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Advanced fuels from ethanol-A superstructure optimization 
approach
Juan-Manuel Restrepo-Flóreza, Christos T. Maravelias*b

We develop a superstructure framework for the design of biorefineries for ethanol upgrading into advanced biofuels to 
replace gasoline, jet fuel or diesel. The framework integrates catalysis, process synthesis, and fuel property modelling 
towards the design of biorefineries producing fuels with specified properties.  The proposed framework is applied to idenitfy 
strategies for the upgrading of ethanol into one or more fuels with specific properties. We discuss the trade-off between 
profit and biorfinery complexity; as well as the relation among fuel property constraints, the optimal upgrading strategy 
selected, and process economics. Finally, we show how to find the optimal biorefinery associated with a particular chemistry 
or catalyst. The results presented constitute the first systematic study of ethanol upgrading considering, simultaneously, 
fuel and process design.

Broader context
Ethanol is the most common biofuel, typically blended with gasoline at a maximum 10% level. Considering current trends in fuel consumption and the expected 
increase in ethanol production capacity, it is projected that a surplus of ethanol will be available in the market. Consequently, numerous ethanol upgrading 
strategies have been studied. These strategies involve the use of several chemistries (e.g. dehydration, condensation, and Guerbet coupling) for the conversion 
of ethanol into different fungible molecules (e.g. olefins, alcohols, and ethers). However, the systematic analysis of these strategies is challenging due to the 
large number of available chemistries, catalysts, and processes. At the same time, there is a wide range of advanced biofuel targets, potentially outperforming 
their fossil-fuel-derived counterparts, whose properties could be tailored depending on the selected upgrading strategy. Accordingly, the goal of this work is 
to develop a framework for the design of novel and efficient ethanol upgrading strategies towards fuels with desirable properties. The interdisciplinary nature 
of the problem requires the integration of catalysis, process systems engineering, and fuel property modelling. We apply the proposed framework to design 
ethanol upgrading biorefineries that produce advanced biofuels designed to replace gasoline, jet fuel, or diesel.  

Introduction
Concerns about global warming and energy independence have 
driven both governments and the private sector to invest in biofuel 
production research. The development of the ethanol industry is a 
notable example. Only in the U.S., ethanol annual production 
capacity has increased from 2 to 16 billion gallons in the last twenty 
years1. While the adoption of a biofuel is a significant development, 
ethanol has two important limitations. First, to prevent corrosion, 
regulations in most countries limit the amount of ethanol that can be 
blended with fuels to 10%2,3. Second, the demand for gasoline is 
decreasing4,5 while the demand for middle distillates (diesel and jet 
fuels) is increasing6, but ethanol is a poor replacement for middle 
distillates5. With the ethanol demand for gasoline blending satisfied2, 
the increasing production capacity is likely to lead to a surplus of 
ethanol1,7,8. Accordingly, we have seen a renewed interest in finding 
strategies to upgrade ethanol into more fungible molecules5,9,10. 
Among these strategies, those leading to products that can be 
blended above 10% with fossil fuels are particularly important, 
especially if they can replace middle distillates. 

In the last 30 years, the upgrading of ethanol toward fungible 
molecules has significantly advanced. The corpus of this literature 
covers a diverse set of chemistries (e.g. Guerbet coupling, 
dehydration, and condensation) and catalysts, establishing ethanol 
as a platform chemical5,9,18,19,10–17. Initial attempts to find ethanol 
upgrading strategies were oriented toward processes yielding final 
products similar to the ones derived from fossil fuels5,10,18,20,21. 
However, trying to develop biofuels with the same composition and 
properties as the ones derived from oil may be short-sighted. The 
diversity of ethanol chemistries can be used to design tailored fuels 
whose performance is as good as or even better than that of fossil 
fuels in an economically viable manner. However, there are 
important challenges in achieving this vision. First, the design space 
of the problem at hand is very large. Second it is necessary to 
consider the interactions among three areas: catalysis, process 
synthesis, and fuel property modeling. 

While ethanol chemistries have been extensively reviewed5,10, a 
comprehensive and systematic analysis of ethanol upgrading 
strategies has not been attempted. Towards this goal, an 
optimization-based process synthesis and analysis framework can be 
beneficial. Such a framework allows the exploration of a large design 
space, enables the identification of critical trade-offs, and leads to 
preliminary process designs that can be further explored using 
rigorous simulation tools. Although the application of optimization-
based process synthesis is not yet the standard in industry, it has 
been successfully applied in academia to address both  general 
synthesis problems (e.g. design of heat exchanger networks22,23, 
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distillation sequences24,25, and integrated process flowsheets26–29), 
as well as specific systems (e.g. selection of biopolymer synthesis 
straegies30, synthesis of biorefineries2,31–34, and design of shale gas 
plants35). Of particular importance here are approaches dealing with 
the synthesis of integrated biorefineries. That is, biorefineries in 
which multiple technologies are employed36–40. Works in this field 
include efforts dealing exclusively with the process synthesis 
problem, without considering product properties31,36,48,37,41–47, and 
to a lesser extent with the integrated process and product design 
problem49–54. The product design component has been viewed from 
two different perspectives. First, there are studies in which product 
design is understood as molecular design, that is, the product is a 
single chemical species with specified properties. This kind of 
formulation heavily relies on group contribution methods, and 
Quantitative Structure–Activity Relationships (QSAR)50,53–57. 
Alternatively, product design is formulated as a blend design, that is, 
the goal is to choose an optimal set of molecules, from an available 
candidate pool, such that the resulting blend has tailored properties, 
calculated using blending rules39,49,51,58. 

