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Abstract

Cryptic sites, which lay hidden in folded biomolecules, become exposed by applied force 

and form new bonds that reinforce the biomaterial. While these binding interactions effectively 

inhibit mechanical deformation, there are few synthetic materials that harness mechano-responsive 

cryptic sites to forestall damage. Here, we develop a computational model to design polymer gels 

encompassing cryptic sites and a lower critical solution temperature (LCST). LCST gels swell 

with a decrease in temperature, thereby generating internal stresses within the sample. The gels 

also encompass loops held together by the cryptic sites, as well as dangling chains with chemically 

reactive ends. A decrease in temperature or an applied force causes the loops to unfold and expose 

the cryptic sites, which then bind to the dangling chains. We show that these binding interactions 

act as “struts” that reinforce the network, as indicated by a significant decrease in the volume of 

the gel (from 44% to 80%) and shifts in volume phase transition temperature. Once the temperature 

is increased or the deformation is removed, the latter “cryptic bonds” are broken, allowing the 

loops to refold and the gel to return its original state. These findings provide guidelines for 

designing polymer networks with reversible, mechano-responsive bonds, which allow gels to 

undergo a self-stiffening behavior in response to a temperature-induced internal stress or external 
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force. Applied as a coating, these gels can prevent the underlying materials from undergoing 

damage and thus, extend the lifetime of the system.

I. Introduction

Biological systems display a variety of mechanisms to mitigate the effects of an applied 

force, and even harness the force to perform a useful function. For example, when prodded or 

poked, the armadillo curls up into a ball, so that its dermal armor protects it from further harm. 

The Venus fly trap snaps shut when insects exert a force on its leaves, and thus, the plant consumes 

its prey. The exposure of cryptic binding sites is another prime example of an adaptive, biological 

response to mechanical force that ultimately produces the beneficial effect of strengthening the 

biomaterial. Cryptic binding sites1 lie buried and hidden within folded biopolymers (e.g., proteins), 

but are uncovered under a mechanical deformation. The exposed cryptic sites then participate in 

bond formation, which in turn leads to more interconnected and stronger structures. Such cryptic 

binding sites play a crucial role in the structure formation of fibronectin (Fn), which is essential 

for wound healing, 2 embryonic development, and normal functioning of vertebrates. 3  

Despite their utility in soft biomaterials, there have been few studies on utilizing the 

combination of mechanical deformation and cryptic binding sites to tailor the behavior of soft 

synthetic materials, such as polymer gels.4–6  Incorporated into a polymer network, cryptic sites 

could provide a number of distinct advantages, which are best illustrated by referring to the 

schematic in Fig. 1. The green polymer network contains loops that are held together by a “cryptic 

bond”, which is formed between the blue cryptic sites. From a mechanics point of view, such loops 

are essentially “wasted” since they do not improve the strength or toughness of the material.7  The 

application of force breaks the cryptic bonds and frees the “hidden length” that was stored in the 
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loops. Exposed in this way, the cryptic binding sites and the hidden length can now both contribute 

to improving the mechanical properties of the network. 

As is typical in polymer gels, the network in Fig. 1 also contains dangling chains that 

branch off the main framework. These dangling chains encompass reactive end groups, which are 

marked in yellow within the figure. Similar to the wasted loops, the unbound dangling ends do not 

contribute to optimizing the material’s mechanical performance. If, however, the reactive ends 

bind to the exposed cryptic sites, they could form “struts” that stiffen the gel. This mechano-

responsive stiffening would allow the material to resist further deformation (up to some critical 

level) and thus, extend the functionality of the gel. In other words, the introduction of the mechano-

responsive cryptic sites provides a means of improving the materials’ mechanical properties in the 

presence of an applied force (or other external stimulus).

Herein, we model the complex dynamics involving the unfolding of the loops and 

subsequent binding (and unbinding) of dangling ends to the exposed binding sites (Fig. 1). Using 

this model, we determine factors that affect these reversible processes and demonstrate the self-

stiffening of the gel. The gel in our system is taken to be poly(N-isopropylacrylamide) 

(pNIPAAm), which exhibits a lower critical solution temperature (LCST). Hence, the gel shrinks 

above the volume phase transition temperature ( ), which is approximately  for pNIPAAm, cT 33 C

and swells in volume as the temperature is lowered below . With the introduction of these cT

structural features (Fig.1), we find a substantive decrease in the degree of swelling of the LCST 

gel below . Namely when the temperature is lowered to , the volume of gels considered cT 31.5 C

here can be 44% lower than that of gels that do not undergo the binding interactions shown in Fig. 

