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Philip H. Bucksbaum a,d

We present the first results on experimentally measured
ultrafast X-ray scattering of strongly driven molecular Iodine and
analysis of high-order anisotropic components of the scattering
signal. We discuss the technical details of retrieving high fidelity
high-order anisotropy components from measured scattering data
and outline a method to analyze such signals using Legendre
decomposition. We describe how anisotropic motions can
be extracted from the various Legendre orders using simulated
anisotropic scattering signals and Fourier analysis. We implement
the method on the measured signal and observe a multitude of
dissociation and vibration motions simultaneously arising from
various multiphoton transitions occurring in the sample. We
use the anisotropic scattering information to disentangle the
different processes and assign their dissociation velocities on the
Angstrom and femtosecond scales de-novo.

Capturing motions in space and time at the atomic scale is fun-
damental to the understanding of chemical reactions and struc-
tural dynamics of molecules of different complexities. Some of
the emerging tools that allow such studies are ultrafast scatter-
ing modalities, primarily by X-rays and relativistic electrons, that
were made feasible in recent years. In these studies, the motions
from excited molecules are captured in a pump-probe scheme,
where the excitation pump pulse is often an ultra-short linearly
polarized optical laser pulse with a duration shorter than the
typical timescales of motion of interest, as illustrated in Fig 1.
The scattering signal is then usually integrated over angle for im-
proved fidelity and subtracted from the scattering signal of the
unexcited system, to allow tracing changes of signal positions and
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infer structural dynamics1. This approach was used successfully
to demonstrate coherent motions and dynamics in molecules in
the gas phase2,3, as well as structural changes in molecules in
solution after the electronic excitation4–6. In these experiments,
the optical pulse parameters were carefully chosen to ensure that
only single-photon absorption is taking place and that the molec-
ular system is photoexcited to a specific electronic state. This
is often done by varying the pump intensity in the pump-probe
setup and finding conditions where linearity of the excitation, as
manifested by the scattering signal is achieved. The motion is
inferred by measuring the scattering difference as a function of
delay and applying modeling and simulations. Using angle inte-
grated scattering signal is well justified as it captures all types
of motions that take place in the photoexcited system. How-
ever, angle-dependent signals can be dramatically attenuated if
only the isotropic component is being analyzed. In many cases,
there is an inherent anisotropy in the scattering signal when a
sample is excited by linearly polarized light due to an optically
induced dipole moment transition. This interaction creates geo-
metric alignment in the ensemble, and can be used to filter and
enhance the specific processes under study, such as in the case
of a single-photon absorption process7–9, as well as perturbative
two-photon excitation10,11.

Higher orders of anisotropy play a significant role in under-
standing and probing cases where the molecular system is in the
presence of multi-photon absorption and strong laser fields, such
as dissociation due to bond softening12, above-threshold dissoci-
ation13, quantum coherent control14, and light-induced conical
intersections15. In addition, the interaction of ultrashort pulses
with molecules with anisotropic polarizability will generate non-
adiabatic (or impulsive) alignment16. The broad bandwidth of an
ultrashort pulse creates rotational wavepackets that evolve and
rephase at periodic time delays, forming molecular alignment,
manifested by high order anisotropy in the sample under field-
free conditions. Molecular alignment is often used to probe di-
verse phenomena in the molecular frame, such as, polyatomic
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vibrational dynamics and fragmentation17, ultrafast molecular
frame electronic coherences18, laser-induced rotational dynamics
and control19,20, Auger decay of double core-hole states21, high-
harmonic generation from inner valence orbitals22 and diffractive
imaging in the molecular frame23–27.
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Fig. 1 Schematic description of a pump-probe experimental setup and
relevant coordinates presented in the text. A linearly polarized ultrashort
optical laser pulse pumps the molecular sample. The sample is then
probed at some time delay by an ultrashort X-ray pulse via scattering
on a 2D detector array with a finite range of scattering angles. The
anisotropy induced in the sample following photoexcitation is manifested
by the anisotropy of the scattering pattern.

For the case of an ensemble of diatomic molecular Iodine that
will be discussed in this work, multi-photon absorption will ex-
cite wavepackets from its ground state to a multitude of states
and pathways28–30, including three dissociation limits, as well
as higher bound Rydberg and ion-pair (IP) states, with crossing
occurring between them31,32. Such excitation will create time-
dependent angular distributions that will carry information re-
garding the number of photons absorbed, the symmetry of the
states involved, and the type of motion that is taking place. Fig
2 describes some of the relevant potential curves and states men-
tioned.