The integration of catalysis, process synthesis, and fuel property 
modeling, towards the formulation of a mathematical programming 
model can be achieved at two different levels: first, early-stage 
evaluation of candidate pathways; and second, evaluation of 
candidate flowsheets for which process information is available. In 
the early-stage evaluation, process information is limited. The goal is 
to find the optimal strategy, without performing detailed process 
simulations, using reasonable estimates of the total production 
costs, and the stoichiometry of a reaction network of 
interest49,51,52,54. Toward this direction, significant work has been 
carried out at the Fuel Design Center at RWTH Aachen University, 
where Reaction Network Flux Analysis (RNFA)49,51,54,59 and Process 
Network Flux Analysis (PNFA)51,60 were developed as support tools 
for the design of tailor-made biofuels. Along the same lines, 
Daoutidis and coworkers52,61,62 studied the selection of an optimal 
pathway to obtain a product with specified properties. Other works 
of interest include those by Broadbelt and Shanks focused on the 
identification of bioprivileged molecules that can be easily 
transformed into other valuable chemicals63–65. A different problem 
arises when there exists detailed information (i.e. process flow 
diagrams and economic parameters) for several processes that can 
be used to produce a set of biofuels, either in a standalone manner 
or integrated into a more complex flowsheet. An interesting question 
concerns the identification of the network of processes that 
maximizes the profit while producing fuels with desired properties. 
In general, strategies to address this question have relied on 
superstructure-based optimization31,36,37,39,45,46,48,66. Notable 
examples include the Chemical Species/Conversion Operator 
(CSCO)36 approach, the Biomass Utilization Superstructure (BUS)31,45, 
the biomass bipartite graph representation (BBR)43, the integer-cuts 
constraint method for biorefinery design46,66, and the Processing 
Step-Interval Network (PSIN) representation48,67. However, most of 
these approaches do not consider the modeling of fuel properties, 
with the exception of the two-stage optimization approach by Ng and 
coworkers39. 

In this paper, we present a superstructure-based optimization 
framework that can be used for simultaneous process and fuel 
design, and we apply it to study ethanol upgrading to various 
biofuels. The results constitute the first systematic analysis of 
ethanol upgrading strategies, providing insights into conversion 
pathways, as well as identifying the major cost drivers associated 
with these strategies. Furthermore, we explore the trade-off 

between biorefinery complexity and process economics; and discuss 
the relation between the fuel properties and the optimal 
biorefineries designed. Methodologically, we express the problem 
using a hierarchical superstructure which encompasses detailed 
decisions (e.g. catalyst selection based on chemistry selection), while 
enabling the coupling of the decisions made at the process level with 
the resulting product properties.

Framework
Superstructure architecture

The design of an ethanol upgrading biorefinery can be described in 
terms of three levels of decisions: 

1) Selection of the species undergoing a chemical reaction; 
ethanol as the initial substrate is in the list of such species, 
but the selected strategy may involve subsequent 
transformations of other species (e.g., ethylene, butanol) 
produced from the initial ethanol transformation. 

2) Selection of the specific chemistries used for the 
transformation of the species selected at the first level; for 
example, if ethanol and ethylene were selected, then the 
chosen chemistries may be alcohol dehydration and 
oligomerization, respectively.

3) Selection of the specific processes used to realize the 
chemistries chosen in the second level; these processes are 
characterized by the catalyst, the separation train used to 
obtain the products of interest, and the specific process 
conditions used.

In this work, we have used two abstractions to systematically 
account for these decisions. First, we represent upgrading strategies 
as a sequence of conversion modules consisting of a catalytic 
conversion unit and its associated separation operations. Second, we 
introduce a hierarchical architecture to consider the three relevant 
decision levels simultaneously (Figure 1). 

The superstructure has three levels: Module (Figure 1(a)), 
Technology (Figure 1(b)), and Technology group (Figure 1(c)).  The 
module, which is the elemental building block of this approach, can 
be understood as a conversion process designed to transform one or 
more species into a set of products. The operation of a module is 
described using four elements: (1) an inlet mixer (light yellow square 
in the Fig 1(a)) that combines inlet streams containing chemical 
species consumed in the module; (2) a conversion unit (light blue 
rectangle in Figure 1(a)), characterized by a set of yield coefficients 
determining the amount of each species produced or consumed per 
mol of substrate in every reaction occurring in the module; (3) an 
outlet splitter (red square in Figure 1(a)), described by a set of 
separation factors establishing the fraction of each chemical species 
directed toward each of the module’s products; and (4) an optional 
source element (blue diamond in Fig 1(a)), accounting for the supply 
of carrier gases or reactants not present in the feed stream. Each 
module has base capital and operating costs defined with respect to 
a reference incoming mass flow rate. Note that all the information 
associated with the performance of separation units and reactors is 
lumped in the yield coefficients and separation factors, and the 
economics of the process in the capital and operating cost 
parameters. 
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Figure 1. Elements of the superstructure (a) Module: processes used 
to accomplish the transformation of a substrate; (b) Technology: set 
of modules that can be used to realize a chemistry; (c) Technology 
group: set of technologies designed for the transformation a 
substrate. Note that the inlet and outlet splitters of the modules in a 
technology are merged (indicated as dashed squares); once the 
modules are merged into a technology, the labels for the elements 
(splitters, and conversion units) are dropped, and only the word 
“module” is used for simplicity. 

Different modules can be synthesized for the realization of the same 
chemistry (e.g., ethanol dehydration can be accomplished using a 
process employing a SynDol® catalyst, or a process employing a 
zeolite catalyst). All the modules designed for the realization of the 
same chemistry are grouped in the second level of the 
superstructure termed as a technology (Figure 1(b)). Modules in a 
technology differ from each other either because they were designed 
using different catalysts or because they employ a different 
separation train. Only one module per technology can be selected. 
Thus, it is possible to lump together all the inlet mixers and outlet 
splitters associated with all the modules in a technology (Figure 1(b)), 
knowing that the only active streams (i.e. those with flow greater 
than zero) are those connected to the selected module. Finally, at 
the third level, all the technologies consuming the same substrate 
are grouped into a technology group (Figure 1(c)); for example, 
Guerbet coupling, condensation, and dehydration of ethanol belong 
to the same technology group because they process the same 
substrate. Since two technologies in the same technology group can 

be selected simultaneously, we do not constrain the system to 
prevent this kind of decision. In addition to the elements already 
described, a technology group contains an inlet splitter (dark yellow 
square in Figure 1(c)) and a set of outlet splitters (burgundy squares 
in Figure 1(c)). The inlet splitter distributes the incoming substrate 
stream toward the selected technologies. The output splitters 
distribute the obtained products toward the inlet splitters of other 
technology groups for further processing or toward the final 
products.