1. This decrease in swelling occurs because the loops unfold and the newly available binding sites 

form bonds with the dangling ends. Hence, the system exhibits an increase in cross-link density 
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and a self-stiffening behavior. We also show that this self-stiffening can take place at fixed 

temperatures when the gel is deformed by a constant applied force. In particular at , the 34.5 C

volume of uniaxially stretched gels that include binding interactions between the exposed cryptic 

sites and dangling ends can be approximately 80% lower than that for the gels without this binding. 

Under these circumstances, the force-induced self-reinforcement effectively enables the gel to 

resist further mechanical deformation.

Through these studies, we devise a powerful approach for  creating self-stiffening or self-

reinforcing materials that dynamically form a “dermal armor” to protect the underlying system 

from damage. Namely, by harnessing the mechano-responsive behavior of bio-inspired cryptic 

bonds, we can design materials that provide a beneficial response to mechanical deformation. 

Applied as a coating, such responsive self-forming armor can enhance the durability of everyday 

objects and surfaces. 

II. Methodology

A. Theoretical model

Herein, we augment our recently developed model5 of a permanently cross-linked, swollen 

polymer gel that encompasses loops by introducing end-functionalized dangling chains that are 

attached to the network. Via this augmented model, we can determine new mechanisms for creating 

self-reinforcing polymer gels. As shown in Fig. 1, the ends of the dangling chains are capped by 

yellow reactive sites; the grey disks represent the permanent cross-links in the network. The chains 

in green are subchains between these permanent cross-links. Some subchains contain two reactive 

“cryptic” sites, which can bind to each other (blue circles in Fig. 1) through a labile, reformable 

bond, and thus form a loop in the subchain, or remain unbound (red circles). These red species 

mimic the exposed cryptic binding sites in fibronectin1,4 that can bind with adjacent linkers and 
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thereby stiffen the network. In our system, the unbound (“exposed”) cryptic sites can form a 

reversible bond with the yellow ends on the dangling chains. 

In the undeformed state (i.e., the state of the gel as fabricated), some cryptic sites are bound 

to each other to form loops in the subchains, some loops are open, and a fraction of the exposed 

cryptic sites are bound to the reactive ends of the dangling chains (as drawn in Fig. 1). Upon 

deformation, labile bonds between loop-forming cryptic sites are broken, causing the loop to 

unfold. In this unfolded state, the exposed cryptic sites can form temporary cross-links with the 

reactive ends of the dangling chains. If the deformation is released, then some labile bonds forming 

the temporary cross-links will break, and the cryptic sites can reform the loops, so that the 

subchains return to their initial configuration. For simplicity, we assume that all loops are closed 

in the as-fabricated gel.

Every subchain in the network contains  Kuhn segments; for subchains containing ln 

loops, the  segments lie within the loop. The dangling chains contain  Kuhn segments, as shown l m

in Fig. 1. To formulate the equations that describe the kinetics of binding and unbinding in the 

polymer network, we assume that the time scale for the breaking and reforming of a bond between 

the reactive groups is longer than the time scale associated with the conformational changes of the 

chain. In this case, the binding and unbinding can be described by equations for the chemical 

kinetics in the network.

We start by introducing the necessary notation and simplifying assumptions. The 

concentrations of the subchains encompassing the loops and dangling chains are denoted as  andlc

, respectively. The total concentration of the exposed cryptic sites is , where  is dc 2c U ln p c Up

the fraction of subchains with unfolded loops. The fraction of exposed cryptic sites that are bound 

to the dangling chains is denoted , so that the concentration of the latter sites is . B ( )b
c B cn n
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We assume that there are two dangling chains per subchain and hence, the total concentration of 

the reactive end-units is , and the concentration of end-units and hence, dangling chains 2d dn c

bound to the cryptic sites is , where  is the fraction of bound dangling chains. Note B dc p n  Bp

that,  and, therefore, . Finally, we assume that the network contains ( )b
cn c B U l B dp c p c 

equal amounts of the subchains encompassing the loops and dangling chains, and that no other 

type of subchains is present in the network; therefore, . Here,  and  are 1 1
0 02l dc c c    0c 0

the respective concentrations of polymer strands and the volume fraction of polymer in the 

undeformed network, and  is the volume fraction of polymer in the actual state of the system. It 

is worth noting that in the theory of rubber elasticity, the cross-link density, , (by definition) 0c

characterizes the undeformed sample. The value  is hence interpreted as the density 1
0 0 Bc c p  

of temporary cross-links.

