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Abstract

While quantitative structure-properties relations (QSPRs) have been developed successfully in 

multiple fields, catalyst synthesis affects structure and in turn performance, making simple QSPRs 

inadequate. Furthermore, catalysts often have multiple active sites preventing one from obtaining 

insights into structure-property relations. Here, we develop a data-driven quantitative synthesis-

structure-property relation (QS2PRs) methodology to elucidate correlations between catalyst 

synthesis conditions, structural properties as well as observed performance and to provide 

fundamental insights into active sites and a systematic way to optimize practical catalysts. We 

demonstrate the approach to the synthesis of nitrogen-doped catalysts (NDC) made via pyrolysis 

for the performance of the electrochemical hydrogen evolution reaction (HER), quantified by the 

onset potential and the current density. We determine crystallinity, nitrogen species type and 

fraction, surface area, and pore structure of the NDC�s using XRD, XPS, and BET characterization. 

We demonstrated that an active learning-based optimization combined with various elementary 

machine learning tools (regression, principal component analysis, partial least squares) can 

efficiently identify optimum pyrolysis conditions to tune structural characteristics and 

performance with concomitant savings in materials and experimental time. Unlike previous reports 

on the importance of pyridinic or graphitic nitrogen, we discover that the electrochemical 

performance is not driven by a single catalyst property; rather, it arises from a multivariate 

influence of nitrogen dopants, pore structure and disorder in the NDC materials. Identification of 

active sites can help mechanistic understanding and further catalyst improvement. 
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1. Introduction

Quantitative structure-property relations (QSPR) have been used widely by materials science 

and systems communities to create a map that relates structure with performance. As an example 

the composition of complex, multicomponent materials of batteries can be linked to performance1,2 

and the properties fuels can be related to the mixture composition3,4. QSPRs are powerful as they 

allow one to optimize materials and design systems. The UNIFAC modeling platform5�7, and in 

general the group additivity framework, is such an example of how molecular structure is 

correlated with thermophysical properties for both fluid6,8 and catalytic systems9�11. In catalysis, 

such QSPRs are generally lacking. The catalyst structure and composition dictate reaction 

performance but the structure is often not the thermodynamically most stable one; rather it is some 

metastable structure. As a result, performance optimization12,13 requires careful control of the 

catalyst synthesis and/or of the pre-treatment. This fact requires extension of typical QSPRs to link 

synthesis to structure and structure to performance, i.e., to develop QS2PR (quantitative synthesis-

structure-performance relations). Another complexity in catalysis is that multiple active sites can 

be present on a catalyst and play a different role in performance. Identification of the active site(s) 

is critical to perform mechanistic studies and find ways to maximize their density. Yet, relation 

between performance and active site is frequently non-trivial. A methodology is needed to develop 

these correlations in an unsupervised or semi-supervised manner to provide fundamental insights 

and a systematic way to optimize practical catalysts. This is the overarching goal of this 

contribution. We choose the hydrogen evolution reaction (HER) to illustrate our approach.

HER is a key process for renewable energy technologies14, such as fuel cells, batteries, and 

water-splitting. Nitrogen-doped metal-free carbon catalysts (NDC�s) have been found to perform 

electrocatalytic HER15�18, providing a cheaper but equally efficient alternative to Pt-based 

materials19. The presence of N species changes the spin density, electronic properties, and charge 

distribution of the carbon framework by introducing electron-donor characteristics from its lone 

pair electrons and enhancing the carbon catalytic activity in electron-transfer reactions14,20,21. 

Generally, three types of N are found in NDC�s: pyridinic N, pyrrolic N, and graphitic N (Scheme 

1), categorized based on the N species hybridization and the number of neighboring C atoms. 

Graphitic and pyridinic nitrogens are sp2 hybridized. Graphitic N binds to three carbon atoms and 

shares the additional electron with the carbon framework in a partially occupied G%5	���� while 

pyridinic N typically occupies edges of the carbon framework, forming H5	����22 with two 

neighboring carbon atoms. Pyrrolic N is sp3 hybridized, contributing two electrons to the G system, 

and bound into the five-membered ring, as in pyrrole. 
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that relate synthesis conditions to structure and electrocatalyst properties. With such relations and 

additional active learning optimization, we can tailor the hierarchical structures and surface 

dopants of the NDC catalysts for optimal HER performance. To the best of our knowledge, a 

systematic data-driven experimental design combined with machine learning analysis for physical 

experiments has not been reported, specifically for developing and evaluating NDC materials 

towards the HER in our case. Our machine learning analysis reveals the inherent multi-

dimensionality of these systems as the observed HER performance (onset potential and maximum 

current density) is driven by combined contributions from nitrogen dopants, pore structure and 

disorder incorporation in the NDC materials. 

2. Materials and Methods

2.1 List of Chemicals

Solid crystalline urea (99.3 +%) and activated carbon (Ketjenblack® EC-300J) were purchased 

from Alfa Aesar and Akzo Nobel, respectively, and were used as received. Nafion® solution and 

sulfuric acid were purchased from Sigma Aldrich.