Optimization Model

The resulting optimization model, which couples process synthesis 
decisions and fuel properties, is a mixed integer non-linear program 
(MINLP) model (see SI1 for the details) that can be used to find the 
optimal process producing fuels with tailored properties [Eq. 1]. 
While, in general, various objective functions can be used (e.g., 
economic, environmental), in this paper we use profit maximization 
defined as the difference between revenues and costs. Two sources 
of revenue were considered: fuel and electricity sales, with the fuels 
selling price set at 2$US/kg based on a recent technoeconomic 
analysis (TEA)68 and the electricity sold at 1.5 10-8 $US/J based on ×
NREL report8. Costs have three components: annualized capital 
investment, operating costs, and feed stream costs (see 
supplementary S7 for details on feedstock cost). All costs and prices 
are in 2007 dollars to be consistent with the reference year of the 
most recent NREL work on lignocellulosic ethanol production8.

max (Profit [Eqs. S1 ― S6])
𝑠.𝑡.{Process model [Eqs. S7 ― S34]

Fuel model [Eqs. S35 ― S51 ]                        (1)

The model is expressed using four types of sets: superstructure 
elements  (subsets include: modules , technologies , and  𝑖 ∈ 𝐈 𝐈𝐌𝐃 𝐈𝐓𝐂𝐇

technology groups ); chemical reactions ; chemical 𝐈𝐓𝐆  𝑟 ∈ 𝐑
components ; and process streams  (subsets include: fuel 𝑘 ∈ 𝐊  𝑗 ∈ 𝐉
streams , and electricity streams ). The process synthesis 𝐉𝐏 𝐉𝐄

component of the model [Eqs. S7-S34] consists of mass balances 
written around the different elements of the superstructure, logical 
relations based on superstructure connectivity, capital costs scaling 
functions, and operating cost definitions. We introduce three binary 
variables accounting for the discrete decisions made at the different 
levels of the superstructure: module (  ), technology (𝑌𝑀𝑖, 𝑖 ∈ 𝐈𝐌𝐃 𝑌𝑇𝑖, 

), and technology group ( ). Each of these 𝑖 ∈ 𝐈𝐓𝐂𝐇 𝑌𝑇𝐺𝑖, 𝑖 ∈ 𝐈𝐓𝐆

binaries is equal to one if the respective module, technology, or 
technology group is selected. Additionally, we have one binary 
variable for each fuel product ( ), with these binaries being 𝑌𝐹𝑗  𝑗 ∈ 𝐉𝐏

equal to one if the corresponding fuel is produced. All the 
aforementioned binaries are used to inactivate process streams, 
introduce integer cuts to find alternative solutions, and define logical 
constraints based on the superstructure architecture (e.g. if a 
technology is not selected then the modules associated with that 
technology cannot be selected). The property model consists of two 
parts [Eqs. S35-S51]: blending rules for the calculation of target 
properties as a function of the fuel composition; and composition 
constraints limiting the amount of specific chemical species such that 
fuel standards are met (e.g., upper bounds on aromatic content). The 
process synthesis and fuel property models are coupled because the 
fuel composition is a function of the selected technology groups, 
technologies, and modules.
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Ethanol upgrading

We employ the proposed framework to study ethanol upgrading. 
The available chemistries, catalysts, and processes are integrated to 
generate a superstructure (see Figure 2) with 14 technology groups 
and 25 technologies, incorporating process information for 87 
different modules (See SI-2). We consider the possibility of using, 
exclusively or simultaneously, three different ethanol substrates 
with different water content: 50%, 7%, and 0% [Kg/Kg]. These 
concentrations were selected considering possible simplifications of 
the ethanol purification process. Specifically, a 50% blend can be 
obtained using only a beer distillation column; a 7% blend is close to 
the water ethanol azeotrope and can be obtained using a beer 
column followed by a rectification column; and a near 100% 
feedstock corresponds to the typical product of a bioethanol 
production plant in which both beer and rectification columns are 
used followed by a molecular sieving unit. Products include three fuel 
output streams: gasoline, jet fuel, and diesel; an electricity 
generation stream; and a waste stream. Although only energy 
products are considered in this work, the proposed framework can 
be readily extended to consider the co-production of other valuable 
chemicals69,70. All fuel streams are constrained such that the resulting 
products display a set of properties consistent with those of typically 
used fuels71–73. The considered properties as well as the enforced 
constraints are summarized in Table 1. Blending rules required for 
the estimation of these properties are described in the 
supplementary information (SI-1). 

