝐿𝑜𝑎𝑑ℎ denotes the net load during hour ℎ, was used as an 

upper bound constraint for charging the seasonal storage device. The net load is calculated 

considering must-run thermal power plants that are on the system at minimum stable 

generation levels. Thus, the storage device can charge only during hours with VRE surplus, 

and the maximum power rating is defined either by the maximum power capacity of the 

device or the magnitude of the VRE surplus, i.e., 𝑃ℎ ≤ min{𝑃𝑐𝑎𝑝, 𝑆ℎ}, where 𝑃𝑐𝑎𝑝 denotes the 

power charging capacity of the storage unit. Similarly, conventional generation 

requirements, i.e., 𝐶𝐺𝑅ℎ = max{0, 𝑁𝑒𝑡𝐿𝑜𝑎𝑑ℎ} , were used as an upper bound for the 

generation of the seasonal storage device. Thus, the maximum generation from the storage 

device is defined either by the maximum power generation capacity or the magnitude of the 

conventional generation requirements, i.e., 𝐺ℎ ≤ min{𝐺𝑐𝑎𝑝, 𝐶𝐺𝑅ℎ}, where 𝐺𝑐𝑎𝑝 denotes the 

power generation capacity of the storage unit. In this study, the power charging capacity is 
equal to the power generation capacity, thus 𝑃𝑐𝑎𝑝 = 𝐺𝑐𝑎𝑝.        
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Cost-benefit analysis 
To better understand cost competitiveness of seasonal energy storage technologies, 

a benefit-to-cost ratio (BCR) analysis is performed.  

Even though the levelized cost of energy (LCOE) or levelized cost of storage are widely 

used for the economic assessment of storage technologies1,6,32, these metrics ignore the 

avoided costs—e.g., avoided energy costs, avoided capacity costs, or both—and therefore 

such metrics can provide an inadequate economic assessment and/or comparison between 

storage technologies33,34. Thus, we use the BCR12,34 metric for the economic assessment of 

seasonal storage technologies based on modeling the whole power system to account for 

avoided costs as well as costs associated with the storage technologies. First, the capital 

recovery factor, 𝐶𝑅𝐹, is calculated based on the lifetime of each technology 𝜏 (years), and the 

discount rate, 𝑟 (%), i.e., 7%, as expressed in equation (1). 

𝐶𝑅𝐹 =
𝑟. (1 + 𝑟)𝜏

(1 + 𝑟)𝜏 − 1
          (1) 

Then, the power capacity overnight construction cost, 𝐶𝑝  (US$ MW-1), the power 

capacity of the storage device, 𝑃𝐶𝑎𝑝 (MW), the energy capacity overnight construction cost, 

𝐶𝑒  (US$ MWh-1), and the energy capacity, 𝐸𝐶𝑎𝑝 (MWh), of the storage device are used to 
estimate the total capital cost, 𝑇𝐶𝐶 (US$), as described in equation (2).  

𝑇𝐶𝐶 = 𝐶𝑝. 𝑃𝐶𝑎𝑝 + 𝐶𝑒 . 𝐸𝐶𝑎𝑝          (2) 

The total capital cost, the capital recovery factor, and the interest rate are used to 

calculate the levelized annual cost, 𝐿𝐴𝐶 (US$), based on the analysis period, 𝑇 (years), i.e., 20 

years,—the time horizon for which the economic assessment is conducted34—as defined in 
equation (3). 

𝐿𝐴𝐶 = 𝐶𝑅𝐹. 𝑇𝐶𝐶.
(1 + 𝑟)𝑇 − 1

𝑟. (1 + 𝑟)𝑇
          (3) 

The total system value, 𝑇𝑆𝑉 (US$), is estimated based on the operational value, 𝑂𝑉𝑡 

(US$), and the capacity value, 𝐶𝑉𝑡 (US$), of the storage device for each year 𝑡 in the analysis 
period, as given in equation (4). 