In a single-photon absorption (λ = 520nm) process, the dynam-
ics is limited to transitions from the ground X0+g state to the
first dissociation limit I(3P3/2) + I(3P3/2) via states such as the
A1u,C(B

′′
)1u,B

′
(0u), or to vibration motion via excitation to the

bound B0+u state. Upon absorbing two photons, non-resonant and
resonant Raman processes can take place to excite a vibration
wavepacket at the ground state via X ← M ← X type transition
with M the allowed symmetry intermediate state for the resonant
case. Furthermore, two-photon absorption can lead to dissocia-
tion at all the dissociation limits, for example by exciting to the
C1g and 0+g states. At three-photon absorption, excitation of Ryd-
berg and IP states become accessible, nonlinear Raman processes
can take place to excite and mix various lower energy states, and
the ionization threshold is reached via four-photon absorption

The excited rovibrational motion will undergo rotational de-
phasing that will limit the delay time window such induced
anisotropy can be detected, while prompt dissociation along a
single dissociative state will preserve the anisotropy.
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Fig. 2 Potential energy curves of several valence, Rydberg and ion-pair
(IP) states of the Iodine molecule32. Arrows represent the energy of
the laser excitation (520 nm) for the case of single and multi-photon
absorption.

Here, we present the first results for the case of a strongly
driven molecular Iodine vapor, where multiphoton processes take
place, beyond the perturbative single or two-photon absorption
processes. We show that we can analyze and retrieve time-
dependent high-fidelity high-order anisotropy information of an
ultrafast X-ray scattering signal and assign motions of various ex-
citation processes that take place simultaneously de-novo.

1 Theory
In this section we shall discuss how to link between the spatial-
temporal information of a photoexcited molecular system from a
wavepacket perspective, with its observed scattering pattern, us-
ing some results that have been derived similarly before in other
studies33–35. We start with the assumption that we have solved a
time-dependent Schrodinger equation (TDSE) and have the exact
charge density of an excited system. We express the charge den-
sity by an optically excited nuclear wave packet that is propagated
along some electronic state.

We then obtain expressions for the scattering pattern this
wavepacket generates. We will be interested in the general case
of an n-photon absorption that induces a non-trivial anisotropy
and will result in up to 2n order Legendre polynomials terms in
the scattering signal. We also simplify the treatment assuming
both the X-ray and optical laser pulse are co-propagating along
~k0, and that the angle between the incident X-ray beam and the
laser polarization is π/2, allowing the Legendre decomposition
approach in angle space. Scattering from time-evolving systems is
generally inelastic34,36, however, assuming typical experimental
conditions, we can use the so-called static approximation34 and
replace the general electronic scattering operator with its elastic
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expression for the differential cross-section for scattering:

dσ

dΩ
= σT

∫
d~Rρ(~R, t)|F(~q,~R)|2 (1)

where σT is the Thomson cross-section, ρ is the charge den-
sity, and the squared molecular form factor |F |2 is invariant under
space inversion R 7→ −R. If we further simplify the treatment and
consider only a single atom pair, as in the case of diatomic Iodine,
we can then write the differential cross-section:

dσ

dΩ
= σT f1(q) f2(q)

∫
d~Rρ(~R, t)(eı~q~R + e−ı~q~R) (2)

with fi(q) the ith atomic form factor. We can expand the scat-
tering exponential term using the plane wave expansion:

eı~q~R = ∑
n=0,2,...

(2n+1)(−1)n/2Pn(cosθqR) jn(qR) (3)

where Pn are Legendre polynomials, jn are spherical Bessel
functions, and θqR is the angle between ~q and ~R. We only need
to sum over the even orders as the components with odd poly-
nomials are anti-symmetric under space inversion and will cancel
when we will calculate the differential cross-section.