Table 1. Specifications for the fuel products considered in this study. 
Type Gasoline Jet Fuel Diesel

RON Min 91 - -
CN Min - - 40

Density [kg/m3] Max 775 840 845
Min - - 2.0Viscosity [mm2/s] Max 2.0 8 4.5

 [%mol]𝑿𝟑𝟎 Max 5 - -
[%mol]𝑿𝟐𝟏𝟓 Min 98 - -
[%mol]𝑿𝟏𝟔𝟎 Max - 5 -
[%mol]𝑿𝟑𝟎𝟎 Min - 98.5 -
[%mol]𝑿𝟏𝟓𝟎 Max - - 5
[%mol]𝑿𝟑𝟔𝟎 Min - - 95

Olefins [%mol] Max 18 2 20
Aromatics [%mol] Max 35 25 35

RON: Research Octane Number. CN: Cetane Number
 : mol fraction of fuel evaporated at T temperature𝑋𝑇

Chemistries. Ethanol upgrading chemistries have been included 
based on recently published reviews5,10 (See SI-5). At a high level, 
upgrading pathways can be described as a sequence of two main 
stages. In the first stage, ethanol is catalytically transformed into a 
set of products (Figure 1 Technology group 1); and in the second 
stage, which is not always required, the products of the first stage 
are converted into a final product that satisfies required 
specifications (Figure 1, Technology groups 2-14). We consider four 
chemistries for the initial ethanol transformation: dehydration13,74,75, 
condensation5,21,76–82, simultaneous dehydration and 
oligomerization83–85, and Guerbet coupling11,12,94,86–93. The first two 

of these chemistries yield an olefin: ethylene in dehydration; and a 
catalyst-dependent blend of ethylene, propylene, and isobutene in 
condensation. In the case of simultaneous dehydration and 
oligomerization, the product is a mixture of olefins and aromatics 
suitable as a gasoline or jet fuel replacement. Finally, we have 
Guerbet coupling, an old chemistry that has captured renewed 
attention due to its ability to upgrade ethanol into higher alcohols 
with high selectivity. Most of the products obtained in the first stage 
can be clustered into two groups: olefins, and higher alcohols. Hence 
in the second stage we are interested in chemistries associated with 
these products. 

In the case of olefins, the chemistries of interest are limited to 
oligomerization9,16–19, for which several processes, involving 
heterogeneous and homogeneous catalysts, have been developed. 
Although oligomerization reactions yield a mixture of branched and 
linear olefins, we have assumed, due to limited information for the 
catalysts of interest, that we obtain mainly linear olefins. In the case 
of higher alcohols there are three chemistries of interest: 
dehydration95–100, Guerbet coupling86, and etherification86,98,101,102. 
The first two have already been discussed, but the difference here is 
that the products obtained when higher alcohols are used as 
substrates have a higher number of carbons. Etherification has been 
gaining attention because ethers of higher alcohols have very 
promising properties for tailor-made diesel fuel86. From a fuel design 
perspective, the wide range of chemistries available leads to a large 
feasible space for the design of advanced fuels. A detailed list of all 
the species considered and their relevant properties is presented in 
the supplementary information (See SI-4). 

Catalysts. The design and characterization of catalysts available for 
the aforementioned chemistries has received considerable attention 
in the literature5,10,12,15,16,19. A survey of available catalyst for the 
chemistries of interest is presented in the supplementary 
information (See SI-5). Given the large number of available catalysts 
it is impractical to include all of them in the superstructure. Instead, 
we use a subset of carefully selected catalysts to represent a broad 
range of operating conditions and selectivities for each chemistry. 
The catalyst selection is based on a clustering procedure, in which we 
group together catalysts with similar selectivity under similar 
operating conditions. Next, from each cluster we select only one 
representative catalyst (see SI-2 and SI-5). This procedure reduces 
the size of the problem while still maintaining a diverse set of 
alternatives. For the clustering we consider five criteria with a strong 
bearing on process design: operating temperature, operating 
pressure, single pass conversion, selectivity, and catalysis phase (i.e. 
homogeneous or heterogeneous). We note that each catalyst 
incorporated in the superstructure can be used in one or more 
modules (See SI-2 for the list of catalyst used in each module, and 
SI-6 for process details), each of which has an associated set of 
reactions (See Table S2-1). We note that while most of the 
chemistries considered have been used in the petrochemical or the 
bio-renewables industries3,5,13,16,83, many of the catalysts included in 
the framework have been tested only at a laboratory scale. However, 
the corresponding data are included in order to have a broader 
design space. 
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Figure 2.   Ethanol upgrading superstructure illustrating the different technology groups (TG), technologies (T) and modules (M) used. Sources 
and final products are illustrated as diamonds to the left and right of the figure. Connections between technology groups are illustrated in 
accordance with the connectivity matrix in SI-3. 
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Parameter calculation. There are 5 types of parameters used in the 
mathematical model that need to be estimated a-priori. Three types 
or parameters are process related: yield coefficients , (𝜂𝑟,𝑘)
separation factors ( ), and reference incoming mass flow rates (𝛾𝑗,𝑗′,𝑘

); and two economic: capital investment ( ), 𝜙𝑟𝑒𝑓
𝑖  𝑖 ∈ 𝐈𝐌𝐃 𝜙𝐶𝐶𝑀

𝑖  𝑖 ∈ 𝐈𝐌𝐃

and operating costs ( ). To calculate the process 𝜙𝑂𝐶𝑀
𝑖   𝑖 ∈ 𝐈𝐌𝐃

parameters, we have mainly relied on dedicated process simulations 
performed in ASPEN plus V10® (files available upon request); and for 
the economic parameters we have prepared spreadsheets for the 
calculation of capital, and operating costs. A total of 85 different 
process flowsheets corresponding to the different modules were 
developed (See SI-6 for details). In each flowsheet energy integration 
was performed using Aspen Energy Analyzer, first by using a 
targeting approach to identify potential energy savings, and then by 
synthesizing a Heat Exchanger Network based on the identified 
targets. All financial assumptions used in these calculations are 
presented in SI-7. For a few processes (2 out of 87), we collected the 
required information from available technoeconomic analysis (TEA) 
studies, ensuring that the economic parameters were adjusted in 
accordance with the assumptions used in this work. Economic 
parameters  and  , and the reference mass flow rate  𝜙𝐶𝐶𝑀

𝑖 𝜙𝑂𝐶𝑀
𝑖 𝜙𝑟𝑒𝑓

𝑖
are summarized for each module in the supplementary information 
SI-8.

