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Tangential curvatures are a key geometric feature of tissue folds in the human cerebral cortex. In the 

brain, these smoother and firmer bends are called gyri and sulci and form distinctive curved tissue 

patterns imposing a mechanical stimulus on neuronal networks. This stimulus is hypothesized to be 

essential for proper brain cell function but lacks in most standard neuronal cell assays. A variety of soft 

lithographic micropatterning techniques can be used to integrate round geometries in cell assays. Most 

microfabricated patterns, however, focus only on a small set of defined curvatures. In contrast, curvatures 

in the brain span a wide physical range, leaving it unknown which precise role distinct curvatures may 

play on neuronal cell signaling. Here we report a hydrogel-based multi-curvature design consisting of 

over twenty bands of distinct parallel curvature ranges to precisely engineer neuronal networks' growth 

and signaling under patterns of arcs. Monitoring calcium and mitochondrial dynamics in primary rodent 

neurons grown over two weeks in the multi-curvature patterns, we found that static calcium signaling was 

locally attenuated under higher curvatures (k > 0.01 µm-1). In contrast, to randomize growth, transient 

calcium signaling showed higher synchronicity when neurons formed networks in confined multi-

curvature patterns. Additionally, we found that mitochondria showed lower motility under high curvatures 

(k > 0.01 µm-1) than under lower curvatures (k < 0.01 µm-1). Our results demonstrate how sensitive 

neuronal cell function may be linked and controlled through specific curved geometric features. 

Furthermore, the hydrogel-based multi-curvature design possesses high compatibility with various 

surfaces, allowing a flexible integration of geometric features into next-generation neuro devices, cell 

assays, tissue engineering, and implants.

Introduction

The architecture of the human cerebral cortex displays a folded landscape having evolved and expanded 

tangentially across a spherical surface to optimize brain surface area within the human skull1-3. This tissue 

folding process starts during the fetal developmental stage and plays a crucial role as the brain matures 

and creates new neuronal connections 4-8. Aside from the deeply folded landscape, abnormal cortical 

folding has been associated with neurological, cognitive, and behavioral disorders such as epilepsy9, 
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autism10, 11, and schizophrenia12-14. Current computational-based evidence supports the hypothesis that 

forces get generated within cortical folds and impact cellular morphology and migration during cortical 

development15. However, how the cortical folds can result in bent neurite network growth and alter 

neuronal cell function remains poorly understood. From histological images1, 15 two main curvature 

regions can be identified based on smaller (0.001 µm-1 < k < 0.008 µm-1) and larger bends (0.01 µm-1 < k 

< 0.05 µm-1, Fig. 1a). Various surface geometry modifying techniques such as microchannels16, 

micropillars17, 18, microfibers19, 20, patterned substrate coatings18, 21-25, or hydrogels26-28 have been 

employed to guide the growth and orientation of neuronal cells from the peripheral and central nervous 

system29. Characteristic bending of neurite outgrowth based on curvatures has been explored by Smeal et 

al. on microfiber filaments using dorsal root ganglions (DRG)19, 20, and by Roth et al. on poly-l-lysine 

(PLL) patterns using mouse neurons25. With microfiber filaments varying in their curvatures from 0.004 

µm-1 to 0.06 µm-1, Smeal et al. found that the highest curvature filaments had the strongest DRG neurite 

growth guidance effect. Roth et al. demonstrated further that curvatures above 0.1 µm-1 inhibited neurite 

outgrowth25. Beyond neurite growth, a ring-shaped surface pattern with curvature below 0.01 µm-1 has 

been used to demonstrate connected evoked calcium activity in small-scale neuronal networks grown 

from cortical neurons23. Although all these microenvironmental cues play an important role in neuronal 

outgrowth29, how different curvature ranges drive functional spontaneously occurring neuronal behavior 

is still poorly understood. Hence, we designed a multi-curvature based micropattern to investigate how 

different curvature ranges influence spontaneously occurring transient calcium signaling events and 

mitochondrial transport in primary cortical neurons. Inspired by hydrogel soft-embossing methods28, 30, 

we fabricated a range of curvatures (k = 0.003 – 0.2 µm-1) in a highly parallelized manner. Using our 

multi-curvature patterns, we studied the cellular response of rodent cortical neurons by analyzing how 

neurons grow their networks, how calcium (Ca2+) fluorometry changes, and how mitochondrial transport 

gets impacted under distinct curvature ranges. Our results indicate that distinct curvature ranges leave a 

unique fingerprint of neuronal network behavior based on calcium signaling and mitochondria dynamics. 