2.2 Catalyst Preparation

The N-doped catalysts were prepared by simple pyrolysis of nitrogen precursors onto various 

supports under Helium gas at 300 - 500 oC. The preparation of N-doped catalysts is typically as 

follows: 1 g of urea was dissolved in 10 ml of deionized water and mixed with 0.5 g of activated 

carbon followed by evaporation at 60 oC, overnight to remove water. The obtained catalyst 

precursor was ground using a ceramic mortar and pestle into fine powder, transferred into a quartz 

boat crucible and pyrolyzed in a tube furnace (Thermo Scientific Lindberg Blue M model) setup 

with an inert gas (He) at conditions specified by the experimental design. 

2.3 Catalyst Characterization

SEM analysis of the materials was performed on an Auriga 60 microscope (Carl Zeiss NTS 

GmbH, Germany) equipped with a Schottky Field Emission Gun (FEG). All samples were 

deposited on adhesive carbon tape and sputtered by a DESK IV sputter unit (Denton Vacuum Inc. 

NJ, USA) equipped with Au/Pd target. XRD patterns of the NDC catalysts were recorded on a 

diffractometer (Bruker D8) equipped with a &�KT radiation source 6UV1+�0B nm) at 40 kV and 40 

mA. A Thermo-Fisher K-alpha + X-ray photoelectron spectrometer (XPS) equipped with a 

monochromatic aluminum K-alpha X-ray source (400 µm) was used. N2 adsorption measurements 

were performed using a micrometrics ASAP 2020 surface area and porosity analyzer. The 

carbon:nitrogen ratio of the urea impregnated carbon catalyst was obtained using a carbon, 

nitrogen, hydrogen, and sulfur (CHNS) elemental cube analyzer. 

Analysis of the XPS data was carried out using the Thermo Fisher Avantage surface chemical 

analysis program. All XPS spectra presented were performed following subtraction of a Shirley 

background and were fitted using components with a mixed Gaussian-Lorentzian line shape with 

a standard peak type. Full-width-half-maximum (FWHM) values42�44 were constrained within the 

range 0.8 � 1.2 eV for C1s, 1.0 � 1.4 eV for N1s, and 1.6 � 2.0 eV for O1s spectra. These parameters 

were consistently used for all spectra fittings. N1s spectra binding energy assignments were based 

on literature reports14,17,43,45 and the Thermo Fisher Avantage XPS knowledge library. The O1s 

and C 1s spectra peak assignments were based on Schlogl et al.43 and the Thermo Fisher Avantage 

XPS knowledge library. These peak assignments are summarized in Table 1.
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Table 1. C1s, O1s, N1s peak assignments (eV).

C1s O1s            N1s

sp2 - C 284.8 C-O 532.8 Pyridinic N 398.3

sp3 - C 285.7 C-OH 533.7 Pyrrolic N 399.8

C-O 286.2 Adsorbed H2O 534.8 Graphitic N 401.1

C=O/C-N 288.3

2.4 Electrochemical Measurements

Nitrogen doped carbon (2 mg) was ultrasonically dispersed in a 50:50 by volume water and 

isopropanol mixture containing 10 µL of 5 wt. % Nafion® solution until a homogeneous catalyst 

ink was obtained.  Thereafter, 10 drops of 5 µL of the above dispersion was drop-casted onto a 

pre-cleaned glassy carbon electrode (GCE) with 0.185 cm2 geometrical area. The catalyst modified 

GCE was dried under ambient conditions and served as the working electrode (WE).  

Electrochemical measurements were carried out using a standard three-electrode cell using a large 

area Pt wire as a counter electrode and a saturated calomel electrode (SCE) as a reference electrode 

for studying HER activity in acidic medium (0.5 M H2SO4). Linear scanning voltammetry (LSV) 

experiments were conducted at a potential window -0.3 to 1.1 V (vs SCE) with a scan rate of 5 

mVs-1 in order to evaluate electrochemical activity for the hydrogen evolution reaction (HER).

2.5 Kriging-based Active Learning Methods and Software

The initial DoE and subsequent sampling points were generated using pyKriging, an open 

source kriging software in Python46. The mathematical foundation of the software originates from 

the work of Jones47,48 and Forrester49. 

2.6 Machine learning analysis

PCA and PLS regression were carried out using the Minitab software50.

3. Selection of Variables and Mappings via Expert Knowledge

Improving the performance of the catalyst is the overarching objective of this work. In order 

to achieve this, first we need to define the number and specific variables of each of the three spaces, 

synthesis, structure, and performance. The number of (linearly independent) variables defines the 

dimensionality of a space. We elaborate on the variables for our specific example and the topic of 

linear independence of variables framed in a more general way. 

Expert knowledge is used to define the variables of each space, based on what matters in a 

process, what important variables can be controlled in synthesis, and what are good structural 

features that can be measured. For electrochemical performance, we focus on the onset potential 

and the current density, which together define a two-dimensional (2D) performance space. Other 

metrics, such as process cost and sustainability, could also be considered. 