We use the spherical harmonics addition theorem to expand
the Legendre polynomials to express θqR in terms of the experi-
mentally measured scattering angles (θq,φq), and (θ ,φ), the angle
between the laser polarization and molecular axis and its corre-
sponding azimuth:

Pn(cosθqR) =
4π

2n+1

k

∑
j=−k

Y ∗jk(θq,φq)Y jk(θ ,φ) (4)

Using the scattering symmetry, we can integrate over φq and
use the expressions above to arrive to:

dσ

dΩ
= 4πσT ∑

n=0,2,...
(−1)n/2Pn(cosθq)Sn(q) (5)

Sn(q) = f1(q) f2(q)
∫ 1

−1
d cos(θ)

∫
∞

0
dR
∫

∞

−∞

dtΞ(t− τ)R2

|ψ(R,cos(θ),τ)|2Pn(cos(θ)) jn(qR)

(6)

where Ξ(τ) is the X-ray pulse intensity envelope, and
ψ(R,cos(θ),τ) is the molecular wavepacket. The nth order pro-
cess will be manifested both by the intensity distribution on the
detector via the scattering angle θq, and via the anisotropy curves
Sn(q). A schematic description of the relevant coordinates and ex-
perimental approach is described in Fig 1. The subsequent anal-
ysis of the scattering pattern given by Eq 5 will use a Legendre
decomposition over the detector angle θd to recover Sn(q).

2 Methods
The experimental procedure is described in detail in a previous
study7. In short, time-resolved X-ray scattering was performed at
the Linac Coherent Light Source (LCLS) free-electron laser (FEL)
facility, SLAC National Accelerator Laboratory, using the hard X-
ray pump-probe (XPP) instrument. Molecular Iodine vapor with
a column density of ∼ 1018cm−2 was excited by a 520 nm, 40

µJ, 50 fs, optical pulses of ∼ 5× 1011W/cm2, and probed by a 9
keV, 2 mJ, 40 fs X-ray pulses at a variable pump-probe time delay
provided by the LCLS. Approximately 107 X-ray photons per pulse
were scattered onto a 2.3 megapixel array detector37, with ∼ 50
photons per pulse per pixel.

Initial processing of the raw scattering data included detector
corrections that are mentioned in a previous study7. The analysis
includes a "dark" detector correction, where an average image of
the detector without incident x-rays is subtracted from the raw
data, following single-pixel detector corrections due to their non-
linear response. The images are then corrected for polarization38

of the LCLS pulses, as well as scattering geometry for the case
of a plane detector39. Subsequently, the scattering patterns were
corrected for absorption artifacts due to the scattering cell geome-
try and upstream beam noise by imposing an isotropy condition5

that is expected for the unexcited scattering signal from Iodine
thermal ground state. The images were sorted according to a jit-
ter correction timing tool and averaged to obtain a pump-probe
delay resolution of 20 fs. While the resolution of such time delay
binning exceeds the excitation pulse duration, it is appropriate
for the case of the multi-photon excitation observed which has a
shorter effective duration, as well as to the jitter correction res-
olution40,41. We improve the signal to noise ratio by analyzing
the data from several pump-probe scans that are combined and
sorted according to the pump-probe time delay.

A representative time-binned difference signal is shown in Fig
3a. We use the cylindrical symmetry of the scattering signal to in-
crease its fidelity without loss of angle resolution by four-folding
and averaging the scattering image quadrants. The averaging is
weighted by the number of detector pixels that contribute from
each quadrant. Four-folding the detector image also helps re-
duce the effective missing data that appears as gaps between the
ASIC elements of the array detector. The remaining missing data
points in Fig 3b are excluded from the later Legendre decompo-
sition analysis. The signal is then transformed and binned in the
(q,θd) polar coordinates.

We decompose the signal in each q bin to even order Legendre
basis up to the relevant significant order (Fig 3d):

I(q,θd) = β0(q) ∑
n=0,2,...

β̃n(q)Pn(cosθd) (7)

With the radial intensity β0(q) and the normalized detector
anisotropy terms β̃n(q) = βn(q)/β0(q). The fit is done only on
θd values that contain signal. The relation between the nth order
anisotropy curve Sn(q) in Eq. 6 and the corresponding βn(q) term
is given by

Sn(q) =
β0(q)β̃n(q)

cosn(θq)
=

βn(q)(
1− q2

4|k0|2
)n/2

, n=0,2,. . . (8)

where |k0| is the length of the wave vector of the incoming X-ray
beam. We note that while β0(q,τ) has units of intensity or the av-
erage number of scattered photons per q, the higher-order β̃n(q,τ)
are dimensionless and represent ratios between the relevant an-
gle components that dictate the degree of anisotropy.