Materials and methods 

Design and fabrication of multi-curvature micropatterns for neuronal cell assay using a hydrogel 

substrate

In figure 1b and 1c, the materials, the assembly, and the design of the multi-curvature micropatterns are 

shown. Through varying the number, the width, and the gap between the growth rings, six different 

designs were chosen. (Fig. 1d, growth ring = cells), leading into multi-curvatures ranging from 0.003 µm-

1 to 0.2 µm-1 (Fig. 1e). A photolithography mask was designed using CleWin (PhoeniX, Netherlands) as a 

negative pattern to fabricate the multi-curvature micropatterns. KMPR 1050 (Microchem) was spin-
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coated (500 rpm for 10 s ramp-up speed; 3000 rpm for 30 s; 1000 rpm, 10 s ramp down speed) and soft-

baked at 100 °C for 15 min to obtain a feature height of 50 µm. The features were exposed (700 mJ/cm3) 

to ultra-violet light using a contact aligner (Shipley SPR 1813) and developed (SU-8 developer) for 

3.7 min followed by a thorough rinse with deionized (DI) water. Silicone elastomer base and curing agent 

(Sylgard) were mixed using a 10:1 base/curing agent ratio and poured onto the KMPR master wafer to 

cast the PDMS stamp. The PDMS elastomer mixture was cured for 2 h at 60 °C for rapid crosslinking and 

gently peeled off from the master and cut to size (Fig. 2a). For the fabrication of soft-gel features, a 

mixture of 3% w/v Type VII-A agarose (> 250 mg/cm2) was heated in a convection oven at 80 °C. We 

chose this agarose concentration based on testing of agarose hydrogel repellant properties (Figure S1a and 

S1b). The liquid agarose solution was directly pipetted onto a Petri dish pre-coated with poly-d-lysine 

(PDL). After pipetting, the PDMS stamp was pressed firmly onto the agarose gel inspired by a previous 

method27, 30. Contact was maintained for 5 min, followed by a cooling period for 30 min before the PDMS 

stamp was removed. Feature integrity of the multi-curvature patterns was imaged using upright bright-

field and inverted DIC-contrast microscopy at each fabrication step (Fig. 2b). To measure the swelling 

characteristic of agarose hydrogel, in situ imaging was utilized by loading the agarose with fluorescent 

microparticles (diameter: 15 µm, Bangs Lab). The position of the fluorescent microparticles was then 

imaged in 10 min intervals for 48 h (Fig. S2a) for subsequent particle image velocimetry (PIV). The 

image sequence was post-processed using the PIV module in MATLAB (Fig. S2b), resulting in particle 

displacement maps over time (Fig. S2c-e). 

Cortical neuron cell culture

Rat embryonic brains (E18, BrainBits) were dissected following a previously established protocol31-33. 

Briefly, cortical tissues were dissociated in 10% (v/v) papain (Carica papaya, Roche) in Hibernate-E 

(BrainBits) at 37 °C for 15 min. Dissociated cortical neurons were centrifuged (6 min, 600 rpm, at room 

temperature) and then seeded at a concentration of 250,000 cells/ml per device. Cortical neurons were 

incubated (95% air, 5% CO2, 37 °C) in standard neuronal culture media (97% (v/v) Neurobasal Plus 

Medium (Gibco), B-27 Plus Supplement with 2% (v/v) (Gibco), and 1% (v/v) penicillin-streptomycin 

(Gibco)) and grown for over two weeks (3DIV, 9 DIV, 12 DIV, 15 DIV = days in vitro). The growth of 

neurite networks was then quantified in each growth ring using a mask during image-post processing 

(Fig. 2d-2e). 

Mitochondria and calcium labeling

Day 12-15 cortical neurons were incubated with red mitochondria tracking dye (1.88 µM, MitoTracker 

Red CMXRos, Invitrogen) mixed into standard media culture (0.02% v/v) and incubated for 1 h. The 
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neuronal culture was gently washed with pre-warmed imaging media (98% (v/v) Neurobasal Plus without 

Phenol Red, 2% (v/v) B-27 Supplement, Gibco) before imaging. To achieve proper staining of the 

culture, the MitoTracker was introduced first, imaged, and followed by Fluo-4 AM calcium staining with 

gentle washing in-between. For calcium labeling, Fluo-4 AM direct calcium assay kit (Invitrogen) was 

prepared following the manufacturer's protocol with probenecid acid (10 mM). The final Fluo-4 AM 

mixture was added to neuronal cultures in a 1:1 ratio with media and incubated for 1 h. 