For synthesis, the final temperature, the heating rate during pyrolysis, and the hold time at the 

maximum pyrolysis temperature are selected as tunable parameters. These parameters define a 

three dimensional (3D) experimental synthesis space. One could easily consider additional 

synthesis parameters and let the important synthesis parameters be auto-selected as described 

below. For example, the ratio of reagents and drying conditions in preparation of the catalyst 

precursor could have also be considered but this was not done here as we found that the urea 

concentration was unimportant above a certain value and pyrolysis conditions control chiefly the 

material made. The feasible bounds of these parameters are shown in Table 2. Tuning the synthesis 
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conditions within the bounds would lead to desired structural features, and ultimately to improved 

electrochemical performance. 

Since the nitrogen species are the active sites for the electrochemical HER reactions17, we 

hypothesize that the type and amount of nitrogen potentially control HER electrochemical 

performance. Note that the three types and the total content of N are not independent as the sum 

of the three types equals the total. The current hypothesis is that the higher the N content, the 

higher the performance14,17,20,51�53. However, the active site is somewhat controversial, as 

mentioned above, and we would be interested in identifying the active site using our approach. 

Aside from the total amount and type of N atoms, the pore volume, the surface area, and the degree 

of crystallinity could affect performance. We define these six collective variables as our structural 

features, which are often referred to as materials characteristics, traits, or descriptors in literature. 

This defines a 6D materials structure space. Depending on the problem to be tackled, we propose 

to include also other spectroscopic features, if available, in the characterization space. 

 

Material 

Characterization

Ncontent

NPyridinic

NGraphitic

NPyrrolic

Micropore volume

BET surface area

Crystallinity

Synthesis

Heating rate

Hold time

Final temperature

Performance

Onset potential

Current density

Figure 1. Mapping between synthesis conditions, material characterization, and performance. The total N content is the sum 

of the three N types, and thus, the structure space is at most 6D for this example. 

Upon defining the variables for each space, our goal is to develop mappings between spaces. 

Each mapping is, in a mathematical sense, a set of data-driven models describing the relations 

between two spaces (Figure 1). Active learning, denoted by the double-sided arrows, enables the 

data flowing in both directions, connecting synthesis and characterization, and synthesis and 

performance in our case. While one could directly connect synthesis with performance without 

characterization, developing both synthesis-structure and structure-performance maps is essential 

in identifying the active site and deriving other fundamental insights. These may lead to tailored 

synthesis methods for increasing the active site concentration and enhancing the overall 

performance.

4. Prototypical Characterization Results

The NDC synthesis was initially exploited with respect to urea loading during the wet 

impregnation step. A fixed amount of carbon precursor � 0.5 g activated carbon was added to 

different concentrations of urea (0.1, 0.2, 0.4 and 0.6 g/ml) and oven dried. After drying the urea-

impregnated carbon materials, the C:N ratio was determined using the CHNS analyzer. The results 

indicate that above a urea concentration of 0.2 g/ml, the C:N ratio plateaus with increasing urea 

concentration (Figure S1). This is likely a result of the carbon being saturated with urea at high 

loadings, as urea deposits are seen after drying the impregnated catalysts for loadings > 0.1 g/ml 

(Figure S2). Therefore, we use 0.5 g carbon precursor in 10 ml of 0.1g/ml urea solution for further 

studies. The surface morphology of the catalyst raw materials (urea and activated carbon (ECBJ-
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300) is shown in Figure 2. The activated carbon precursor has a well-defined porous structure 

(Figure 2A), while urea exists as dense non-porous solid blocks (Figure 2B). 

Figure 2. Scanning electron micrographs. A) Ketjenblack® EC-300J - carbon precursor. B) Urea � nitrogen precursor.

The obtained NDC catalysts were characterized using different techniques. XRD shows two 

broad diffraction peaks at �Y of 24.8o and 44.1o (Figure S3) indexed54 to the (002) and (101) facets 

of graphite. The crystallinity of NDC catalysts has been shown to change by the addition or 

removal of structural defects54 and nitrogen incorporation52,55 and is hereafter used as a measure 

of defect/disorder55,56.  The Scherrer equation provides an estimate of the degree of crystallinity of 

each catalyst, and our XRD patterns indicate that nitrogen doping changes the degree of 

crystallinity (Table S1).

The surface area and porous structure of the resulting samples were also characterized by N2 

adsorption/desorption measurements. N2 physisorption isotherms are shown in Figure 3A and 

Figure S4. All catalysts exhibit well-defined adsorption-desorption isotherms with a clear 

hysteresis loop associated with capillary condensation of inert species at higher relative pressures 

in the mesopores. Rapid nitrogen uptake (P/P0 ~0.1) confirms the existence of micropores in 

NDCs. The existence of micropores greatly enhances the specific surface area, providing channels 

for electron transport. The pore geometry, surface area, and micropore volume were analyzed 

using the BET (Braunauer, Emmett and Teller) equation and BJH (Barrett-Joyner-Halenda) pore-

size distributions measurements (Figure 3B). The pore size distribution indicates that the NDC 

catalysts possess large pores mainly composed of mesopores and macropores. Mesopores facilitate 

transport of reagents and reaction intermediates toward and from the catalytic sites. Sharp rise in 

N2 adsorption uptake at higher relative pressure indicates the presence of macropores57. 