Additional care is needed in centering the images before they
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Fig. 3 (a) The LCLS 2.3 megapixel array detector (CSPAD37) showing the difference scattering signal ∆I(τ) = I(τ)−〈Iτ<0〉 for a pump-probe delay of
τ = 240 f s. (b) The scattering signal is four-folded and averaged and (c) transformed to polar detector coordinates. The usable q range for analysis was

1.2Å
−1

< q < 4.3Å
−1

due to the scattering cell geometry and mask used. (d) Applying Legendre decomposition to the polar representation captures its
anisotropy orders as well as filters for higher angle dependent noise and missing signal. The reconstruction of the polar signal here was done using Eq.
7 where we used Legendre orders up to P12. (e) We use the Legendre coefficients to obtain the anisotropy curves Sn (Eq. 8) and show the estimated
standard error per curve (shaded areas).

are being four-fold averaged and transformed to polar coordi-
nates. The residual error to Sn due to centering inaccuracy was
simulated for the detector binning used in the analysis. For ex-
ample, in the case of a pure isotropic signal S0, we find that a

centering error at the single bin level dq∼ 4×10−3Å
−1

will create
an artificial residual signal for the higher-order Sn>0 that amounts
to ∼ 10−4S0 across the q range used. Deviation from the correct
image center beyond the single bin resolution will create artificial
anisotropy that will obscure and distort the weak signals of the
high anisotropy orders.

We find the center of the images by analyzing time delays
where scattering can only be isotropic and validate our approach
by limiting its residual anisotropy below the single-bin limit dis-
cussed. We analyze the contrast signal:

Ic =
〈I(τ<0)〉−〈I(τ�0)〉
〈I(τ<0)〉+ 〈I(τ�0)〉

Where 〈I(τ<0)〉 is obtained by averaging the scattering signal be-
fore the laser excitation, containing only isotropic scattering, and
〈I(τ�0)〉 is the averaged signal at time delays after rotational de-
phasing took place and most the dynamics have equilibrated. We
then apply to Ic a series of intensity thresholds, each yields a scat-
tering signal Ĩc that will be distributed symmetrically around the
center. We find the centers of these distributions using a Random
Sample Consensus (RANSAC) algorithm42, an iterative method
adapted to robustly fit circles in the presence of noise.

Briefly, data points in Ĩc are classified as outliers or inliers, and
the fitting procedure ignores the outliers. The classification is
done by randomly sampling a small subset of points to estimate
the model parameters. The condition for points to be considered
inliers is given by |

√
(xi− xc)2 +(yi− yc)2− r|< d, where xi,yi are

data points of the subset , xc,yc,r are the estimated model param-
eters (center and radius), and d is the distance fit tolerance. The
random sampling repeat until the fraction of inliers over the total
number of points that share the same model parameters exceeds a
threshold. We then take the trimmed mean of the estimated cen-
ters of Ĩc as the center of the scattering image, and obtain for the
case of isotropic signal, a residual < 10−4S0 for the higher-order
Sn>0, indicating centering accuracy at the single bin level.

The values and estimated standard errors for the measured
anisotropy curves Sn(q) are shown in Fig 3e. We calculate the
standard error by first measuring the experimental weighted sam-
ple variance of each ∆I(q,θd) element at each time bin delay. The
variance for the kth time delay difference signal ∆I(k)(q,θd) is ob-
tained by:

Var(I(k)) =
1

N(k)

N(k)

∑
m=1
|w(q,θd)

(
∆I(k)(q,θd)−∆I(k)m (q,θd)

)
|2

where N(k) is the number of images recorded for that time de-
lay bin, w(q,θd) is the statistical weight each element in (q,θd)

has due to the four-folding and detector pixel binning, ∆I(k) =
I(k)−〈Iτ<0〉 is the weighted average intensity difference of the kth

time bin, and ∆Im expresses the mth image that belongs to the kth

time bin. The measured variance is then translated to a weights
vector in the weighted least squares Legendre fitting process. The
standard error obtained from the fit is calculated for each q bin
and is propagated to each anisotropy order according to Eq. 8.

Because we will be measuring a time-dependent signal Sn(q,τ)
we would like to use its anisotropy information as a function
of the temporal pump-probe delay to recover and disentangle
the different multiphoton processes it captures. An approach
we have recently introduced to successfully characterize one and
two-photon interaction of isotropic scattering signals43,44 em-
ploys a temporal Fourier-transform to obtain frequency-resolved
X-ray-scattering signals. In this approach, time-periodic vibra-
tion motions in S(q,τ) will appear as peaks in the frequency do-
main S(q, f ) , while ballistic dissociation motions will appear as
lines where the dissociation velocity is linearly proportional to
v = 2π f/q, where f is the Fourier-transformed frequency coordi-
nate.