𝑇𝑆𝑉 = ∑
𝑂𝑉𝑡 + 𝐶𝑉𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

          (4) 

Then, the BCR metric is calculated using equation (5). Note that our BCR calculations 

are based on the operation value instead of the energy market value (energy arbitrage 

revenue), which is commonly used for the assessment of storage technologies; however, the 

energy market value approach is based on fixed electricity market prices and has some 

limitations, e.g., this approach ignores electricity market elasticity as well as the effects of 

increased penetration  levels of VRE generation and system redispatch associated with the 

introduction of a storage device35. 
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𝐵𝐶𝑅 =
𝑇𝑆𝑉

𝐿𝐴𝐶
          (5) 

Finally, the LCOE metric, defined as the ratio of the levelized annual cost to the total 

annual energy production, can be calculated using equation (6). The variable 𝐺𝑒𝑛𝑡 represents 

the total power generation from the storage device during year 𝑡. 

𝐿𝐶𝑂𝐸 =   𝐿𝐴𝐶/ ∑ 𝐺𝑒𝑛𝑡

𝑇

𝑡=1

     (6) 

Note that the formulation of the cost-benefit analysis as described does not include 

operation-and-maintenance (O&M) costs as well as revenue from ancillary services and 

avoided T&D costs; however, the O&M costs represent a marginal contribution to the 𝐿𝐴𝐶 of 

seasonal storage technologies, e.g., hydrogen, CAES, and PHS1. Additionally, the calculation 

of revenues from ancillary services and avoided T&D costs involves significant uncertainties 

regarding future electricity markets. As a reference, under current power system 

configurations and electricity markets, ancillary services and avoided T&D costs could 

represent additional revenue streams on the order of energy and capacity values for energy 

storage technologies10,35. Average ancillary service values reported in the literature range 

from US$8 per kW-year to US$123 per kW-year, depending on the service10. Similarly, 

average avoided T&D costs range from US$72 per kW-year to US$124 per kW-year, 
depending on the service10. Thus, our 𝐵𝐶𝑅 calculations are likely conservative.   

The BCR analysis, including estimated capacity value, is performed for each seasonal 

storage technology and for each system configuration, e.g., power and energy storage 

capacity, based on 2025–2045 and 2050–2070 operation windows. The value of energy 

storage is calculated for 5 years (2024, 2032, 2036, 2040, and 2050), with each year 

representing a different renewable energy mix and therefore system configuration. For each 

configuration, we consider a case without seasonal storage (base case) and 15 seasonal 

storage cases. In each seasonal storage case, a single 2 GW of storage power capacity is added 

to the SCE zone, illustrated in Supplementary Fig. 1. This power capacity of the seasonal 

storage device represents approximately 1% of the peak load of the Western Interconnection 

power system in 2050, and it is sufficiently large to be discernible from the numerical 

optimization tolerance, given the scale of the power system26. Three different generic 

storage technologies were used (hydrogen, CAES, and PHS, which are commonly used in the 

literature 3,9,20) with a combination of five storage discharge durations: 1 day (1d), 2 days 

(2d), 1 week (1w), 2 weeks (2w), and 1 month (1m). Thus, there are 16 scenarios for each of 

the five power system configurations, which corresponds to a total of 80 scenarios analyzed. 

For a given technology, the corresponding energy capacity, e.g., kWh, can be calculated based 

on the storage discharge duration, the power capacity, and the round-trip efficiency, e.g., 2 

GW of storage power capacity with 1 day of discharge duration and 50% efficiency is 

equivalent to 24ℎ ∗
2𝐺𝑊

√0.5
 or 67.88 GWh of energy capacity, assuming all losses occur during 

charging and discharging and the same efficiency for charging and discharging (the 
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assumptions used in this study). The corresponding economic assumptions for each generic 

technology are presented in Table 1, including efficiency, lifetime, and power and energy 
capacity capital costs for each technology. 

 

Table 1. Techno-economic assumptions for seasonal energy storage technologies20,36,37 

Technology 
(round-trip 

efficiency, lifetime) 
Year 

Power capacity cost 
($ kW-1) 

Energy capacity cost 
($ kWh-1) 

Min Ref. Max Min Ref. Max 
Hydrogen  
(40%, 18 years) 

2025 1,507 3,013 4,520 1.8 3.7 5.5 
2050 650 1,300 1,950 0.5 1.0 1.5 

CAES 
(60%, 30 years) 

2025 434 817 984 9.1 34.9 80.8 
2050 415 755 947 8.9 31.0 81.6 

PHS 
(80%, 55 years) 

2025 573 1,156 1,819 17.4 50.3 101.8 
2050 573 1,164 2,807 17.3 50.9 97.4 

Ref. = reference cost values. The projected values—e.g., minimum (min), reference, and maximum 

(max)—for power and energy capacity capital costs for CAES and PHS were based on the average projected 

values from three references20,36,37. The reference value for power and energy capacity capital cost of 

hydrogen were based on a report from the International Energy Agency37, while the corresponding min and 

max values were based on a -/+50% from the reference value. Note that the standard deviation of projected 

capital cost for hydrogen storage reported in the literature is ~50%20. CAES represents advanced system 

designs that do not burn gas. Moreover, the techno-economic assumptions presented in this table are not 

intended to represent any specific energy storage installation. 