Altogether, it is expected that such a hierarchical structure enhances diffusion of H2 and the HER 

activity.

B

A B
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Figure 3. Typical BET analysis of the nitrogen doped catalysts (NDC). A) N2 adsorption (blue)/desorption (yellow) isotherm. 

B) BJH pore size distribution. Plots shown are for the NDC19, with synthesis conditions for this catalyst and others in Table S1.

 XPS was performed to investigate the chemical composition and bonding configurations of 

elements in the NDC catalysts. Figure 4 and Figure S5 confirm the presence of C, O, and N in the 

NDCs. The corresponding atomic percentages of N are listed in Table S1. The fitted high-

resolution C 1s spectrum shows four peaks43 at about 284.8, 285.7, 286.2, and 288.3 eV, 

corresponding to sp2-C, sp3-C, C�O and C=O/C-N, respectively (Figure 4B). The O 1s XPS spectra 

of the NDC catalysts are shown in Figure 4C. Three types of O species are observed. The peak at 

532.8 eV, 533.7, eV and 534.8 eV can be assigned to C-O, C-OH, and adsorbed water species, 

respectively43.

A B
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Figure 4. Typical XPS spectra for NDCs. A) Full survey scan. B) High resolution C 1s scan. C) High resolution O 1s scan. 

D) High resolution N 1s scan. Plots shown are for NDC19 with synthesis conditions for this catalyst and others in Table S1.

Successful doping of N atoms into the carbon skeleton is evidenced from the corresponding 

high-resolution N 1s spectrum (Figure 4D). Pyridinic N (398.3 eV), pyrrolic N (399.8 eV), and 

graphitic N (401.1 eV) species are observed14,17,43,45. 

5. Kriging-based Active Learning

Here we consider the NDC synthesis process as the objective function with the synthesis 

conditions as the input parameters and the total N content as the response that we would like to 

optimize. Since the true objective function is typically unknown, one needs to approximate it with 

a surrogate model, which is cheap to evaluate in the optimization process. Kriging methods can be 

used to construct accurate surrogate models and locate global optima given bounds of input 

parameters. The kriging-based active learning algorithm is described in Figure 5. The first step 

requires a training set of initial sample points including both the input parameter values and the 

response values from the experiments. We use a Latin Hypercube design (Figure S6) to sample 

the three-dimensional experimental space49. Second, a surrogate model is constructed using a 

normally distributed multivariate function (a Gaussian process (GP))58 given this initial training 

Page 9 of 24 Reaction Chemistry & Engineering



10

set. By learning from the data and measuring the similarity between points, GP can predict the 

response value for an unseen point with an uncertainty estimate. The uncertainty is low near the 

sampled regions but high in regions with a low number of sampling points. Third, the expected 

improvement (EI) acquisition function helps the model decide where to sample next, i.e., what 

experiments to do next. Generally, EI directs additional sampling in regions of higher uncertainty 

or better performance, and by doing so, it significantly reduces the number of experiments required 

to identify the optimum with improved accuracy. Sampling in regions of high uncertainty is usually 

referred as �exploration�, whereas sampling in regions of high expected performance is referred 

as �exploitation�. EI offers a good balance between the exploration and exploitation tradeoff59,60. 

Next, the response values at these additional sampling points are obtained from a new set of 

experiments and added to the training set. The model is then updated, and the process is iterated 

until the observed optimum converges.

For our specific example, with an initial design of 10 points, we trained an initial surrogate 

model and further used kriging to generate 3 additional points per iteration, i.e., a third of the initial 

test size, to adequately capture changes as the experimental design evolved. All sampling points 

are visualized in the 3-dimensional space shown in Figure S6.

Initial DoE

X � sample points

Kriging Surrogate 

Model f*

The Objective 

Function f(x)

y � responses

Xnew - the next best 

sample points

Acquisition   

functions (EI) 
Converged?

No

Yes 

Terminate 

Figure 5. Kriging-based active learning algorithm.

Table 2. Experimental bounds of pyrolysis (synthesis) experiments for optimization studies. After ramping from room to final 

temperature (based on the heating rate), heating is held for the set hold time at the final temperature.

Lowest 

Value

Highest 

Value

Final Temperature (oC) 300 500

Heating Rate (oC/min) 3 8

Hold Time (hr) 2 6
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E

DC

BA

F

Figure 6. 2D visualizations of nitrogen content (%) heatmaps at a chosen heating rate (8 oC/min) in the 3D space. A) Initial 

design. B) After 1st iteration. C) After the 2nd iteration. D) After the 3rd iteration. E) After the 4th iteration. The values in the heatmaps 

are predicted by the kriging surrogate models. The color bar indicates the value of nitrogen content. From A-E, as more points are 
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added, the surrogate model becomes more accurate. F) Optimal nitrogen content (%) observed in experiments in each iteration. 