Live-cell imaging

Cortical neuron cultures were live imaged using an inverted imaging system (Leica DMi8S) with white-

light bright-field, phase-contrast, or differential interference contrast (DIC) starting at day three in vitro 

(DIV). Spontaneous (activity-independent) transient calcium signals were captured in live cortical neuron 

cultures using a single-wavelength calcium indicator Fluo-4 AM (see supplementary video file 1) due to 

its wide dynamic range, easy to use, and wide range of comparable studies in the field of calcium 

imaging6, 34-36. Live-cell fluorescent calcium dynamics in Fluo-4 AM labeled neurons were captured using 

the same microscope fluorescent settings (Leica DMi8S, GFP filter, 20x air) with channel exposure set to 

250 ms. Transient fluorescent calcium signals were recorded for 50 s at 2 fps (2 Hz). Separate static 

fluorescent calcium signals were captured based on a single-image setting. Live-cell imaging of 

fluorescently labeled mitochondria was taken at 2 fps for 120 s using the same microscope (Leica DMi8S, 

TxRed filter, 20x air) 

Image processing and analysis

Static calcium profiling

Image processing of static calcium profiles was done through ImageJ using a custom-written semi-

automated calcium profiling plugin (Fig S4a, S4b). Intensity signals were projected to a radial line with 

its origin in the micropattern's center. The radial line then automatically scans the entire micropattern 

region clockwise, and yields mean and SE intensity profiles. The projected intensity profile ( ) was then 𝐼

normalized based on the number of cells ( ) in each ring and based on the average intensity ( ) over 𝑁𝑐𝑒𝑙𝑙 𝐼𝑎𝑣𝑔

the whole image (Eq.1, eq. 2, Fig. S4d). The curvature for each concentric circle ( ) is the inverse of its 𝑘

radius ( ) starting from the center of the micropattern (Eqn. 3). The resulting normalized calcium intensity 𝑟

( ) is then used to compare differences in the multi-curvature micropatterns based on different arcs in 𝐼 ∗

the neuronal network (Fig. S4e). 

𝐼 
𝑐𝑒𝑙𝑙 =

𝐼
𝑁𝑐𝑒𝑙𝑙

#(1)
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𝐼 ∗ =
𝐼𝑐𝑒𝑙𝑙

𝐼 𝑎𝑣𝑔
  #(2)

 𝑘 =
1
𝑟  #(3)

Transient calcium fluorometry

The transient live-cell calcium signaling data based on spontaneously active cell bodies with neurites 

were analyzed using custom algorithms in MATLAB inspired by Ikegaya et al. 6, 37. Exported microscope 

videos were imported into MATLAB and treated as sequences of images. The image sequence was then 

segmented into regions of interest (ROIs) using an auto-detection algorithm. Individual cell bodies were 

segmented into ROIs and indexed with a number and a radius code corresponding to the center of the 

multi-curvature micropattern. The ROIs were then sorted into radius groups corresponding to distinct 

curvature regions (Fig. S5a). Mean fluorescent intensity for each ROI was extracted over the time series, 

and a numerical derivative was computed for each transient wave (ΔF/Δt) based on a similar algorithm 

reported in Beck et al. 31. Calcium events based on increasing cytosolic calcium levels were denoted as a 

spike for visualization where the numerical derivative exceeded 2.5 times the standard deviation. The 

spike rate of calcium events was then computed as the average number of calcium increase events per 

second for each ROI (Fig S5b).

Synchronous calcium network identification

To quantify synchronous events of calcium increase inspired by Ikegaya et al. 37, we measured the overall 

signal synchronicity in the cortical network through calculating a synchronicity index ( ) from the raster 𝑆𝐼

plots showing increase in calcium events. Spike raster plots were compared using the Sørensen–Dice 

similarity coefficient31. Unique comparisons (i.e., a 3-length ROI index would follow as ROI1-ROI2, 

ROI1-ROI3, ROI2-ROI3) was then linearized and run through the filter function (Eq. 4) where  is the 𝑆𝑖

Sørensen–Dice similarity coefficient at the linear index , and  is the total length of the linearized list 𝑖 𝑛𝑚𝑎𝑥

of spike events (Fig. S5c).