Solution of optimization models. The superstructure optimization 
problem was implemented in GAMS and solved using the global 
optimization solver BARON103. Solution times vary depending on the 
problem at hand, but for the results presented in this work they 
ranged between 1 and 12 hours. 

Results

Optimal ethanol upgrading biorefineries

We are interested in finding optimal upgrading biorefineries for the 
transformation of ethanol into fuels with tailored properties. This 
question can be posed either generally, such that a multiproduct 
biorefinery is admissible; or in a more restricted way such that a 
single product biorefinery is pursued. In this last case, constraints on 
the admissible products are introduced using the binaries associated 
with each fuel ( ). We study four cases: a multiproduct 𝑌𝐹𝑗 ∈  𝑗 ∈ 𝐉𝐏

biorefinery (Figure 3), and three biorefineries in which a single fuel 
product with properties similar to those of gasoline (Figure 4), jet fuel 
(Figure 5), or diesel (Figure 6) is obtained. Panel A in Figures 3 
through 6 show a Sankey diagram illustrating mass flow across the 
biorefineries. In this diagram technologies that are part of the 
biorefinery appear as green blocks and the catalysts selected are 
indicated in the text; the flow of different streams is illustrated using 
areas of different color. The products (colored boxes on the right of 
the diagram) always include a waste sink, and an electricity 
generation sink (labeled as burn); fuel products on the other hand 
are added as needed based on the optimal biorefineries obtained. 
The results presented are normalized to 100 Kg of feed allowing an 
easy interpretation of the results. Panel B of Figures 3-6 presents the 
costs of the different biorefineries for a plant able to process ~

500Ton-EtOH/day. Specifically, it shows a bar plot with the major 
costs (annualized capital (CC), operating cost excluding feedstock 
(OC), and feedstock) and revenues (from fuel and electricity sales); 
we also show two bar plots detailing the capital and operating costs 
breakdown. Finally, panel C shows the fuel composition, and 
properties of each product. We note that our results have been 
obtained assuming constant fuel prices, which implies that market 
variations may lead to decreased economic benefit. In principle, the 
proposed approach can be extended to a stochastic programming 
setting, where first stage decisions yield the biorefinery design, and 
second stage decisions yield operational strategies in different 
scenarios. However, the resulting formulations would be 
computationally expensive and are beyond the scope of this paper. 
Nevertheless, we note that the proposed model can still be used to 
find strategies that allow mitigation of the impact of price variability 
in the case of multiproduct biorefineries. Specifically, flows can be 
reconfigured among the selected blocks to optimize an updated 
objective function. The interested reader can find the details of this 
approach in SI 10. 

Multiproduct biorefinery. The obtained biorefinery consists of three 
processing modules: Guerbet coupling, followed by two modules 
connected in parallel for the processing of C6 alcohols: etherification 
and alcohol dehydration (Figure 3(a)). The biorefinery mainly 
produces a gasoline compatible blendstock with a yield of 70.4 
Kg/Kg-Ethanol; however, there is also some minor production of a 
diesel compatible blendstock with a yield of 5.7 Kg/Kg-Ethanol. We 
see that the gasoline fuel product consists of a blend of oxygenates 
(alcohols, aldehydes, ketones and esters) of low carbon number (C4-
C6) and C6 olefins, with the main component been butanol, an 
alcohol that has been identified in the literature as a candidate 
replacement for gasoline with significant advantages over ethanol104 
(Figure 3(c)). The blendstock obtained for diesel fuel is simpler and 
consists of a blend of alcohols with six carbons and its ethers (C12). 
In terms of fuel properties, we highlight that the diesel fraction 
produced just meets the ASTM cetane number requirement (i.e. 

), while the gasoline fraction is high quality with a RON 𝐶𝑁 = 40
number above 95.

Gasoline biorefinery. The biorefinery obtained for the exclusive 
production of a gasoline blendstock (Figure 4(a)) is very similar to 
that in Figure 3(a), except for the absence of the etherification 
module. Which leads to a small reduction in the total fuel yield (from 
76.1 Kg/Kg-feed to 75.7 Kg/Kg-feed), and the capital ($81 million 
instead of $82.6 million) and operating costs ($8.3 million instead of 
$9.0 million). While minor savings in costs do not compensate for the 
lost revenue from products, the reduction in profit is only marginal 
($129.7 million instead of $130 million). This reduction in profit is 
compensated by a reduction in biorefinery complexity, and it may be 
considered advantageous. The product profile obtained (Figure 4(c)) 
consists mainly of butanol and C6 olefins, as in the previous case. The 
importance of the coupling between process and product modelling 
is clearly manifested in the results presented in Figure 4. A naïve 
approach to the process synthesis problem, disregarding the fuel 
properties, would assume that the alcohol blend leaving the Guerbet 
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module (mainly butanol and hexanol) can be used as a gasoline 
blendstock. Only by considering the properties of the final product it 
is possible to identify the need of an intermediate process (in this 
case a dehydration module) to adjust the properties of the final fuel 
blend to the required specifications. 

Figure 3. Optimal multiproduct biorefinery. (a) Sankey diagram 
based on mass flow. Technologies and modules selected are: 
Guerbet coupling (G), etherification (ET), and alcohol dehydration 
(DH). (b) Capital and operating costs breakdown. (c) Product 
composition and fuel properties (CN: for cetane number, ρ: density 
[kg/m3], ν: viscosity [mm2/s]). Chemical notation for carbon 
containing molecules consists of an alphabetic part indicating the 
functional group (A: alcohols, Al: aldehydes, K: ketones, Es: esters, O: 
olefins, E: ethers), and a numerical portion for the number carbons.