The error bar indicates the standard deviation of the N content from 3 measurements. 

In each iteration, the surrogate model can be visualized in 2D by varying the final temperature 

and hold time at a constant heating rate. As described in the kriging method above, the total N 

content was optimized as the response variable and the model predicted values are plotted as 

response surfaces (Figure 6A-E). The N content found in experiments in each iteration is plotted 

as a function of the number of iterations (Figure 6f). The model of the initial 10 points (Figure 6A) 

indicates an optimum N content around 2 wt. %. Therefore, the algorithm suggests an optimum 

around the edge points where one of the input parameters takes its extreme value. After the first 

iteration (Figure 6B), the nitrogen content increases (intensified orange color on the heat map), 

and shifts to the top and bottom left corners. After the second iteration (Figure 6C), a stronger 

intensity in the heat map is observed at the top left corner where a higher N content of 2.8 wt. % 

is discovered. In the following iterations, since the algorithm has sampled enough in the region 

(i.e., exploitation), it explores other regions improving the overall accuracy of the model (from 

Figure 6C to D) and the response surfaces remains unchanged (from Figure 6D to E). This can 

also be seen in Figure 6F, as the N content decreases in the third and fourth iterations, suggesting 

an exploration with no increased N. This process highlights the utility of a data driven approach 

for optimizing the catalysts synthesis. If a traditional central composite design with three factors 

was used, a total of 40 experiments would had been needed to obtain a response surface which 

might not cover the true optimum. With kriging based active learning, we efficiently reduced 

experimental time (< 20 runs to identify an optimum) and consumables. Optimal conditions for 

synthesizing NDC�s from activated carbon and urea precursors with maximum N content are at a 

final temperature of 300 oC, heating rate of 8 oC/min, and a hold time of 6 hr. Extending the hold 

time did not improve the N content further, as the N content was at 2.79 wt.% at a hold time of 8 

h (vs 2.82 wt.% at a hold time of 6 h).

The kriging model relates the synthesis conditions to the N content; however, its mathematical 

expression is elusive. To obtain an explicit expression, we build a simple model (Eq. 1), using 

multivariate OLS regression with three synthesis conditions as the independent variables and the 

total N content as the response variable, as typically done in building response surfaces in design 

of experiments. 

����� � 	�
��
� = 2.78 + 8.01 × 10�3

 ����������� � 0.343 �����
� ���� � 0.806 ���  ���� � 1.02 × 10�5 �����������2

�3.26 × 10�4 ����������� " �����
� ���� � 4.17 × 10�4 

 ����������� " ���  ���� + 3.34 × 10�2 �����
� ����
2

+2.57 × 10�2

(1) �����
� ���� " ���  ���� + 0.113 ���  ����2 
The total N content, temperature, heating rate, and the hold time are in units of wt%, oC, oC/min 

and hr. We use MAE (mean absolute error) to quantify errors in model predictions. The model 

gives a reasonable MAE of 0.31 wt. %. These equations are used later to gain insights into how to 

optimize the HER performance.

3.3 Synthesis-Structure Causalities via Machine Learning 

To understand how synthesis affects the catalyst structural characteristics (Table S1), PCA was 

performed. PCA is a useful statistical tool for identifying the number of independent factors, 

reduction of dimensionality61, and revealing correlations62 and the importance of various factors. 

It emphasizes variation between parameters and brings out patterns in a dataset, making data easy 

to explore and visualize. In our case, the dataset consists of 9 features; six are the structural features 
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(BET surface area, micropore volume, crystallinity, graphitic nitrogen content, pyridinic nitrogen 

content, and pyrrolic nitrogen content) and three are the synthesis conditions (final temperature, 

hold time, and heating rate). The scree plot (Figure S7) shows that three principal components 

explain 75% of the variation and are sufficient for an exploratory analysis. Generally, factors that 

are clustered together show strong positive correlation and those orthogonal to each other show 

little or no correlation. Factors on opposite side of the PCA plot possess an inverse correlation.
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Figure 7. A) Principal component analysis of the correlations between synthesis conditions and catalyst features. B) 

Covariance matrix of standardized structural features. The green and red colors indicate strong positive and negative correlation 

between two features, respectively.  

The two principal components that account for most of the variability in the dataset are shown 

in the loading plot (Figure 7A). The results clearly show three clustered groups: group 1 includes 

the surface area, the micropore volume, and the final temperature; group 2 includes the graphitic 

and pyridinic N content; and group 3 includes the defect/disorder capturing the % crystallinity and 

the pyrrolic N content. Figure 7 reveals several interesting points. The final pyrolysis temperature 

is positively correlated with the surface area and the micropore volume. As the temperature 

increases, the nitrogen species embedded in the pores and the carbon framework gasify, resulting 

in a higher surface area and a more porous catalyst63�65. The final temperature (group 1) is nearly 

antiparallel with the graphitic and pyridinic N in group 2 and the pyrrolic N in group 3, indicating 

an inverse relationship between them, i.e., as the final temperature increases, all three types of N 

are reduced. This fact also indicates that there is tradeoff between increasing surface area and 

microporous volume and controlling the N content.  