The reason for such behavior can be understood if we
model motion by a simple outgoing charge density described by
δ (R(t)) = δ (R− vτ). The time dependence in the scattering sig-
nal is then weighted by the spherical Bessel function according
to the qR(t) product. The Fourier transform of such function∫

dτeıωτ jn(qR(τ)) will result in an exponential integral function
that has a maxima when qR−ωR/v = 0. A detailed derivation of
this result can be found in Ref45. We shall discuss implementing
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such an approach in recovering the anisotropy information for the
case of multiple order contributions.

Consider an anisotropic dissociation motion modelled by the
charge density:

|ψ(R,cos(θ),τ)|2 = δ (R− (R0 + vτ))cosn(θ)

where R0 is the initial position at the instance of dissociation,
v is the velocity of the dissociation of anisotropy order n. We
use Eq. 5 and Eq. 6 to simulate the scattering pattern on a
detector at each pump-probe delay and truncate the scattering
signal in the q-range similar to typical experimental conditions,

1Å
−1

< q < 4Å
−1

. We subtract the time delayed scattering signal
from the stationary signal ∆I = I(q,τ)− I(q,τ = 0), and decom-
pose the difference signal in Legendre polynomials to obtain the
β̃n(q,τ) coefficients as shown in Eq 7. We then obtain the differ-
ence anisotropy curves ∆Sn(q,τ) using Eq. 8, and Fourier trans-
form them to obtain the dissociation signature in (q, f ) space.

For example, in Fig 4 we demonstrate the case for a pure
anisotropy of order n = 8. We present the time-dependent
anisotropy difference curves ∆Sn(q,τ) and their temporal Fourier
transforms. We verify that we obtain up to the 8th order Legendre
coefficients without any higher orders contributing. We also ob-
serve that the highest anisotropy order measured (∆S8 in the ex-
ample) has the strongest contribution both in the both temporal
and frequency domains. The analysis captures the expected be-
havior where the dissociation velocity is obtained via v = 2π f/q,
however, we also note that the same dissociation signature is
present at lower anisotropy orders.

The reason for the appearance of a similar dissociation line in
the lower orders is because of the nature of the Legendre polyno-
mials used in the decomposition. A scattering signal from a cosn

distribution will not only be captured by Pn order polynomial but
have projections to all k < n order Legendre polynomials. In this
example, a cos8 distribution will be decomposed to a Legendre
series of even orders up to n = 8. For a general case where sev-
eral orders contribute, one may choose to only analyze the n = 2
order signal instead of all orders. This order includes besides the
cos2 contribution the projections of all higher orders, thus obtain-
ing a representation of the total anisotropy in the sample. Doing
so, however, hinders the assignment of specific processes with a
particular degree of anisotropy, as well as attenuates higher-order
contributions by at least an order of magnitude.

Instead, we show we can map the way the signal of each
anisotropy order is projected among lower orders to trace how
different order contributions are observed given typical experi-
mental sampling in q and τ. In Fig 4 we also show a calculation of
the expected projection as function of q for orders up to n = 8. We
normalize the projections by the leading order and obtain typical
ranges of the magnitude of signal propagation, as summarized in
Table 1. We will use the information of that mapping to disen-
tangle dissociation processes among the orders and uncover the
contribution of each order.

Table 1 The ratio ranges of P|Sk(q, f )|/|Sn(q, f )|, where P|Sk| is the kth

order projection of |Sn(q, f )| with k = 0,2, ..n− 2. The numbers in each

cell present the value limits obtained for the range 1Å
−1

< q < 4Å
−1
. The

values in the table are obtained from the curves seen at the bottom row
of Fig 4 .

PS0 PS2 PS4 PS6
S2 0.65 - 2.98 1 - -
S4 0.68 - 2.62 0.15 - 0.46 1 -
S6 0.49 - 0.96 0.09 - 0.25 0.13 - 0.9 1
S8 0.36 - 1.07 0.09 - 0.15 0.08 - 0.34 0.13 - 1.23

3 Results and discussion
We have applied the Legendre decomposition as described in
Eq. 7 to the measured scattering difference signal ∆I(τ) =

I(τ)(q,θd)−〈I(τ<0)(q,θd)〉 to derive the experimental anisotropy
curves ∆Sn(q,τ) using Eq. 8. The result is seen in Fig 5 for the
different anisotropy orders. The decomposition was done up to
order n = 12 and we have found that for the experimental condi-
tions used it was sufficient to only consider orders of up to n = 8,
indicating that multiphoton processes up to 4-photon absorption
are taking place. The signal at ∆S10(q,τ) has a negligible contri-

bution for the analysis, as its observable signal at q∼ 1.2Å
−1

does
not allow information to be extracted, and may be related to the
limit of anisotropy detection at this range due to the asymmetry
of the inner hole mask of the detector.