Middle distillates biorefineries. The biorefineries obtained for the 
production of middle distillates (Figures 5(c-Jet fuel) and 6(d-Diesel)) 
are similar consisting of a Guerbet coupling module, followed by 
dehydration and a set of oligomerizations that end in a 
hydrogenation module used for the transformation of olefins into 
paraffins. Diesel and jet fuel biorefineries differ in the 
oligomerization sequence, the specific modules selected, and the 
presence of an etherification module in the jet fuel biorefinery. 
Importantly, the higher degree of dehydration (note the presence of 
an alcohol dehydration module in Figures 3(c)-(d)) required in these 
biorefineries leads to a lower product yield ( ), and therefore a ~60%
lower profit: $66 million/year for the jet fuel biorefinery and $78 ~ ~

million/year for the diesel biorefinery, versus $130 million/year for ~
the multiproduct and gasoline biorefineries. The reduction in profit 
is also influenced by the higher capital ($117.9 million (Jet fuel) and 
$89 million (diesel)) and operating costs ($16.9 million (Jet fuel) and 
$13.5 million (Diesel)) required in these biorefineries. The increase in 
costs in middle distillate biorefineries in comparison with the 
multiproduct (Figure 3) or gasoline (Figure 4) biorefineries is related 
to their higher complexity (7 modules). The jet fuel and diesel blends 
obtained consist of a mixture of oxygenates and olefins. In terms of 
fuel properties, in both cases a low viscosity blend is produced 
(0.002Pa-s (jet fuel) and 0.0025Pa-s (Diesel)); importantly, the diesel 
fuel obtained displays a cetane number of approximately 60, 
characteristic of a premium product. 

Figure 4. Optimal gasoline biorefinery. (a) Sankey diagram based on 
mass flow. Technologies and modules selected are: Guerbet coupling 
(G), and alcohol dehydration (DH). (b) Capital and operating costs 
breakdown. (c) Product composition and fuel properties (CN: for 
cetane number, ρ: density [kg/m3], ν: viscosity [mm2/s]). Chemical 
notation for carbon containing molecules consists of an alphabetic 
part indicating the functional group (A: alcohols, Al: aldehydes, K: 
ketones, Es: esters, O: olefins, E: ethers), and a numerical portion for 
the number of carbons. 
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Figure 5. Optimal jet fuel biorefinery. (a) Sankey diagram based on 
mass flow. Technologies and modules selected are: Guerbet coupling 
(G), butanol dehydration (A4-DH), ethylene oligomerization (O2-OL), 
butene oligomerization (O4OL), olefins (C3+) oligomerization 
(O3+OL), hydrogenation (HD), and hexanol etherification (A6-E). (b) 
Capital and operating costs breakdown.  (c) Product composition and 
fuel properties (CN: for cetane number, ρ: density [kg/m3], ν: 
viscosity [mm2/s]). Chemical notation for carbon containing 
molecules consists of one alphabetic portion indicating the 
functional group (A: alcohols, E: ethers, O: olefins, P: paraffins), and 
a numerical portion for the number carbons.

Discussion
The results obtained stress the significance of the framework 
adopted, not only we were able to select an optimal biorefinery in 
economic terms, but also the process was tailored such that specific 
products with predefined properties were obtained. The fuel 
mixtures produced by the optimal biorefineries cannot be designed 
by intuition nor by applying heuristics. Only the use of process and 
systems engineering simultaneously considering process and fuel 
property constraints has enabled the design of biorefineries for the 
production of advanced fuels. 

Figure 6. Optimal diesel biorefinery. (a) Sankey diagram based on 
mass flow.  Technologies and modules selected are: Guerbet 
coupling (G), Ethylene oligomerization (O2-OL), Butene 
oligomerization (O4-OL), Butanol dehydration (A4-DH), octene 
oligomerization (O8-OL), olefins (C3+) oligomerization (O3+OL), and 
olefins hydrogenation (HD). (b) Capital and operating costs 
breakdown.  (c) Product composition and fuel properties (CN: for 
cetane number, ρ: density [kg/m3], ν: viscosity [mm2/s]). Chemical 
notation for carbon containing molecules consists of an alphabetic 
portion indicating the functional group (A: alcohols, O: olefins, P: 
paraffins), and a numerical portion for the number carbons.

Some insights can be obtained by analyzing the cost distribution of 
the processes studied. In all biorefineries the dominant cost driver is 
feedstock (bar plot in Figures 3(b)-6(b)). Capital and operating costs 
(other than feedstock) account together for less than 20% of the 
annualized production cost. Specifically, the total capital investment 
is on the order of $100 million (annualized to $10 million/year for a 
30 years project) in all cases; while the operating costs are between 
$10-$20 million/year. In contrast, the feedstock cost is close to ~$130 
million/year. From a process engineering perspective this implies 
that biorefineries in which a higher yield is obtained are favored if 
the goal is to maximize the profit. Consequently, in all the optimal 
biorefineries Guerbet chemistry is selected. This chemistry is the one 
with the higher mass yield among the options for ethanol upgrading 
(Technology group 1). The reason for this higher yield is that Guerbet 
chemistry leads only to a partial dehydration. Conversely, other 
chemistries available for the initial ethanol transformation, like 
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condensation and dehydration, fully dehydrate alcohols and 
therefore lead to a lower yield. In the case of condensation, the mass 
loss is even greater due to the loss of carbon in the form of carbon 
oxides. 

The results suggest that there are two research directions that may 
lead to improvements in the economics of biofuel production. First, 
since the total product yield is so impactful on the economics, it is 
critical to develop highly selective catalysts, leading to less waste 
products, or by-products that cannot be incorporated in the final 
fuel. Second, in the case of Guerbet chemistry, the catalysts 
developed so far require the use of anhydrous ethanol. Thus, 
potential savings may be obtained if water tolerant catalyst are 
developed. Ethanol with a higher content of water is cheaper, 
especially when the concentration is below the azeotrope.  Some 
advances have been reported in this direction87. Also, improved 
efficiency in water-ethanol separation could have a positive effect. 
Although capital and operating costs (excluding feedstock) are not as 
impactful as the feedstock cost, improvements on these variables 
may lead to better economics. Finally, we see that the Guerbet 
coupling module, the largest one, dominates capital (43%-91%) and 
operating (23%-78%) costs (Figures 3(b)-6(b)). Thus, pointing to the 
need of developing compact and efficient Guerbet coupling modules 
to improve the economics of the designed biorefineries. 