There is a clear relation between the pyridinic and graphitic nitrogen content with the hold time; 

the longer the hold time, the more these types of N form. These two N species are the most 

dominant nitrogen species in NDC materials20, with pyrrolic nitrogen sometimes converting into 

the graphitic and pyridinic species over time26. The heating rate is almost orthogonal to these N 

types, i.e., it does not affect them. An underlying assumption made is that the N species distribution 

measured macroscopically, using XPS, is represented by three N types. Obviously, each type 

captures the spatial average distribution, including any defects, of the local environment of N 

atoms that cannot be identified by measurements. Computational studies and atomic scale 

microscopy, which can elucidate species distribution in finer detail, will be important for future 

work.

The degree of crystallinity and the pyrrolic nitrogen content (group 3) are strongly correlated. 

As pyrrolic nitrogen is doped onto the carbon material, disorder is induced in the framework56. 

A B
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Pimenta et al. had observed a localization of the d-band intensity at the edges of the carbon 

framework56. Also, pyrrolic N is thermolabile17,26,54 and evaporates from the carbon material with 

increasing temperature, leaving behind surface defects. The heating rate affects positively and the 

final pyrolysis temperature negatively these two structural characteristics. On the other hand, the 

hold time does not affect these structural features. 

The covariance matrix (Figure 7B) indicates that the 3 structural feature pairs are strongly 

correlated with each other, including (1) BET surface area and pyrrolic N content (covariance = -

0.92), (2) pyridinic N content and graphitic N content (covariance = 0.84), and (3) micropore 

volume (VM) and BET surface area (covariance = 0.71). The observations agree with the PCA 

results shown in Figure 7A. The features in pair (1) are in 180 degrees in the principal component 

(PC) 1- principal component (PC) 2 space suggesting a strong negative correlation; and the 

features in pair (2) and (3) are found in the same clustered groups suggesting a strong positive 

correlation. 

Mathematically, since the synthesis conditions control the structural characteristics, it is more 

appropriate to refer to these relations as causalities rather than correlations. We used PCA to 

provide physical insights into which synthesis conditions control the key physical characteristics 

of the catalyst. In this respect, we use PCA as an interpretive tool of the synthesis-characterization 

mapping.

3.4 Electrochemical Performance-Structural Characteristics Correlations

The electrochemical HER activity and specifically the onset potential (V vs SHE) and the 

maximum current density (mA/cm2) were evaluated for each of the 22 NDC catalysts (labeled as 

NDCx, x=1,�,22) synthesized in He-saturated 0.5 M H2SO4 electrolyte. Since both variables are 

negative, we choose the onset potential and the absolute value of the maximum current density as 

the performance metrics, since a desired NDC catalyst should have higher values in both metrics 

(an onset potential as close to zero as possible and as high current density as possible). As displayed 

in 

Figure 8A and Figure S8, each synthesized catalyst exhibits different electrochemical 

performance, manifested with a differrent onset potential and maximum current density (Table 

S2).
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Figure 8. HER polarization curves of A) synthesized NDC18 -20. The inset shows a blow up of the onset potential. B) Blank 

carbon electrodes in comparison to NDC19 (carbon with the best electrochemical performance). C) Onset potential (V vs SCE) 

versus the maximum current density (absolute values), abs(imax) (mA/cm2) for the 22 NDCs. 

In order to evaluate the HER activity of the synthesized NDC catalyst, we compared the onset 

potentials (evaluated at a current density of 1 mA/cm2) of each catalyst. Figure 8B shows the 

polarization curves obtained for the NDC19, fresh carbon (undoped) precursor (Ketjenblack® EC-

330J), Vulcan XC-72, and multiwall carbon nanotubes (MWCNTs). The HER performance is 

significantly improved after the doping of the fresh carbon with nitrogen. Interestingly, the onset 

overpotentials 6]V�o-Ep) of the NDC samples are relatively low and comparable to values reported 

in literature (Table S3). The results suggest that nitrogen doping could provide HER active sites 

facilitating charge transfer through the catalyst. Electron supply for the hydrogen evolution current 

has been shown to depend linearly on the current density66, necessitating high current density for 

faster reaction rates. 

C
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Figure 8C shows the onset potential of the 22 NDCs plotted against the maximum current 

density (absolute value) indicate some correlation between the two metrics. Importantly, one could 

have high onset potential and high current density (absolute values) at once, i.e., there is not a 

Pareto line. The Pearson coefficient, which is a measure for linear correlation, is determined to be 

-0.4, indicating a weak linear correlation. This trend is also consistent at lower onset potentials 

(Figure S9). It is important to note that comparing the onset potential and the maximum current 

density has some limitations related with the insufficient transfer of the produced H2 on the 

electrode surface to the bulk electrolyte67.
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Figure 9. Partial least squares (PLS) standardized coefficient plot for A) the onset potential (V vs SHE) and B) the maximum 

current density (absolute value) (mA/cm2).