𝑆𝐼 =
1

𝑛𝑚𝑎𝑥
∑𝑛𝑚𝑎𝑥

𝑖 = 1
[𝑆𝑖 > 0.25]       𝑤ℎ𝑒𝑟𝑒 [𝑃] = { 1 𝑖𝑓 𝑃 𝑖𝑠 𝑡𝑟𝑢𝑒,

0 𝑖𝑓 𝑃 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒;#(4)

Mitochondria tracking

We measured mitochondrial dynamics through computing the average velocity (vavg), total distance 

traveled (Ltotal) within a limited time frame, and diffusion behavior based on mean square displacement 

(MSD). Image sequences were imported into ImageJ for photobleaching correction and background 
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subtraction. A rolling-ball parabola algorithm was used to correct video stacks. Afterward, mitochondria 

dots were tracked using ImageJ TrackMate (LOG detector, 1 µm blob diameter) and exported as .xml 

files. All tracks were analyzed using custom MATLAB scripts previously described32. Briefly, the 

MATLAB script excludes track data that were extracted for time frames shorter than 36 s. It then 

generates star plots of all tracks, computed the MSD (Eqn. 5)38, Ltotal (Eqn. 6)32, and vavg (Eqn. 7)32. Final 

data was binned for each multi-curvature region within the micropatterns.

𝑀𝑆𝐷 =  
1

𝑝 ― 𝜏

𝑝 ― 𝜏

∑
𝜏 = 1

|( 𝑥𝑖 + 1
𝑦𝑖 + 1 ) ― (𝑥𝑖

𝑦𝑖)|2
 #(5)

𝐿𝑡𝑜𝑡𝑎𝑙 =  
𝑝

∑
𝑖 = 1

𝐿𝑖 #(6)

 𝑉𝑎𝑣𝑔 =  
1
𝑝 

𝑝

∑
𝑖 = 1

𝐿𝑖

𝑡𝑖 ― 𝑡𝑖 ― 1
  #(7)

Statistical analysis

All resulting computational data was subjected to a Normality test. If normal data distribution was 

rejected (p > 0.05), non-parametrized statistical tests were used to assess significance. Spike rates of 

calcium events and synchronous calcium network activity were compared across devices (L-I, L-II, 

control) using the Mann-Whitney test and visualized based on p > 0.05 (not significant) and p ≤ 0.05 

(significant difference). Agarose concentration distributions were tested using appropriate one-way 

ANOVAs test routines (p < 0.01). 

Results and discussion:

Stable replication of multi-scale curvatures in hydrogel-based micropatterns for neurite networks 

growth in vitro

Confined curvatures are a key feature of the cerebral tissue resulting in small and large-curved neurite 

growth in the human brain cortex (Fig 1a). To replicate this growth characteristic in neurite networks in 

vitro in a reproducible and highly parallelizable way, we designed six individual multi-ring patterns 

ranging from 280 µm (the smallest outer diameter) to 600 µm (the largest outer diameter, Fig. 1b-1e). 

Within the six multi-ring patterns, a set of two has identical growth widths of 10 µm, 20 µm, and 50 µm 

denoted as S, M, L, respectively (Fig. 1d). The six multi-ring patterns were assembled into four arrays and 

imprinted in a 3% (w/v) agarose-based hydrogel layer to generate 50 µm tall neurite growth barriers (Fig. 
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S1). The agarose barriers are either 15 or 25 µm denoted as I or II, respectively (Fig. 1d). The integrity of 

the agarose hydrogel (swelling) was tested for 48 h in culture media using fluorescent beads (Fig. S2), 

and the stability of agarose barriers was monitored over 12 days with neurite network forming neurons 

(Fig. S3). Throughout the fabrication process (Fig 2a, 2b), we found that agarose maintained high batch 

consistency, similar to other studies using soft-gel microstructures for patterned cell growth28, 30, 39. 

Seeded cortical neurons integrated into the microchannels between the agarose barrier and grew in 

circular patterns forming arced neurite networks over 12 DIV (Fig 2c1-c2, Fig S3b). Lastly, we measured 

the total growth coverage of seeded cells in the multi-curvature patterns (Fig 2d and 2e). Based on a 

percentage growth area coverage (cells per ring area), we found that growth coverage decreased with 

increasing curvature (k1 = smallest, k4 = largest, Fig 2e). The maximum growth did not exceed 30% of 

the total area for any curvature values (k > 0.004 µm-1). These findings remained consistent within two 

individual designs with different agarose barriers (width = 20 µm, 25 µm) and identical cell growth 

patterns (width = 50 µm) and further confirm the growth inhibition effect under large curvatures (k > 

0.1 µm-1) shown by Roth et al.25 

In summary, the micropatterned hydrogel substrates allow primary cortical neurons to grow neurite 

networks in multi-curvature micropatterns ranging from 0.003 µm-1 to 0.2 µm-1 in a stable and 

reproducible manner and provides the foundation for a parallelized analysis of neuronal cell signaling and 

intracellular transport dynamics.