Integration of VRE and seasonal storage dispatch profiles 
This section summarizes the results regarding the optimal short-term storage 

capacity deployment, power generation, and transmission capacity expansion for the 2024–

2050 Western Interconnection power system provided by ReEDS. The results from the 

production cost simulations, which were implemented in PLEXOS, are summarized in Fig. 2. 

The optimal generation mix for each system configuration is shown in Fig. 2a. The share of 

wind and solar PV power in the generation mix increases from ~24% in 2024 to ~61% in 

2050, whereas the share of natural gas and coal power generation decreases from ~44% in 

2024 to ~11% in 2050. Additionally, in the 2024–2050 time frame, the share of hydropower 

and nuclear power decreases by 3%, as a result of assumed plant retirements. The 

deployment of VRE, which has zero marginal generation cost, is expected to reduce the total 

Western Interconnection production (operational) costs, chiefly fuel costs, by ~54% from 

2024 to 2050, as observed in Fig. 2b. Moreover, despite the significant deployment of short-

term storage capacity (from 6.1 GW in 2024 to 33.5 GW, or ~7.4% of the total installed 

generation capacity in 2050, as illustrated in Fig. 2c), VRE curtailment is projected to increase 

significantly as wind and solar PV are deployed in the Western Interconnection power 

system, as shown in Fig. 2d. Additionally, the deployment of PHS capacity in the Western 

Interconnection power system is consistent with some scenarios from the RPS study, which 

project the deployment of 15–35 GW of PHS in the United States between 2030 and 205027.   
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Fig. 2: Evolution of the Western Interconnection power system from 2024 to 2050 in the base cases. 

a, Generation mix for the corresponding year with the total electricity demand values in 

parenthesis. b, Breakdown of annual production cost. c, Short-term storage, e.g., up to 8 hours of 

duration, capacity deployment (left vertical axis), and total installed power generation capacity 

(right vertical axis). d, Curtailment of wind and solar PV in terms of percentage of available energy 

(left vertical axis) and total VRE curtailment in terms of TWh (right vertical axis). 

 

To illustrate the opportunities for seasonal storage in the 2024–2050 Western 

Interconnection power system, the net load and the hourly LMPs time series for the SCE 

model zone are shown in Fig. 3. This zone was selected because it has a large electricity 

demand coupled with a significant deployment of VRE, substantial regional interconnection, 

and favorable policies for new and emerging technologies. Note that for this specific zone 

there are no must-run thermal power plants. As observed in Fig. 3a, the magnitude (GW) as 

well as the number of hours with negative net load, e.g., hours for which VRE generation is 

greater than the load, increase as the installed capacity of VRE increases. This is particularly 

true during spring and summer, given the seasonality of VRE (particularly solar PV). As an 

example, the number of hours with VRE surplus in the SCE zone increases from ~4% in 2024 

to ~23% in 2050, whereas the number of hours with zero LMP increases from ~0% in 2024 

to ~22% in 2050; see Fig. 3b. As a result, the hourly average LMPs decrease from US$23.3 

MWh-1 in 2024 to US$18.0 MWh-1 in 2050 (Fig. 3b), and the temporal variability (expressed 

as standard deviation) of the LMPs increase from ~US$3.2 MWh-1 in 2024 to ~US$12.3 MWh-
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1 in 2050. These findings are consistent with previous studies that show that the integration 

of VRE decreases average wholesale electricity prices while increasing the corresponding 
temporal variability38–40. 

 
Fig. 3: Hourly net load and LMPs in the SCE zone from 2024 to 2050 without seasonal storage. a, 

Net load (GW). b, Hourly LMPs (US$ MWh-1). The yearly average and standard deviation (SD) of the 

LMPs are included in the box on the top of each LMP time series. WI = Western Interconnection.  