Eqs. 2 and 3 relate the catalyst structural features to the onset potential (V) and maximum 

current density (absolute values) (mA/cm2), respectively. The N species content (NPyridinic, NPyrrolic, 

NGraphitic) is expressed as the fraction of the total N content. The BET surface area, micropore 

volume, and crystallinity are in units of m²/g, cm³/g, and percentage. Note that the coefficients are 

for the original (unscaled) values. The standardized coefficients are represented in Figure 9.

#
$�� ����
���� =  0.486 +  0.0438 �%&�� �
�' � 0.102 �%&�����' � 0.141 �(���)���' � 1.03 × 10�3

(2) *+� $��,�'� ���� +  1.36 -�'������ .����� � 1.80 × 10�3 	�&$�����
��&

�/$0���1) =  � 119 + 87.6 �%&�� �
�'� 98.0 �%&�����'� 192 �(���)���'

            (3)� 0.103 *+� $��,�'� ���� �  56.8 -�'������ .����� + 5.50 	�&$�����
��&

The MAE for onset potential and maximum current density are 0.03 V and 26.74 mA/cm2, 

respectively. These errors correspond to 14% and 16% of the observed range for the two variables 

in our dataset. One should note that these relations are linear and adequate for our system, but 

nonlinear models could also be considered to potentially improve the prediction accuracy. 

BA
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From Figure 9, we clearly observe the multivariate contributions of various features on the 

observed electrochemical performance. Contrary to prior research attributing electrochemical 

performance to one or the other N species, all N species21,68,69 affect the electrochemical 

performance, a fact that may explain the conflicting reports in the literature. However, their effect 

is not the same: pyrrolic54 and graphitic17,53,54 Ns cooperate, whereas pyridinic20,53 is antagonistic 

to the other two. In particular, the graphitic N has the strongest influence amongst the three N 

species, especially for the current density. The other catalyst properties (micropore volume, surface 

area and crystallinity) also influence the electrochemical performance; crystallinity is more 

important for the current density and surface area is the most important materials descriptor for 

the onset potential. 

Towards increasing the onset potential, PLS analysis indicates that increasing both pyridinic 

N and micropore volume (Figure 9A) will provide the desired output. Likewise, reducing the 

graphitic N, pyrrolic N, as well as surface area will also increase the onset potential. The pore 

related properties (surface area and micropore volume) have the strongest influence on the onset 

potential, with the N species contributing to a lesser effect. We believe that the microporous 

structure provides interconnected paths and short diffusion channels enabling the absorption of H+ 

and desorption of H2, facilitating the mass and charge transfer. 

Conversely, the N species have the strongest influence on the current density, with the pore 

related properties having a weaker effect. Current density is a kinetic property, explaining its 

dependence on the distribution and concentration of HER active sites (N species) for charge 

transfer through the catalyst (Figure 9B). To increase the maximum current density, increasing 

both pyridinic N and % crystallinity (Figure 9B) will meet the desired target. Unfortunately, the 

pyridinic and graphitic Ns are almost colinear (Figure 7B), which implies that one cannot increase  

pyridinic N without also increasing the graphitic N. In contract, one could decrease pyrrolic N 

without affecting the other types of N. Catalyst crystallinity introduced by d-band disorder 

facilitates shuttling of electron carriers between crystallites in the material, reducing electrical 

resistivity,56 and consequently increases the maximum current density (absolute value) of NDC 

catalysts. Similarly, reducing the graphitic N and pyrrolic N also increases the maximum current 

density.  

i
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iv i

ii
iii

iv

Figure10. Heat maps for A) the onset potential (V vs SHE) and B) the maximum current density (absolute values) (mA/cm2) 

as a function of the heating rate and hold time. Figure 5 and Table S4 both indicate 300 oC as the best temperature for optimal 

HER performance, and hence we choose to graph the heating rate and hold time at a fixed final temperature of 300 oC. The red 

colors indicate desired performance, whereas the blue colors indicate poor performance. The points indicate optimization of the 

Page 17 of 24 Reaction Chemistry & Engineering



18

onset potential (scenario i), maximum current (scenario ii), both (scenario iii; multi-objective optimization with equal weights of 

0.5), or total N (scenario iv) which was the initial target.

We further performed kriging-based active learning to optimize the HER performance using 

surrogate models without performing additional experiments. In the first step, we related the 6 

structural features to synthesis conditions using multivariate OLS regression (Eq. S1-S6, parity 

plots shown in Figure S10B-G). Next, direct relations between synthesis conditions and HER 

performance were constructed by substituting Eq. S1-S6 into Eq 2 and 3. The resulting relations 

were used as surrogate models to optimize HER performance and locate optimal synthesis 

conditions. Due to their complexity, we do not display the functional forms of these two models. 

The two models have reasonable MAEs of 0.03 (V vs SHE) and 26.74 (mA/cm2) for the onset 

potential and maximum current density, respectively (parity plots shown in Figure S9). 