Static Ca2+ levels change under distinct multi-curvature patterns

To investigate spatial differences in static calcium levels relying on unique micro-curvature patterns, we 

extracted static normalized fluorescent calcium profiles from Fluo-4 AM stained mature grown neurite 

networks (rat, E18, cortical neurons, 9 – 12 DIV). We measured the curvature effects in relation to static 

calcium intensity levels with all circular variation types (Fig. 3a1-a3) using semi-coded scripts (Fig. 3b1-

b4, Fig. S4). When comparing static calcium profiles between unpatterned neuronal network growth and 

multi-curvature-based micropatterns, we observed distinct shifts in calcium amplitude depending on the 

curvature region (Fig. 3c1-c3). As expected, the unpatterned network reveals an almost uniform calcium 

distribution (Fig. 3c2). However, the micropatterned network shows spatial differences in the amplitude 

of the calcium profile depending on the curvature (Fig. 3c3). This trend is further supported by comparing 

normalized calcium fluorescent profiles between the six different multi-ring patterns (Fig. 3d1-d3). 

Interestingly, three major static calcium profiles seem to emerge from the multi-curvature patterns. If the 

growth ring width, where the neuronal cells adhere, is below 50 µm, the bent neurites seem to either show 

large intensity amplitudes above the average intensity for very large curvatures (k > 0.1 µm-1) or 

attenuated amplitudes within 0.01 µm-1 to 0.05 µm-1 (Fig. 3d1, 3d2, 3e1, 3e2), independent of the smaller 
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barrier widths (S&M-I:15 µm versus S&M-II:25 µm). If the growth ring width is above 50 µm, neurite 

networks still grow circularly; however, the static calcium profiles appear to be as uniformly distributed 

as for unpatterned neurite networks (Fig. 3d3, 3e3). These observations may be explained through 

metabolic signaling between the multi-curvature rings, which can still occur through the agarose barriers 

due to the porosity of agarose26, 40. Furthermore, the higher calcium intensity levels under larger 

curvatures (k > 0.1 µm-1) may indicate the activation of an environmental cue due to mechanical forces, 

which have been linked in previous studies to cause a Ca2+ influx in cortical neurons33, 41-44. In summary, 

our results suggest that varying degrees of curvatures may affect static calcium profiles distinctively in 

neuronal tissues. 

Ca2+ event rates show sensitivity to multi-scaled curvature patterns

To understand the impact of curvature on calcium signaling, we monitored spontaneously evoked 

temporal calcium dynamics in multi-curvature neurite networks grown from cortical neurons. Based on 

the static calcium patterns shown before, we selected the two largest growth area devices with 50 µm 

growth ring width to observe temporal changes in calcium signaling compared to an unpatterned control 

(Fig. 4a). Transient fluorescent calcium signals were monitored using a single-wavelength Fluo-4 AM 

calcium indicator due to its large dynamic range34, 36. Increasing and decreasing cytosolic calcium levels 

were decomposed using custom software that located individual somata as regions of interest (ROIs) and 

categorized the ROIs based on the curvature range in which they resided (Fig. S5). Figures 4c1 to 4c3 

show a representative example of calcium transient and its rate of change over a 30 s time-window based 

on a slow-scanning speed (2 Hz). With increasing curvature, cortical neurons showed reduced transient 

calcium signaling activity, as shown in the calcium raster plots (Fig. 4b) and a decrease in spike rates of 

calcium events (Fig. 4d1-d2) in contrast to randomized network growth (Fig. 4d3). From the raster plot, 

we then extracted an average calcium event rate of 0.54 spike events min-1 for the 15  µm barrier width 

and 0.35 spike events min-1 for the 25  µm barrier width. In contrast to the multi-curvature patterns, 

unpatterned networks had an average calcium event rate of 0.67 spikes min-1. We attribute the similar 

spike rate between the unpatterned and the multi-curvature pattern with the lower agarose barrier width 

and potential transport of signaling molecules that can diffuse through the agarose pores40. Agarose 

barriers above 25 µm may potentially decouple and therefore desynchronize neurite network patterns, 

reducing the overall spike rate of calcium events. 

Multi-curvature patterns based on thicker agarose barriers uncouple Ca2+ event synchronicity

The synchronous activity of spontaneously occurring calcium events has been shown for cortical neuron 

aggregates in vitro37, 45-47. Here, we analyzed if the multi-curvature pattern also induced spontaneous 
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synchronous calcium events. We computed the Sørensen–Dice coefficient from the ROI spike trains at 

each curvature range to test the synchronicity of calcium events in the multi-curvature patterns. A total 

synchronicity index (SI) for the individually curved cortical networks then indicates high synchronous 

calcium events within the network when more than 25% of the events occurred in the same time interval 

(Fig. 4e1-e3, Fig. S5). Multi-curvature micropatterns with 15 µm agarose barrier width showed the 

highest synchronicity in calcium events and highest variability across the different curvatures with a mean 

SI of 0.106 (Fig. 4e1). Multi-curvature patterns with 25 µm agarose barrier width reduced the mean SI to 

0.077; however, more distinct regions of SI's are observed based on distinct curvature regions suggesting 

an uncoupling of calcium event synchronicity between the distinct curvatures (Fig. 4e2).