 

Based on the net load and LMP data illustrated in Fig. 3, the seasonal dispatch of the 

storage device was optimized using RODeO. As an illustration, the normalized SOC for each 

technology and storage duration in the 2050 Western Interconnection power system is 

summarized in Fig. 4. The normalization was based on the maximum SOC from the seasonal 

dispatch provided by RODeO. It is observed that, given its limited energy capacity, the shapes 

of the dispatch curves for 1d and 2d storage durations have more intra-seasonal fluctuations 

than the corresponding dispatch curves for 1w, 2w, and 1m storage durations. In contrast, 

given the higher storage energy capacity, dispatch curves for storage durations of 1w or 

greater show more synchronized operation with the seasonality of VRE. Moreover, it was 

observed that regardless of the technology (or efficiency), 1m of storage is underused, e.g., 

the maximum SOC from the seasonal dispatch provided by RODeO was always lower than 

the energy capacity of the storage device. 
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Fig. 4: Normalized SOC for the 2050 power system configuration. The energy capacity (maximum 

SOC) was used to normalize the SOC at the end of each day. The average optimal daily dispatch for 

each season is provided in Supplementary Fig. 2.  

 

The integration of the seasonal storage device produces significantly different results 

than the base cases. First, the curtailment of VRE is reduced, not only in the region where the 

storage device was located (SCE zone) but also in neighboring regions. For instance, for the 

2050 power system configuration and depending on the device efficiency and discharge 

duration, the seasonal storage device reduces wind and solar PV curtailment in California 

(which includes the SCE zone) between 7.4%–14.7% and 9.8%–15.5%, respectively 

(reduction of 0.6%–2.3% and 6.1%–7.9% for wind and solar PV curtailment in the Western 

Interconnection, respectively). This additional stored energy displaces fossil-fueled 

generation and reduces CO2 emissions by 0.5%–1.8%. Additionally, the average SCE zone 

LMPs consistently increase, whereas the corresponding standard deviation decreases; see 
Supplementary Fig. 3. 

Cost competitiveness and targets for grid seasonal storage 
As mentioned previously, two analysis periods were used: 2025–2045 and 2050–

2070. The operational value, 𝑂𝑉𝑡, was estimated based on the total avoided production cost, 

i.e., total production cost of the base case (without seasonal storage) minus the total 

production cost associated with the corresponding seasonal storage case. For instance, the 

Western Interconnection 2024 operational value for hydrogen seasonal storage with 1 day 

of duration is calculated as the difference between the total production cost of the Western 

Interconnection 2024 base case (without seasonal storage) and the total production cost of 
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the Western Interconnection 2024 system with a hydrogen seasonal storage device with 1 

day of discharge duration. This procedure was applied for each seasonal storage scenario 

and for the Western Interconnection 2024, 2032, 2036, 2040, and 2050 power system 

configurations. Then, linear interpolation or extrapolation was used to estimate the 

operational value for the remaining years in the 2025–2070 time frame (see Supplementary 

Fig. 4). A similar approach was used to estimate the total power generation from the storage 

device 𝐺𝑒𝑛𝑡  for each year. Regarding the capacity value, two methods—i.e., a reliability-

based method and a capacity factor-based approximation method—are commonly used to 

evaluate the capacity value of renewable power plants and storage devices41–43. Reliability-

based methods use a large set of simulations to estimate the loss-of-load probability, which 

is used to calculate the effective load-carrying capability or the equivalent conventional 

power metric42,43. In contrast, capacity factor-based approximation methods are based on 

the capacity factor of the generator or storage device over a given subset of time periods, e.g., 

hours, during which the power system has a high probability of facing a shortage, e.g., 

periods or hours with the highest loads42,43. The reliability-based method can be 

computational expensive, whereas the capacity-factor-based method is more practical and 

can provide a reasonable approximation of the capacity value, e.g., based on the 10 highest 

load hours41,42. Thus, the capacity-factor-based method is used in this study to estimate the 

capacity value of seasonal storage. Note that while current practice is to estimate the capacity 

value based on just “peak load”, in future power systems with high shares of VRE it should 

be based on “peak net load” 35,44. First, the capacity credit—the ability of the seasonal storage 

device to supply energy during periods of peak net load—was estimated based on the top 10 

peak net load hours of the Western Interconnection 2024, 2032, 2036, 2040, and 2050 

power system configurations. The period of peak load is normally less than 8 hours in 

duration44. To this end, the optimal storage dispatch provided by PLEXOS, which includes 

the SOC targets from RODeO, was compared with the top 10 peak net load hours to 

determine if the seasonal storage device is supplying energy during these hours. In general, 

e.g., for every seasonal storage scenario, it was observed that the seasonal storage device 

generates electricity at full capacity and/or has enough energy stored to generate at full 

capacity during the top 10 peak net load hours; see illustration in Supplementary Fig. 5. Thus, 

a 100% capacity credit is assumed for every seasonal storage device considered in this study. 