The fraction of unfolded loops, , as a function of time  is described by the following Up t

rate equation: 

   , (1)2/ (1 ) (1 )U r U f B Udp dt k p k p   

where,  and  are the respective rate constants for the rupture and formation of the labile bond rk fk

between the two cryptic sites. The values of  and  depend on the distance between the rk fk

subchain ends that form the loop, as discussed in detail below. Equation (1) is a modification of 

the relevant equation in our previously developed model for polymer chains with loops5 ; the new 

equation accounts for inhibition of the folding process due to the binding of the dangling chains to 

the exposed cryptic sites. The factor  in the second term on the right-hand side of eq. (1) 2(1 )B

is the probability that both exposed cryptic sites in a subchain are unbound, so subsequent loop 
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formation could occur. For simplicity, eq. (1) neglects the formation of labile bonds between the 

exposed cryptic sites belonging to different subchains.

When the loops unfold, the end-groups of the dangling chains could bind to the exposed 

cryptic sites (Fig. 1). The density of temporary cross-links, , is determined by a competition c

between the binding and un-binding events, which are controlled by the respective rate constants, 

 and , for the complexation and un-binding :complK uBK

   .( )/ ( )( )b
compl c c d uBdc dt K n n n c K c     

The reaction rate constants  and  depend on the network structure and state of complK uBK

deformation, as described in detail below. It is useful to rewrite the above rate equation in terms 

of the fraction of bound dangling chains, , using the notation and simplifying assumptions Bp

discussed above: 

   . (2)1
0 0/ (1 )(1 )B compl U B B uB Bdp dt c K p p K p     

At a constant degree of swelling, is a constant; eqs. (1) and (2) form a closed set of equations for 

the values  and  because the fraction of cryptic sites bound to the dangling chains, , is Up Bp B

not an independent variable since, as discussed above, . B B Up p

The rate constants for the rupture and formation of labile bonds between the cryptic sites, 

 and , respectively, are calculated as in our previous study.5 We take into account that rk fk

stretching a subchain encompassing a closed loop increases the force acting on the labile bond 

connecting the two cryptic sites and hence, facilitates bond rupture. We utilize the Bell model8 to 

calculate the rupture rate constant as a function of the distance between the chain ends, :R

   . (3)(0)
0( ) exp[ ( ) / ]r r R n Bk R k F R k T
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Here,  is the rupture rate at zero force,  is the force needed to separate the ends of a )0(
rk )(RFn

chain of  segments to the distance , and  is the parameter that characterizes the sensitivity n R 0R

of the bond to the applied force, and  and  are the respective Boltzmann’s constant and Bk T

temperature. The loop does not contribute to , which depends only on the number of )(RFn

segments  in the unlooped part of the chain (Fig. 1). The force acting on the bond when the n

chains are stretched is calculated according to the freely-jointed chain model (FJC),9 which 

accounts for the finite extensibility of the chain and yields the following expression:

 , (4)])([)( 11  bnR
b
TkRF B

n L

where

(5)1)coth()(  xxxL

is the Langevin function, and  is the length of the Kuhn segment. We take into account the finite b

chain extensibility because it has a strong effect on the rate of bond rupture, i.e., through the 

expression for  in eq. (3).)(RFn

The rate constant for forming a labile bond, , depends on the chain end-to-end )(Rk f

distance  because to form a bond, the reactive units in the unfolded chain of  segments R ln 

must first come into contact, and the probability of contact, , depends on . When in contact, cP R

the reactive units form a labile bond with the rate constant , and hence . )0(
fk )0()()( fcf kRPRk 

As in previous studies10–14, it is assumed that  does not depend on the force acting on the bond. )0(
fk

The probability of contact, , is calculated using the conformational statistics of the polymer )(RPc

chain: , where  is the probability distribution function for ( ) ( ) (0) ( )c n l n lP R P R P P R )(RPn
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finding the ends of a chain of  segments at distance apart. For the FJC model, this distribution n R

function is 9

(6)1 2 1
1

2 3/2 1 1 2 1/2 1

[ ( )] sinh ( )( ) exp[ ( )]
(2 ) {1 [ ( ) csch( ( ))] } ( )

n

n
x xP R nx x

nb x x x x

 


  

 
    