In contrast to the multi-curvature patterns, unpatterned neurite networks had a low mean SI of 0.039 

without distinct regional differences (Fig. 4e3, Mann-Whitney p<0.05). This asynchronous signaling 

effect is also confirmed without binning the data set by curvature (kn). No significantly different 

synchronicity was observed (Fig. 4e3, Mann-Whitney p<0.05) between the artificial regions in the 

unpatterned network. This observation could mean that the multi-curvature patterns show more mature 

neurite network development than the unpatterned networks45, 48, 49. On a side note, we want to add here 

that our spike event detection result from slow scanning calcium imaging (2 Hz). This approach makes 

the computation of the synchronicity index specifically robust; however, our calcium transients may 

disguise a high true spike rate of calcium events50 or may include calcium signal contamination from non-

neuronal cells6. In summary, micropatterning neuronal growth under distinct curvatures and with varying 

hydrogel barrier widths enables the formation of distinct neuronal network functionality, which cannot be 

replicated in the unpatterned growth of neurite networks. 

High curvatures immobilize the transport of mitochondria

Calcium signaling and mitochondrial dynamics are highly intertwined subcellular processes in neuronal 

cells51-53. Here, we test if the modulation of calcium signals through the multi-curvature growth pattern of 

neurite networks also influence mitochondria transport dynamics53-60. Distinct mitochondria staining is 

noted based on the neurite network growth with and without the multi-curvature design (Fig. 5a). Using 

ImageJ TrackMate61 and custom coded MATLAB scripts32, mitochondria transport (Fig. 5b) was 

characterized based on mean-square displacement (MSD, Fig. 5c), center plots of trajectories (Fig. 5d), 

and average velocity (Fig. 5e). We found that low curvature values, 0.003 < k < 0.01 µm-1 showed 

convection-driven mitochondria transport with a preferred direction (Fig. 5c and 5d). Additionally, we see 

that these lower curvature ranges reveal two distinct velocity clusters (mean1 = 0.15 µm/s and mean2 = 

0.77 µm/s, Fig. 5e). These velocity ranges are typical for mitochondria docking and diffusive behavior52, 

55, 58 versus active transport behavior previously shown between 0.55 µm/s and 0.61 µm/s52, 58, 62. In high-
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curvature ranges (0.01 < k < 0.2 µm-1), we observed no active transport behavior. Neurons growing in 

unpatterned neurite networks show mitochondria velocities closely related to previously established 

mitochondria velocities in vitro neuronal cultures52, 55, 59, 63. Similar to Chang et al.56, mitochondria 

dynamics in our experiments show both stationary and high mobile events (Fig. 5e). 

In summary, while both the lower curvature micropatterns and the unpatterned neurite networks showed 

stationary docking and active transport behavior for mitochondria, the high curvatures immobilize these 

dynamic events. These stationary mitochondria dynamics may be attributed to increased mechanical 

stress or may be needed to buffer the local increase of intracellular cytosolic calcium64.

Mechanically shaping the Ca2+ mitochondria axis in neuronal network growth

In our experimental data, we observed two distinct patterns of mitochondria dynamics and calcium 

signaling events, depending on either high or low arcs in our multi-curvature patterns. Figure 6 

summarizes our experimental findings and sets them into the context of a calcium-mediated mitochondria 

recruitment hypothesis, which shows a dominant feature depending on the strength of curvature range. 

Under high curvatures (k > 0.01 µm-1), cortical neuronal networks show higher stationary calcium levels 

but lower mitochondria transport velocity and lower spike rate dynamics (Fig. 4d1-d2, Fig. 6a, Fig. S6). 