This assumption is consistent with previous studies that showed that storage devices with 

more than 10–12 hours of discharge duration can receive 100% capacity credit43,44. Note 

that this study contemplates storage devices with 1 day of storage discharge duration or 

greater. The next step is to determine the capacity cost—the cost of building a new peaking 

conventional thermal generator to supply electricity demand33—because the annual 

capacity value can be estimated by multiplying the power capacity (kW) by the capacity 

credit (% or fraction) and the avoided capacity cost of peaking generators (US$ per kW-

year). Previous studies reported avoided capacity costs of US$190 per kW-year33 and 

US$212 per kW-year35 for the California Independent System Operator. In this study, the 

avoided capacity cost of peaking generators was assumed to be US$200 per kW-year. 
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Additionally, a lower value of US$150 per kW-year and an upper value of US$250 per kW-

year were used to assess the sensitivity of the BCR metric to the capacity cost assumption. 

Two metrics were used to evaluate the cost and the profitability of seasonal storage. 

First, the cost of seasonal storage was evaluated based on the levelized cost of energy 

(LCOE); see Fig. 5a. Based on the reference cost values reported in Table 1, for 2025, PHS is 

the cheapest technology for discharge durations lower than 16.9 days, whereas hydrogen 

storage is cheaper that CAES and PHS for discharge durations of 6.8 days (or more) and 16.9 

days (or more), respectively. Moreover, for 2050, hydrogen storage is cheaper than CAES 

and PHS with 1.9 days (or more) and 3.1 days (or more) of discharge duration, respectively; 

however, the LCOE metric does not provide information regarding the cost competitiveness 

of each technology. Thus, the cost effectiveness, i.e., measured via the BCR metric, was used 

to evaluate the profitability of the seasonal storage technologies. The BCR metric considers 

not only the total cost, e.g., capital cost for power and energy capacity, but also the total 

system value, e.g., energy and capacity value, associated with the storage technologies. As 

defined previously, the BCR metric is the ratio between total system value—operational 

value plus capacity value—and the total capital cost of the storage device. The results 

regarding the operational value are summarized in Supplementary Fig 4, whereas the 

calculation of the capacity value was based on 100% capacity credit and US$200 per kW-

year avoided capacity cost, as described previously in this section. The BCR results are 

summarized in Fig. 5b. For the 2025–2045 time frame and based on the reference cost values, 

only CAES and PHS with 1 day of discharge duration are cost-effective (BCR ≥1). Moreover, 

hydrogen storage with up to 1 week of discharge duration will be cost-competitive if power 

and energy capacity capital costs are equal to or less than ~US$1,507 kW-1 and ~US$1.83 

kWh-1 by 2025, respectively. Thus, hydrogen seasonal storage is unlikely to be cost-effective 

in the near future unless significant capital cost improvements are achieved. For the 2050–

2070 time frame, however, hydrogen seasonal storage with 1 day, 2 days, 1 week, or 2 weeks 

of discharge duration would be cost-competitive, whereas CAES and PHS are cost-

competitive only for discharge durations of 1 day (CAES and PHS) or 2 days (CAES). In 

general, hydrogen seasonal storage is more cost-competitive than CAES and PHS for 

applications that require discharge durations of 2 days or more. This is primarily because of 

the energy capacity capital cost of hydrogen storage is lower than CAES and PHS; see Table 

1 and Fig. 6. For example, for 2 days of discharge duration, the energy capacity capital cost 

share of the total capital cost for hydrogen storage is ~5.5%, whereas it is more than 70% 

for CAES and PHS, as illustrated in Fig. 6. This method for assessing the cost effectiveness of 

storage technologies represents a refinement of the LCOE analysis method presented earlier. 