The entire excitation dynamics are captured in the angle aver-
aged ∆S0(q,τ) term, where we primarily observe two types of sig-
nals: Time periodic oscillations across the entire q range related
to various vibrational excitations, and, q-dependent modulations
that change their radius of curvature as a function of time and
indicate dissociative motion. The dissociation signature is also
evident in the higher ∆Sn(q,τ) terms, as this type of signal is not
sensitive to rotational dephasing where fragmentation preserves
the molecules axis.

We then Fourier transform the anisotropy curves to obtain the
frequency-resolved ∆Sn(q, f ) terms as seen in Fig 6. We analyzed
the magnitude and real part of each term and obtained the es-
timated dissociation velocities for the different anisotropy orders
via a linear model estimation using a RANSAC algorithm. For vi-
bration frequencies detected, the estimate was based on the cen-
ter of mass of the peak found in frequency. We observe that the
dissociation velocities take place at a range of 8−22Å/ps. We an-
alyze the signal strengths of each dissociation line starting from
the highest order measured and consider the way the signal can
propagate to lower orders to resolve its origin and the pathway
that takes place. We also observe a multitude of vibration excita-
tion that is manifested as peaks in frequency at a wide q range,
most noticeably in the |∆S0(q, f )| term. Analysis of the vibrational
excitation is limited in the high order anisotropy terms due to
rotational dephasing that restricts the effective time-window to
sample periodic motions. As a result, for Iodine, slower vibra-
tions will only have two to three periods before the signal will be
lost to dephasing. This broadens the detected peak widths and
restricts resolving details in frequency.

To consider the way the signal of higher-order anisotropy terms
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Fig. 4 (top) Simulated difference signal of the anisotropy curves for the case of dissociation with a cos8(θ) angular distribution. The highest order
of anisotropy that is obtained is S8, this term also captures the strongest signal in the (q,τ) domain. However, the angular distribution modeled has
also projections on all lower Sk<n orders. (middle) Fourier transforming the temporal domain and plotting the magnitude of each order reveals the
dissociation signature as straight lines along 2π f = qv. (bottom) Analysis of how the dissociation signal of order n propagates to lower orders k < n
as a function of q. In each plot, we normalized the k < n order signal by the leading order n (marked dotted line at unity). The most right-side plot
shows the case for n = 8 that is obtained from the middle row of the figure. This type of signal propagation mapping from higher to lower orders
allows tracing the origins of each anisotropy for the general case of multiple order contributions.

is projected to lower orders, we start by analyzing the highest
observable order. The observed dissociation signal of |∆S8(q, f )|
indicates that a 4-photon transition to a repulsive gerade ex-
cited state occurred. From the estimated dissociation velocity
of 19.6± 0.5Å/ps we calculate a kinetic energy release (KER) of
2.5± 0.1eV that corresponds to a transition to the C1g state that
dissociates to the second dissociation limit: I(3P3/2) + I(3P1/2).
This transition is accomplished via a 3-photon absorption to Ryd-
berg states following a 1-photon transition back to the C1g state,
as well as a Raman excitation to the ground state following 2-
photon absorption. Furthermore, 4-photon absorption from the
ground state can populate the 6d-Rydberg series which lies above
the dissociation limit of the first-tier IP states. While these states
are known to give rise to several fragmentation channels, these
processes take place at a much later time compared to the time
delays probed here. Previous studies that measured the frag-
mentation of these Rydberg states31,46 show that there was no
anisotropy measured for the fragments. This result indicates
that dissociation happened at a timescale longer than the ro-
tation period of Iodine, at least an order of magnitude larger
than the range of time delays probed here. Around the range

1.5Å
−1

< q < 2.5Å
−1

where the dissociation signal was observed,
we deduce that ∼ 30% of the signal in |∆S8(q, f )| is projected
to the |∆S6(q, f )|. Similarly, the projections to |∆S4(q, f )| and
|∆S2(q, f )| are about 20% and 10% respectively.