To enhance the performance, the onset potential and the maximum current density (absolute 

value) need to be maximized. We performed an initial sampling of 15 points from a Latin 

Hypercube design and 75 active learning iterations with a single point added per iteration. The 

algorithm converged quickly to the optimum within the first 20 iterations (see Figure S10 for the 

learning curves). The optimization (Figure 10) can be accomplished separately for the onset 

potential (scenario i), maximum current (scenario ii), or simultaneously (scenario iii; multi-

objective optimization) by assigning equal weights of 0.5 to both normalized performance 

variables and optimizing the sum (a scaled performance metric). Scenario iv, as a comparison, 

represents the synthesis conditions that gave the optimum N content in Figure 5. We show the 

optimal synthesis conditions with the corresponding structural features, as well as the performance 

in Table S4 for the 4 scenarios. The optimal HER performance for scenarios i-iii are close in value 

(Table S4C), suggesting again that a pareto front behavior does not apply to this system. 

Interestingly, by co-optimizing both performance metrics (scenario iii), the algorithm directs the 

optimum between those of scenario i and ii, compromising both performances. Figure 10 indicates 

that scenarios i-iii (optimizing all structural features) gives better HER performance in comparison 

to scenario iv, where  only the N content was optimized, indicating that the HER performance is 

not just driven by the N species, but has contributions from other features of the NDC as proposed 

above. In other words, the initial consideration of N as an optimization metric turns out to be a 

suboptimal objective function. All scenarios suggest that low temperatures (300 oC) in synthesis 

and catalysts with high crystallinity give best HER performances, with implications on energy 

savings. We validated the predictions by synthesizing a catalyst using the conditions of scenario 

iii of the multi-objective optimization (Table S4A). The NDC shows better electrochemical 

performance compared to the original 22 catalysts with an onset potential of -0.1 V (vs SHE) and 

a maximum current density of 227 mA cm-2 (the comparison with the original optimum (NDC19) 

is shown in Figure S11). The predicted optimal absolute maximum current density value (133.6 

mA/cm2) is considerably lower than the experimental value (227 mA/cm2) for the validation point. 

The predicted lower performance is attributed to the error in the surrogate models. In addition, 

poor sampling near the optimum in the experimental set could contribute to this. Irrespective of 

the specific values, the general trends still hold. In order to improve the model accuracy, additional 

experiments, with recommended synthesis conditions from kriging, using performance 

optimization as the goal, are recommended. 

Summarizing these findings, the results expose the multidimensional and complex nature of 

such systems contrary to simplistic perceptions attributing performance to one single feature (e.g., 

the graphitic or the pyridinic N) and neglecting important contributions from other catalyst 

features. The observed electrochemical performance is effected not by a single feature (pyridinic 
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or graphitic N) but by a combined contribution of various nitrogen species, pore structure and 

disorder of the NDC catalyst. Additional synthesis parameters, e.g., using templating agents, 

alternative nitrogen precursors, and vapor deposition synthesis methods provide additional handles 

toward breaking causal relations between key features and allowing the tailoring of catalyst 

properties through controlled synthesis. 
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4. Conclusions

We introduce a quantitative synthesis-structure-property relations (QS2PR) framework, by 

combining active learning-based experimental design and machine learning analysis towards 

understanding active sites and improving catalyst performance. We apply the framework to the 

synthesis of nitrogen-doped carbon catalysts for the hydrogen evolution reaction (HER). The 

synthesis space consists of three tunable synthesis parameters: final temperature, the heating rate 

during pyrolysis, and the hold time at the maximum pyrolysis temperature. Using XRD, XPS, and 

BET characterization techniques, we determine 6 structure features of the catalysts: percent 

crystallinity, fraction of three types of nitrogen species (pyridinic N, pyrrolic N, and graphitic N), 

BET surface area, and micropore volume. The performance metrics for the catalysts are the onset 

potential and the maximum current density (absolute value), both of which need to be maximized 

for electrochemical performance. We relate the performance to structure features and these to 

synthesis conditions by constructing surrogate models via machine learning. In general, all N 

species as well as the porosity and defects affect the electrochemical performance, with the 

graphitic N having the strongest influence amongst the three active N sites. We identify active 

catalyst sites; specifically, the pyridinic N increases the current density, whereas pyrrolic and 

graphitic Ns reduce the current density. We discover that the pyridinic and graphitic Ns are 

colinear, i.e., one cannot increase one without increasing also the other. Fundamental studies are 

worth pursuing to understand the reasons. Kriging-based active learning locates the optimal 

synthesis conditions with less experimental time and materials. We do not observe a pareto front, 

hence both onset potential and maximum current density (absolute values) can be co-optimized 

(the optima are not identical but are close enough).  The co-optimization results suggest that low 

synthesis temperature and NDC catalysts with high crystallinity are important towards maximizing 

HER performance by having relatively higher heating rates and longer final hold times. This work 

highlights the inherent multidimensionality of the catalyst synthesis design space and the need for 

data-driven analysis to unravel correlations and causalities in multivariate systems and potentially 

identify the active sites. 
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A data-driven quantitative synthesis-structure-property relation (QS2PRs) methodology to elucidate 
correlations between catalyst synthesis conditions, structural properties as well as observed performance, 
providing a systematic way to optimize practical catalysts.
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