For instance, the LCOE analysis shows hydrogen is preferred for discharge durations greater 

than 3.1 days, while the cost effectiveness calculations show not only a preference for 

hydrogen storage with a discharge duration of 2 days or more but also cost competitiveness 
for hydrogen storage discharge durations of up to 2 weeks. 

Additionally, hydrogen is a flexible energy carrier that can be used in other 

sectors45—e.g., transportation, agricultural, industrial, and residential— which could 
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provide additional revenue streams to hydrogen storage systems. Besides hydrogen, 

ammonia is a versatile energy carrier that can be used not only for seasonal storage but also 

for cross-sectoral applications, e.g., renewables to fertilizers and transportation fuels. Given 

the breadth of potential configurations and pathways for these energy carriers, we focus this 

study on electron-to-electron pathways with the recognition that exploration of alternative 

pathways is an area for future work. Moreover, our calculations do not include revenues 

from ancillary services and avoided transmission and distribution (T&D) costs. These 

revenue streams could be crucial for the cost effectiveness of seasonal storage. For example, 

hydrogen storage with 1 day, 2 days and 1 week of duration requires ~US$99.1 per kW-year 

, ~US$112.7 per kW-year, and ~US$181.7 per kW-year of revenue from additional services 

to be cost-competitive in the 2025–2045 time frame, respectively. Similarly, CAES and PHS 

with 2 days of duration requires ~US$19.9 per kW-year and ~US$50.7 per kW-year of 

additional revenue to be cost-effective in the 2050–2070 time frame, respectively. These 

required additional revenues appear feasible in current electricity markets, i.e., the reported 

average values of up to US$123 per kW-year and US$124 per kW-year for ancillary services 

and avoided T&D cost, respectively10. 
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Fig. 5: Seasonal storage cost and profitability. a, LCOE for seasonal energy storage. b, Benefit-to-cost 

ratio for seasonal storage technologies. Time frames 2025–2045 (top panel) and 2050–2070 
(bottom panel). H2 denotes hydrogen storage. 
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Fig. 6: Normalized capital cost breakdown for seasonal storage technologies under different 

discharge durations for the 2050-2070 operation windows. Similar results were observed for the 

2025-2045 time frame. H2 denotes hydrogen storage. 

 

Regarding the breakdown of the total system benefit, depending on the device 

efficiency and discharge duration, the share of operational value ranges from 6.6%–11.7% 

and 13.6%–24.0% for the 2025–2045 and 2050–2070 time frames, respectively. Thus, the 

value of a given seasonal storage device is driven mostly by its capacity value (essentially its 

ability to replace fossil-based peaking generators) rather than by operational value (load-

shifting benefits), which is consistent with previous work35. As a reference, for the Western 

Interconnection power system in 2050, the estimate operational value ranges from US$29.1 

per kW-year to US$54.2 per kW-year, depending on the storage device. 

Because the capacity value is a major driver for seasonal storage value, a sensitivity 

analysis was performed to quantify the sensitivity of the BCR metric to the assumed avoided 

capacity cost of peaking generators; see Fig. 7. Although previous studies estimated the 

capacity value at approximately US$200 per kW-year in the Western Interconnection power 

system33,35, as the VRE share on a power system increases, it is unclear how the impacts will 

affect the value and resulting market(s) for providing capacity. The sensitivity results show 

that for the 2025–2045 time frame, assumed avoided capacity cost could change the cost 

effectiveness of CAES and PHS devices with 2 days of discharge duration. For example, CAES 

and PHS with 2 days of duration are expected to be cost-competitive for avoided capacity 

cost at US$250 per kW-year but not for US$150 per kW-year. This is also true for CAES and 

PHS with 2 days of duration operating during the 2050–2070 time frame. Moreover, 

hydrogen storage is uneconomical for the 2025-2045 operation window and cost-effective 

with up to 2 weeks of discharge duration for the 2050-2070 time frame, regardless of the 

assumed capacity value. Additionally, hydrogen storage with 1 month of discharge duration 
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is expected to be cost-competitive during the 2050-2070 time frame for avoided capacity 

cost at US$250 per kW-year but not for US$150 per kW-year. 

 

 
Fig. 7: Sensitivity of BCR metric to avoided capacity cost of peaking generators. Time frames 2025–

2045 (top panel) and 2050–2070 (bottom panel). H2 denotes hydrogen storage. Additional 
sensitivities for the BCR metric—e.g., for min and max values of power and energy capacity capital 
costs—to the avoided capacity cost of peaking generators are provided in Supplementary Figs. 6 

and 7. 
 