The observed dissociation signal of the |∆S6(q, f )| term is re-
lated to a 3-photon transition to an ungerade repulsive excited
state, as well as to a possible projection from n = 8 order. We
measure two dissociation signatures for this term, with estimated
velocities of 15.5± 0.5Å/ps and 19.1± 0.5Å/ps. The slower dis-
sociation velocity agrees with the expected KER of ∼ 1.6eV for
nonlinear-Raman transition to the C(B

′′
)1u state that decays to

the first dissociation limit I(3P3/2)+ I(3P3/2). The second dissocia-

tion signal with 19.1Å/ps is interpreted as a projection of the n= 8
order of similar velocity. To arrive at that conclusion we sampled

a region of interest around q ∼ 2Å
−1

where the dissociation sig-
nal is present and calculated the ratio of the median intensity

¯|S6|/ ¯|S8| for this range. We obtain a ratio of 0.42, which is sim-
ilar to the expected range of values for a projection from n = 8
in that q range. Considering the noise floor observed for these
terms in Fig 6, we deduce that most, if not all the signal observed
at that dissociation channel is actually due to a projection of the
n = 8 order. We also observe peaks around 1.4±0.3 and 2.1±0.3
THz corresponding to periods of 710 and 470 fs respectively. The
first peak can be interpreted as a 3 photon absorption process to
high lying vibration levels v = 278− 290 of the D0+u IP state, as
well as for the v = 136 range of the F0+u IP state47,48. However,
the limited resolution of the approach used cannot resolve finer
details. The second detected peak is interpreted as a vibration
wavepacket that was excited via nonlinear Raman scattering to
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Fig. 5 The experimental anisotropy curves ∆Sn obtained from Legendre decomposition of the measured scattering signal. We observe anisotropy up
to n = 8 order. The n = 0 term is the angle averaged scattering signal that captures all dynamics. Time-dependent oscillations of several frequencies
across the entire q range can be seen (most noticeable at 2 < q < 3), caused by various single and multiphoton vibration excitations. Higher ∆Sn
terms capture various dissociation processes that are manifested by q-dependent modulations curves, the longer the dissociation distance the faster
the modulation in q. The q-dependence nature of the amplitude in the various orders is due to the spherical Bessel jn(qR) dependence as seen in Eq.
6. The drop of signal in the higher-order terms as a function of delay is due to rotational dephasing for the case of the molecules that are excited to
bound states. However, excitations that lead to dissociation carry the anisotropic nature of the signal regardless of dephasing as the atoms produced
in the dissociation process will move outward along the straight line defined by the internuclear axis of the molecule.

the bound B(0+u ) state with an estimated period of 450 fs.

For the |∆S4(q, f )| term we observe three dissociation chan-
nels with velocities of 15.7± 0.5Å/ps, 19.8± 0.5Å/ps, and 21.6±
0.5Å/ps. This order captures 2-photon transitions to a gerade ex-
cited state along with projections of the higher orders. Analyzing
the relative signal strengths we observe that high order projec-
tions are minor here. The measured dissociation of 15.7Å/ps cor-
respond to a 2-photon transition to the O+

g state that dissociate
via the 3rd limit I(3P1/2)+ I(3P1/2) with a KER of 1.6eV . The next
dissociation is more prominent and relates to excitation of the C1g

state via the 2nd limit I(3P3/2)+ I(3P1/2) with a KER of 2.6eV . Fur-
ther, we measure another dissociation signal with a faster velocity
of 21.6Å/ps that corresponds to a KER of 3.1eV indicating that we
excite the a1g state that decay to the 1st limit I(3P3/2)+ I(3P3/2).
We observe peaks in frequency at 1.75± 0.2 THz, 2.3± 0.2 THz
corresponding to periods of 570 and 430 fs respectively. We also
observe a weaker peak around 6±0.2 THz which indicates Raman
excitation of the ground state at ∼ 167 fs period. The lower peaks
around 2 THz can only be explained by higher-order projections
that are more visible in lower orders, as will be elaborated for the
n = 2 order.