In contrast, low curvature ranges promoted high mitochondria dynamics and lower stationary calcium 

signals at slightly higher spike rate dynamics (Fig. 4d1-d2, Fig. 6a, Fig. S6). These results show not only 

a differential image in comparison to the control data, but they also seem to allow us to finetune 

regulatory events in neurite networks based on precisely controllable mechanical growth cues based on 

curvatures. The interplay of Ca2+ and mitochondria is well recognized with cellular energy production53, 

cell fate regulation65, and cellular homeostasis51. As dynamic organelles, mitochondria are responsive to 

both environmental and physiological cues58, 62. Additionally, it has been proposed that elevated Ca2+ 

influx limit mitochondrion mobility57, 66. This reduced mobility may indicate elevated calcium levels due 

to higher curvature levels in the patterns. There has also been an interest in regulating mechanosensitive 

Ca2+ channels in neurons to elucidate the role mechanosensitivity plays in Ca2+ signaling and its 

downstream processes67. Calabrese et al. observed that temporary membrane stretching accelerated the 

development of Ca2+ currents, amplifying the net Ca2+ entry68. This net influx was further confirmed when 

Kunze and Tay et al. observed Ca2+ influx during tugging of cell membrane-localized magnetic 

nanoparticles33. Interestingly, Muqing et al. observed both the arrest of mitochondrial transport during 

increased cytosolic Ca2+ and a consecutive increase in mitochondrial calcium60, which further 

substantiated the hypothesis of mitochondrial recruitment at increased local Ca2+. Hence, we hypothesize 

that the higher curvatures exhibited in our device create a physical environment capable of continuously 

stretching mechanosensitive Ca2+ channels, creating locally increased Ca2+ levels that locally recruit 
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mitochondria for docking (Fig. 6b, Fig. S6). Therefore, the decrease in mitochondrial velocity rates can be 

seen as a downstream consequence of increased internal Ca2+ concentrations at greater curvatures. 

Conclusions

In summary, we have developed a reproducible micropatterning method to design multi-curvature 

neuronal network growth in groves of agarose hydrogels. Using these multi-curved neurite networks, we 

observed distinct calcium signaling and mitochondria transport events. We revealed that high curvatures 

(k > 0.01 µm-1) favor dynamic calcium and transport events rather than stationary events in comparison to 

low curvature ranges (k < 0.01 µm-1). We also demonstrated that incorporating soft-gel microchannels 

into neuronal cell assays is a versatile, low-cost, and highly reproducible method to control neurite 

network growth under confined curvatures. Broadly, our multi-curvature-based soft-embossing of 

micropatterns allows for rapid and relatively easy reproducibility in studying confined curvatures 

associated with mechanical cues imposed on neuronal cell growth in the highly folded landscape of the 

human cerebral cortex. Although projected to a flat surface, where neuronal cells grow, the quasi three-

dimensional environment due to the hydrogel barriers makes it specifically compatible with standard live-

cell fluorescent microscopy techniques. Furthermore, the micropatterning approach makes multi-

curvature studies accessible for large-scale pharmaceutical testing and neurobiology studies. Our highly 

parallelized design enables automated image acquisition, parallelized batch processing, scaling up 

experimental batch size while being compatible with standard cell culture assays. Beyond calcium 

signaling and mitochondria dynamics, our multi-curvature patterns can bring further insights into 

functional changes imposed to neuronal networks through the cortical folded landscape. 
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Figure 1. Low-cost, multi-curvature micropatterning design for calcium-based neuronal network 

studies. a) In-vivo representation of diverse arc ranges occurring in the human cerebral cortex. Low 

curvatures (k < 0.008 µm-1) are determined by gyrus and sulcus structures. High curvatures (k > 0.01 

µm-1) are determined through bended neurite/axonal growth characteristics. b-c) Experimental design 

of micro-patterned multi-curvature-based growth of primary cortical neurons (E18, rat model) on 

polystyrene substrates using hydrogel boundaries in b) exploded view, c) top view. d) Six different 

multi-curvature micro patterns used in this study. Letters indicate cell growth width. S: small (10 µm), 

M: middle (20 µm), L: large (50 µm). e) Side view of panel d shows radius and curvature parameters 

associated with the six different designed micropatterns in panel d.
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Figure 2. Device design shows the robust fabrication of curvature features and embedded curved 

neurite outgrowth. (a) Schematic of micropatterning process flow. The photoresist process takes place 

in the cleanroom and yields a modeling master. The process of polydimethylsiloxane (PDMS) stamp 

formation is repeatable and done in a physical wet lab setting. The last process uses liquified agarose 

hydrogel as a base layer onto which the PDMS microstructures get imprinted. This step yields the 

multi-curvature hydrogel patterns where neuronal cells grow within the grooves. (b) Microscope 

images show the photoresist structure on the master, the microstructures after being cast into PDMS, 

and the imprinted hydrogel microstructures. (c1 and c2) DIC images of day 12 cortical neurons forming 

circular networks in the multi-layered curvatures. Distinct curved growth patterns depend on curvatures 

k1, k2, k3, and k4, where k1 is always the smallest curvature. (d) Image processing mask used to 

extract curvature-dependent static and transient calcium activity within one circular network. (e) The 

diagram shows curvature-dependent coverage of total ring growth area in the micropatterns, extracted 

from two patterns (n = 2, each) at 12 DIV. The covered growth area decreases as curvature increases. 
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Figure 3. Multi-curvature patterns reveal distinct characteristics in static calcium fluorescence in two-

week-old circular neurite networks (rat, E18). (a1-a3) The six distinct multi-curvature micropattern 

designs. The colored area is the neuronal cell growth area. Red: Constant agarose barrier width = 15 