In an effort to better understand the conditions that make seasonal storage cost-

competitive, we explore the 2050 power- and energy-related cost targets at which seasonal 

storage becomes profitable with 1 day, 2 days, 1 week, 2 weeks, and 1 month of discharge 

durations. The analysis is based on generic storage technologies with 40%, 60%, and 80% 

round-trip efficiency and three possible lifetimes, i.e., 18 years, 30 years, and 50 years, for a 

total set of 9 generic storage technologies (combinations of 3 efficiencies and 3 lifetimes). 

Additionally, ranges of power- and energy-related costs were considered to capture the 

significant uncertainty in storage capital and operational costs. The results are summarized 
in Fig. 8, Fig. 9, and Fig. 10 for 18 year, 30 year, and 50 year lifetime, respectively. 

Regardless of the efficiency and the lifetime, a storage technology with a power-

related cost of US$500 kW-1 would be cost-effective in the 2050-2070 time frame for 
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discharge durations of 1 week, 2 weeks, and 1 month if energy-related cost is less than 

US$6.9 kWh-1, US$3.5 kWh-1, and US$1.6 kWh-1 by 2050, respectively. For a power-related 

cost of US$1000 kW-1, the previous energy-related cost targets are US$5.0 kWh-1, US$2.5 

kWh-1, and US$1.2 kWh-1 for 1 week, 2 weeks, and 1 month of discharge duration, 

respectively. Moreover, for the same time frame and regardless of the efficiency and lifetime, 

a seasonal storage technology with energy-related cost at US$1.0 kWh-1 by 2050 would be 

cost-competitive for 1 week, 2 weeks, and 1 month of discharge duration if power-related 

cost is less than US$2074.0 kW-1, US$1808.5 kW-1, and US$1201.6 kW-1, respectively. For 

energy-related cost at US$2.0 kWh-1, these power-related cost targets become more 

stringent, e.g., US$1808.3 kW-1, US$1277.2 kW-1, and US$63.2 kW-1 for 1 week, 2 weeks, and 

1 month of discharge duration, respectively. Note that the slope of the iso-BCR lines for 1 

week, 2 weeks and 1 month of discharge duration indicates that the cost competitiveness of 

seasonal storage is mostly driven by the energy-related costs, while power-related costs, 

efficiency, and lifetime play a less important role. Therefore, efforts in research and 

development of seasonal storage technologies should focus on the design of storage devices 

with low energy-related costs.  

Regarding the effects of lifetime on the cost effectiveness of seasonal storage, it is 

observed that for a storage technology with 1 week of discharge duration, 60% round-trip 

efficiency, and power-related cost of US$1000 kW-1, cost competitiveness is achieved if 

energy-related costs are less than US$6.7 kWh-1, US$9.4 kWh-1, and US$10.9 kWh-1 by 2050 

for 18 year, 30 year, and 50 year lifetime, respectively. Similarly, a storage technology with 

1 week of discharge duration, 30 year lifetime, and power-related cost of US$1000 kW-1 

would be cost-effective if energy related costs are less than US$7.1 kWh-1, US$9.4 kWh-1, and 

US$11.6 kWh-1 by 2050 for 40%, 60%, and 80% efficiency, respectively. This ex ante 

assessment of the economics of seasonal storage can help inform research and development 

decisions, policy makers, as well as industry investment. 
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Fig. 8: Energy storage cost targets (2050) for technologies with 18 year lifetime, based on 

profitability in the 2050–2070 time frame. For every storage discharge duration—i.e., 1 day, 2 days, 
1 week, 2 weeks, or 1 month—the area below the corresponding iso-BCR line BCR=1 represents the 

set of power and energy costs for which the corresponding seasonal storage technology is cost-
effective. 
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Fig. 9: Energy storage cost targets (2050) for technologies with 30 year lifetime, based on 

profitability in the 2050–2070 time frame. For every storage discharge duration—i.e., 1 day, 2 days, 
1 week, 2 weeks, or 1 month—the area below the corresponding iso-BCR line BCR=1 represents the 

set of power and energy costs for which the corresponding seasonal storage technology is cost-
effective. 
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Fig. 10: Energy storage cost targets (2050) for technologies with 50 year lifetime, based on 

profitability in the 2050–2070 time frame. For every storage discharge duration—i.e., 1 day, 2 days, 
1 week, 2 weeks, or 1 month—the area below the corresponding iso-BCR line BCR=1 represents the 

set of power and energy costs for which the corresponding seasonal storage technology is cost-
effective. 