The lowest anisotropy order n = 2 contains multiple dissocia-
tion channels that coincide with the higher orders, as also shown
in Fig 6 summary plot. In the perturbative limit this order will
capture 1-photon transitions to ungerade excited states such as

the bound B(0+u ) state, the repulsive C(B′′)1u and A1u states. An-
alyzing the signal strength of the different channels concerning
possible projections of the higher orders we learn that the n = 4
order contributes most of the signal measured along the same
dissociation channels with two exceptions. We measure a dissoci-
ation line at the 16.1Å/ps that correspond to 1-photon transition
to the C(B

′′
)1u state. Additionally, the slowest dissociation veloc-

ity we measure 7.9Å/ps is related to a transition to the lowest
repulsive A1u state with a KER of 0.41 eV. Such slow dissociation
is at the limit of detection using the frequency-resolved approach
as the line that corresponds to it has a greater overlap with the
different vibration peaks, as seen around 1.5-2 THz.

The n = 2 order also shows multiple strong peaks in frequency
up to 6 THz, that relate to vibration excitation, besides the strong
and broad peak at 1.9 THz that correspond to the vibration mo-
tion of the B(0+u ). We see this effect also for the n = 4 order
lower frequency peaks. The ability to resolve vibration modes
in frequency depends on the way rotation motion is projected to
the different anisotropy orders. As a result, projections of higher
to lower orders for periodic motions depend on the rotation dy-
namics in addition to the mathematical projection. This contrasts
with to the way dissociation signal projection propagates, as it
is insensitive to rotational dephasing. Consequently, the S2 term
effectively samples more time delay bins compared to higher or-
ders when considering periodic motions. The attenuation and
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Fig. 6 The (top) magnitude and (bottom) real part of the measured Fourier transformed anisotropy curves ∆Sn(q, f ). For visualization we use a
logarithmic scale for the magnitude. The |∆S0(q, f )| term captures all dynamics, including many multiphoton vibrationaly excited states that appear
as peaks along f . These peaks broaden and attenuate in higher orders due to rotational dephasing that limits their time periodic sampling. Several
dissociation pathways that appear as diagonal lines are captured in the S2 and S4 orders, as well as weaker dissociation in the S6 and S8 orders. To
analyze the dissociation signatures we also use the information of the real or imaginary part of Sn(q, f ) that allows better contrast vs the noise floor,
as seen for the terms ℜSn(q, f ) scaled by the Fourier vector that appear below the magnitude information. (bottom left) Analyzing the positions of
the dissociation signatures in different anisotropy orders allows to identify the pathways and the number of photons that participated (see text). The
line colors code for the different anisotropy orders, the slopes correspond to the average dissociation velocities: (a) 7.9 (b) 16.1 (c) 17.5 (d) 19.1 (e)
21.6 (f) 15.7 (g) 19.8 (h) 21.6 (i) 15.5 (j) 20.4 (k) 19.6 Å/ps±0.5Å/ps.

broadening of periodic signals due to rotational dephasing in the
higher orders restrict the projection analysis between the orders
to the point it is impractical to assign excitation pathways based
on anisotropy. The isotropic signal |∆S0(q, f )| combines all types
of signals, and in particular, can be used to identify all peaks in
frequency that corresponds to several Raman and nonlinear Ra-
man excitations. While it can be challenging to resolve some of
these peaks because of the overlap they have with all the diago-
nal dissociation lines, we conclude that the spectroscopy of vibra-
tional motion is mostly limited to the isotropic signal in the con-
text of the frequency-resolved X-ray scattering analysis presented
here.

4 Conclusions

In conclusion, we are presenting the first results of the observa-
tion of high-order anisotropy, up to 8th order, in ultrafast x-ray
scattering. We present an analysis method that uses a Legendre
decomposition and Fourier analysis on measured and simulated
scattering signal. We map the way different anisotropy orders
project signal to lower orders and use it to resolve and inter-
pret the experimentally observed signals. We resolve many dis-
sociation channels and vibration modes that are excited by mul-
tiphoton transitions and assign the processes based on the or-
der of the anisotropy they appeared at. Leveraging high-order
anisotropy information of the scattering signal is limited by the
rotational timescale. In particular, it is limiting the ability to
use it for Fourier-resolved x-ray scattering of vibration motions,

implying that direct real-space approaches should be considered
in this context. However, during that rotational timescale, the
anisotropy information provides a sensitive filter to differentiate
and trace different excitation pathways that take place simultane-
ously. The information provided using this approach can be also
applied in other analysis schemes, as well as open the possibility
to serve as a prior when analyzing the isotropic time-dependent
signal past the rotation timescale.
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