µm. Blue: Constant agarose barrier width = 25 µm. (b1-b4) Image processing workflow of raw calcium 
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images. (b1) Original 12-bit false-color green-fluorescent calcium images (Fluo4 AM). (b2) Down 

sampled 8-bit gray-scale image after background subtraction. (b3) Automated circular calcium 

profiling captures fluorescent intensity profile across one individual micropattern design. (b4) Raw 

plots of the fluorescent intensity profiles for every single pattern. (c1) Representative fluorescent image 

of a patterned and unpatterned (control) cortical neuron culture (E18, rat, 12 DIV), respectively. (c2) 

Normalized fluorescent profiles show distinct static calcium characteristics corresponding to panel c1. 

The fluorescent signal was normalized over its average (mean intensity). (c3) The mean intensity of the 

fluorescent signal was plotted over the curvature. (d1-d3) Normalized fluorescent profiles depending 

on the six distinct micro-patterns. (e1-e3) Mean fluorescent intensity profile plots correlated with 

patterned curvatures.
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Figure 4. Transient calcium signaling in neurite networks grown in multi-curvature patterns is 

curvature dependent. (a) Schematic highlights the top-view and side-view of two selected multi-

curvature patterns, and the control, with associated representative green fluorescent images (Fluo-4 

AM) and shows primary cortical neurons at 12 DIV (E18, rat). The gray-shaded area is the neuronal 

cell growth area with agarose barrier width = 15 µm and 25 µm. (b) Time-varying plots show calcium 

dynamics based on continuous fluorescence and raster spike plots associated with the selected patterns 

from (a). (c1 – c3) Fluorescent signal processing for extracting spikes of calcium events, where F is the 

time-variant fluorescent signal extracted from calcium imaging, ΔF/Δt is the relative rate of change in 

cytosolic calcium, and threshold-based calcium events are denoted as spikes in individual cell bodies 
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(regions of interests = ROIs). K1 – k4 labels indicate different curvature rings, with k1 being the 

smallest curvature. (d1 – d2) Density plots indicate relative spike events per minute for neurons 

growing in distinct curvatures. For the unpatterned control, the same curvature mask was used to 

extract region-specific calcium events. (e1 – e3) Boxplots show the distribution of synchronous 

calcium spike activity associated with the distinct curvature regions.

Figure 5: Strong curvature bends slow down mitochondria movement. (a) Representative fluorescent 

images show red fluorescent-labeled mitochondria (MitoTracker ) in primary cortical neuron cultures 

(12 DIV, E18, rat) in the multi-curvature patterns and the unpatterned culture environment (control). 

(b) Time-lapse image sequence presents the mitochondrial movement in two-week-old living neurons. 

The green arrowhead points to a particular mitochondrion of interest and its moving position over time 

extracted from circular (top) and unpatterned = control (bottom) neural growth. (c) Mean-square 

displacement (MSD) plots were computed for N individual mitochondria tracks selected from distinct 

low (klow), high (khigh) curvature regions, or the unpatterned no curvature influence control region. (d) 

Center plots of mitochondria trajectories associated with distinct curvature regions and control. (e) 

Distribution of average velocity for individual mitochondria associated with the distinct low and high 

curvature region versus the unpatterned control condition.
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Figure 6: Confined curvature microenvironments reveal distinct fingerprints based on static and 

transient Ca2+ signaling events, mean growth area, and mitochondrial movement dynamics. (a) A four-

axis radar chart compares the maximum spike rate, maximum static average calcium intensity, 

maximum average mitochondria velocity, and the maximum mean growth area between the curvatures 

and unpatterned culture conditions. (b) Schematic of a possible mechano-activated mitochondrial 

recruitment hypothesis, where (1) mechanosensitive Ca2+ channels are activated due to strong 

mechanical bending of the neuronal cell membrane (neurite), which potentially leads to (2) 

mitochondria recruitment due to a local levitation of cytosolic Ca2+, which then reduces mitochondria 

transport velocities.
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