Process complexity vs. efficiency

An important point regarding the biorefineries obtained for middle 
distillates (Figures 5 and 6) is that their complexity, measured by the 
number of modules, is high (7 modules each), which may hinder its 
practical application. Thus, it is of interest to understand the effect 
of constraining the maximum number of modules. This consideration 
can be easily studied by introducing an additional constraint into the 
proposed optimization model. Specifically, if one is interested in 
obtaining biorefineries displaying a maximum number of modules it 
is sufficient to specify that , where “a” is an integer ∑

𝑖 ∈ 𝐈𝐌𝐃𝑌𝑀𝑖 < 𝑎
number. For the case of a diesel biorefinery, the results obtained 
when a reduced number of modules is used are presented in Figures 
7 and 8. It can be seen that constraining the maximum number of 
modules leads to simpler biorefineries (Figure 7) at the expense of 
reducing the profit. The Pareto front showing the trade-off between 
profit and complexity (number of modules) is shown in Figure 8(a). 

Note, for example, that the profit obtained when 7 modules are used 
is  million/year, whereas when three modules are used this ~$78
value decreases more than 50% to $30 million/year. This reduction ~
in profit is explained by a reduction in the fuel product yield. For the 
biorefinery in Figure 6(a) (7 modules) the yield is , in contrast ~63%
for the biorefinery in Figure 7(b) (4 modules) the yield is . ~51%
Changes in the biorefinery configuration caused by constraining the 
maximum number of modules lead to changes in the final product 
composition and its properties (Figure 8 (b)-(c)). The most evident 
change is the increase in alcohols in the final product as the 
maximum number of modules decreases, this change leads to 
products with lower cetane number. Which is expected provided 
that alcohols have lower cetane numbers than olefins with the same 
number of carbons.

Figure 7. Sankey diagram based on mass flow for diesel production 
biorefineries when the number of modules is constrained to be less 
or equal than 5 (a) and less or equal than 4 (b). 

Figure 8. (a) Pareto front showing the trade-off between profit and maximum number of modules. (b) Diesel fuel composition (alcohols are 
shown in red shades, ethers in yellow, olefins in green, paraffins in blue, and aromatics in brown). (c) Properties or products from biorefineries 
with different number modules. Fuel properties (CN: for cetane number, ρ: density [kg/m3], ν: viscosity [mm2/s]). Chemical notation for 
carbon containing molecules consists of an alphabetic portion indicating the functional group (A: alcohols, E: ethers, O: olefins, P: Paraffins, 
Ar: aromatics), and a numerical portion for the number carbons. 
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Figure 9. Effects of changing the cetane number (CN) constraint on the optimal processes selected for a diesel biorefinery. (a) Pareto front. 
(b) Breakdown of processing cost for each biorefinery. (c) Composition of diesel products obtained. Chemical notation for carbon containing 
molecules consists of an alphabetic portion indicating the functional group (A: alcohols, E: ethers, O: olefins, P: paraffins), and a numerical 
portion for the number carbon

Understanding the trade-off between fuel properties and profit

The trade-off between fuel properties and profit can be studied by 
tightening the constraints on the fuel property model. We study the 
impact of tightening the cetane number requirements in a diesel 
biorefinery (Figure 9 and Figure SI.9). As shown in Figure 9(a), the 
profit starts to decrease as a function of cetane number once the 
product specification constraint becomes binding. For example, 
when the required cetane number increases from 61.4 (value at 
which the constraint becomes binding) to 80 the profit is reduced by 
approximately 8% ($6 million/year). Changes in costs and sales as a 
function of cetane number can be seen in Figure 9(b), where we 
present a detailed breakdown of the cost components for the 
optimal biorefineries obtained for different cetane number 
specifications. Requiring a higher cetane number results in a smaller 
feasible space in terms of processes, that is, there are fewer 
configurations able to yield a product with the required properties. 
Details on the optimal processes obtained as a function of cetane 
number are presented in Supplementary Figure S9.1. Constraining 
the product has a direct impact on the selected processes. Changing 
the product requirements causes changes in the set of technologies 
selected (Figure S9.1); e.g. increasing the cetane number above 61.4 
leads to biorefineries in which an etherification module is used. The 
size of the etherification module increases concomitantly with the 
cetane number requirement. 

In addition to modifying the set of technologies selected, 
specification-related constraints also affect the modules selected to 
realize each technology. As an illustration, when we enforce 

 or , the module selected for the ethylene 𝐶𝑁 ≥ 40 𝐶𝑁 ≥ 70
oligomerization process uses Ni-AISBA as catalyst. In contrast, when 
we enforce  a Ni-LASA catalyst is selected. Both changes in 𝐶𝑁 ≥ 80
the selected technologies and modules are aimed at modifying the 
final fuel product composition (Figure 9(c)) such that the property 
constraints are satisfied. For example, we see in Figure 9(c) that the 
amount of ethers, known for having a high cetane number, increases 
in the final product when higher cetane numbers are required. 
Likewise, the fraction of alcohols (A2, A4, and A6), all with cetane 
numbers lower than 20, decreases progressively as the specification 
on cetane number increases. This example clearly illustrates the 
interplay that exists between processes, fuel properties, and overall 
profit. Understanding and exploiting this relation is key for the design 
of biorefineries yielding tailored fuel products. 

Identification of optimal strategy including a specific technology

Figure 10. Sankey diagram based on mass flow for optimal 
biorefineries for diesel production such that ethanol is first 
catalytically transformed using dehydration to ethylene (a); 
simultaneous dehydration and oligomerization (b); and 
condensation (c). 