 

Finally, the system operational value was compared to the storage plant energy 

market value. The energy market value or energy arbitrage revenue was estimated by 

multiplying the LMP time series and hourly dispatch profile (from PLEXOS) for each seasonal 

storage device. It was estimated that the energy market value captures only a fraction—e.g., 

from 52.3% to 84.5%, depending on the seasonal storage scenario and the year of 

operation—of the system operational value. As an illustration, the ratio between the plant 

energy market value and the system operational value for 2050 and for each seasonal 

storage device is shown in Fig. 11. For this specific year, the energy market value captures 

only a 67%-79.2% of the system operational value, depending on the seasonal storage 

scenario.  This situation reflects the inability of energy markets to fully compensate storage 

devices for the operational benefits that they can provide to the system. This finding is 

consistent with previous work46 and reiterates the importance of considering how to 

appropriately value storage and particularly long-duration storage, when developing market 
products. 
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Fig. 11: Energy market value versus operational value for the Western Interconnection in 2050. H2 

denotes hydrogen storage. 

Conclusions 
Although significant research efforts have been devoted to the techno-economic 

assessment of energy storage technologies, the understanding of the economics of seasonal 

energy storage and the corresponding impacts on power system operations has been largely 

overlooked. We developed a model-based approach for the comprehensive analysis of 

seasonal storage technologies in the context of the integration of high shares of wind and 

solar photovoltaic power sources in power systems. The approach was used to investigate 

the operational performance and cost-benefit comparison of three specific storage 

technologies (i.e., pumped hydro storage, compressed air energy storage, and hydrogen 

storage) as well as to develop a broader understanding of the cost, storage duration and 

efficiency conditions that encourage cost competitiveness for seasonal storage technologies. 

This investigation was performed for the Western Interconnection power system, 

considering the deployment of wind and solar power shares from 24% to 61% (on an annual 

energy basis). This approach has two major advantages. First, we do not have to make 

assumptions about the operation of the storage including cycles or depth of discharge. 

Instead, a model is used to calculate optimal storage operation profiles. Second, the approach 

accounts for avoided power system costs, which allows us to estimate the cost effectiveness 
of different types of storage devices. 

Most literature for seasonal storage focuses on technology cost assessments and does 

not consider the potential grid benefits, which are important in establishing the cost 

effectiveness or profitability of installed storage plants. Strictly from a technology cost 

perspective, pumped hydro energy storage has the lowest cost for low discharge durations; 

however, as the installed discharge duration increases, hydrogen eventually becomes the 
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lowest cost technology, due to the significantly lower energy storage capital costs compared 

to CAES and PHS. This occurs for discharge durations greater than 16.9 days in the 2025–

2045 time frame and 3.1 days in 2050–2070 time frame. This behavior is consistent with 

findings in the literature, but this method does not answer the broader question of cost 
effectiveness for seasonal storage technologies.  

Using a benefit-to-cost ratio method that considers operational and capacity value as 

benefits along with the assumed cost values, the most cost-effective storage systems have 1 

day of discharge duration. Of the benefits considered, capacity value is the biggest driver. In 

the 2050–2070 time frame, the capacity value is around four times that of the operational 

value; in large part, this explains the preference for 1 day of discharge duration. In addition, 

though it is not the most cost-effective solution, a discharge duration of 2 days has a BCR 

greater than one for hydrogen and compressed air energy storage in 2050–2070. Moreover, 

for more than 2 days of discharge duration, the only cost-effective technology is hydrogen 
because of its lower cost for energy capacity.  

Cost effectiveness for energy storage is sensitive to a variety of aspects including: (i) 

greater renewable energy share which could affect the arbitrage or capacity value; (ii) 

significant capital cost reductions, e.g., capital cost in 2025-2045 window falling below 

~US$1,000 kW-1 and ~US$1.2 kWh-1 for power and energy capacity, respectively; or (iii) the 

ability of the storage device to monetize additional grid services or new markets, e.g., 
reliability and resiliency. 
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