One relevant question that often arises, both at the experimental 
and process design levels, is how to identify the optimal biorefinery 
for the production of a candidate biofuel that includes a particular 
technology or catalyst. The framework that we have developed is 
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suitable to address this kind of question. We investigate the design 
of biorefineries for the production of diesel fuel, employing the four 
technologies we consider for the initial ethanol transformation (i.e. 
dehydration, simultaneous dehydration and oligomerization, 
condensation, and Guerbet coupling). In addition to fixing the 
corresponding binary variables, we also enforce an additional 
condition preventing the system from selecting more than one 
technology in the first technology group ( ), ∑

𝑖𝑌𝑇𝑖 = 1, 𝑖 ∈ 𝐈𝐓
𝒊′ ,𝒊′ ∈ 𝑇𝐺1

thereby enforcing the use of the technology of interest to process all 
incoming ethanol flow. 

The optimal biorefineries employing the first three technologies (i.e. 
dehydration, simultaneous dehydration and oligomerization, and 
condensation) are presented in Figure 10; results for the biorefinery 
that employs Guerbet coupling were already presented in Figure 6. 
With respect to the results shown in Figure 10, we observe that the 
strategies found involve the initial chemical transformation of 
ethanol followed by a set of oligomerization modules yielding a 
higher molecular weight product. Since the content of olefins is 
constrained in diesel fuels (see Table 1), the use of a hydrogenation 
module for the conversion of olefins into paraffins is required. In 
comparison with the diesel biorefinery using Guerbet coupling 
(Figure 6), the results in Figure 10 show an increase of almost 20% in 
the amount of waste water produced due to the higher degree of 
dehydration and the use of a substrate with higher water content 
(93% ethanol Kg/Kg). Another difference is the increase in the size of 
the stream used for electricity generation, especially in the strategies 
in Figure 10(b)-(c). This increase is caused by the generation of olefins 
that cannot be blended in the final product because their 
incorporation would cause an undesirable change in fuel properties.

Sensitivity analysis

Once an optimal biorefinery has been identified it can be further 
analyzed using sensitivity analysis tools to find the major cost drivers. 
In Figure 11, we show the effect of perturbing relevant cost 
parameters on the annualized production cost of the four diesel 
biorefineries presented (Figure 6 and Figure 10). Since the major 
driver in all systems is the feedstock cost, and it is already known, we 
have excluded it from the analysis to visualize and identify other cost 
drivers. We consider three cost parameters for each of the 
technologies employed: utilities (±20%), catalyst and other 
feedstocks (-50%/+100%), and total investment (+100% and -20%). 
Perturbation values have been selected to reflect likely scenarios. In 
the case of utilities, changes of ±20% are considered due to better 
heat integration (-20%) or the need of incorporating additional 
separation units. Catalyst and other feedstocks costs on the other 
hand may change significantly because these are novel processes; for 
example, the cost of a catalyst can be reduced either by increasing 
its activity or by improving its manufacturing process. Finally, 
changes in the total investment reflect the risk associated with the 
installation of a first-of-a-kind system (+100%); and the less likely 
possibility of obtaining a better design (-20%) with similar 
functionality. In all cases three alternatives to achieve improvements 
in the process economics are identified. First, the cost of utilities is 
significant, especially for the ethanol processing technology, 
therefore optimizing heat integration is critical. Second, the 
consumption of catalyst and hydrogen in the hydrogenation module 
has a significant economic burden, therefore it is relevant to find 
alternatives to use by-product hydrogen as a feedstock. Finally, 

reducing the total investment cost associated with the ethanol 
processing technology (i.e. dehydration, dehydration and 
oligomerization, condensation or Guerbet coupling) plays an 
important role. The ethanol processing technology handles the 
largest amount of mass, consequently it is the most capital intensive.

Conclusions
In this paper, we have systematically studied the upgrading of 
ethanol toward advanced fuels with tailored properties. To integrate 
catalysis, process synthesis and fuel property modelling, we 
developed a superstructure-based optimization framework that 
simultaneously considers product (fuel) and process design. Using 
this framework, we explored the synthesis of biorefineries for the 
production of gasoline, diesel, and jet fuel. Additionally, we study the 
trade-off between process complexity and profit, and the relation 
between fuel specifications and process synthesis. Finally, we show 
how the framework developed can be used for the identification of 
the optimal biorefinery associated with a particular technology or 
catalyst. The results show the interdependencies between the 
specifications of the fuels and the processes used to obtain those 
fuels. Either changing the target fuels or their specifications leads to 
biorefineries in which different technologies are selected. Likewise, 
the chemical composition of the products changes as a function of 
the fuel property constraints. Understanding and exploiting these 
interdependencies is fundamental in the development of processes 
for fuels with superior properties. These results suggest that to 
unlock the full potential of a bio-based economy, systematic 
approaches, allowing us to design efficient processes for non-
intuitive high-performance fuel blends, are necessary.
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Figure 11. Tornado plot showing changes in the annualized production cost (excluding feedstock) when different cost parameters are 
perturbed: utilities (±20%), catalyst and other feedstocks (-50%, +100%), and total investment (-20%, +100%).(a) Diesel biorefinery based on 
ethanol Guerbet coupling (See Figure 6). (b) Diesel biorefinery based on ethanol dehydration (See Figure 10(a)). (c) Diesel biorefinery based 
on ethanol dehydration plus oligomerization (See Figure 10(b)) (d) Diesel biorefinery based on ethanol condensation (See Figure 10(c)). Blue 
squares are show operating costs while green squares show the capital investment. The y-axis shows the modules used, labelled using three 
identifiers: (i) an alphabetic component indicating the functional group of the substrate (A: alcohols, O: olefins); (ii) a numerical character 
indicating the number carbons of the substrate; and (iii) an alphabetic contraction indicating the chemistry used (DH: dehydration, Olig: 
oligomerization, HD: hydrogenation, Cond: condensation). 
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