L L L
L L L

where . Note that through the equations for , the rate of chain folding depends 1( )x R nb  )(RPc

on both the total length of the chain, , and the length of the loop, .n l l

It is convenient to re-write the dimensionless variable  in eqs. (5) and (6) in 1)(  bnRx

terms of the chain extension . It is worth recalling that we assume that all the loops are folded 

when the gel is in the undeformed state. Given that is the length of one segment, the average b

end-to-end distance of an unperturbed chain is thus , since l segments are part of the 0R b n

closed loop. At a given chain extension , the end-to-end distance  of a deformed chain with a  R

closed loop is calculated as  and hence,  in eqs. (5) and (6). This allows us to 0R R 2/1 nx 

consider the rate constants of bond rupture and formation as functions of  instead of that of ,  R

i.e.,  and , respectively.( )rk  ( )fk 

The rate constant for complex formation in eq. (2), , is proportional to the complK

probability that the two reacting monomeric units will meet. We employ the approach by Ito, et 

al.,15 to account for the restrictions imposed by the polymer network on the binding of the dangling 

chains to the exposed cryptic sites. According to ref. 15, the restrictions on the motion of a reacting 

unit grafted to a subchain are captured by assuming that the reactive unit is attached to one end of 

a fictitious Gaussian chain, whose length is half of the subchain length. The other end of this 

fictitious chain is fixed in space. When the two reacting units meet, the two fictitious chains form 

a chain connecting the two fixed points. The probability for the two reacting units to meet is taken 

to be proportional to the Boltzmann factor associated with the loss of entropy due to the formation 
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of the polymer chain, whose end-to-end distance is equal to the average spatial separation between 

the reacting units.15 Correspondingly, we calculate  ascomplK

   , (7)2 2
0 exp( / )complK K Nb 

where K0 includes the chemical factors affecting the complexation, and the exponential term 

describes the entropy restrictions associated with the complex formation. In eq. (7),  is the 

characteristic distance between the reacting units,  is the number of Kuhn segments in the N

fictitious Gaussian chain, and  is the Kuhn length. The distance  is determined as b 

, because the concentration of dangling chains is  (see 1/3 1/3
0 0( / )c    1

0 02d dn c c   

above), so the characteristic distance between an exposed cryptic site and end of a dangling chain 

is . The number of segments in the newly formed fictitious chain is , since 1/3
dn  N n m l  

the chain consists of a half of the subchain encompassing the dangling chain, the dangling chain 

itself, and a half of the subchain encompassing the exposed cryptic bond. Note that the values  0

and  are related to each other as 0c

   , (8)2
0 0 0 ( )c a b n m l   

where  is the size of a monomeric unit so  is the volume of Kuhn segment. As a result, we 0a 2
0a b

obtain the following equation for the complexation rate constant as a function of the volume 

fraction of polymer :

(9)4/3 1/3 2/3
0 0( ) exp[ ( / ) ( ) ]complK K a b n m l     

Finally, the rate constant for the unbinding of a dangling chain in eq. (2), , is calculated uBK

as a function of the chain extension  using the Bell model to obtain an equation similar to eq. 

(3):
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   . (10)(0)( ) exp[ ( ) / ]uB uB m BuBK k F k T  

Here,  is the force acting on a chain consisting of  segments under an 1 1/2( ) [ ]B
m

k TF m
b

   L m

extension  (cf. eq. (4)), and  and  are the respective reaction rate constant at zero force  (0)
uBk uB

and the force sensitivity parameter. 

B. Modeling the dynamic response of the gel to deformation

To describe the dynamic behavior of the material under deformation, we extend our 

previously developed gel lattice-spring model (gLSM) computational approach 16–18 to incorporate 

the effects of binding the dangling chains to exposed cryptic sites. For this purpose, we first specify 

the energy density of a deformed material, , as a function of the invariants  and  of 1 3( , )u I I 1I 3I

the Finger strain tensor, . The gLSM equations used in the simulations are determined through B̂

a finite-element approximation of the energy density, as described below. 

The total energy, , is determined through integration over the 1
0 1 3 0( , )tot BU v k T u I I dV 

volume of the unstrained material, . Here,  is the volume of a monomeric unit and the 0V 3
0 0v a

factor  is the unit of stress in our model. For the gel model considered here, the energy 1
0 Bv k T

density is dimensionless and is composed of three terms:

 . (11)1 3 el 1 3 FH 3 el( , ) ( , ) ( ) ( )u I I u I I u I u t  

The first term on the right-hand side (r.h.s.) of eq. (11), , describes the elastic energy of el 1 3( , )u I I

the crosslinked network within the approximation of affine deformations

   . (12)
 

20 0
el 1 3 1 1 1

1/20 0
0 0 3

( , ) (1 ) ( , ) ( , (1 / ) ) ( , )
2

( ) ( ) ln
4

U U
c vu I I p I n p I n l n I n l

c v n n l I 

          

  
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Here,  is the total concentration of subchains in the as-prepared gel. The function  is 0c 1 el( , )I n

defined as

(13)1/21
1 el el el

el
( , ) ( )

3
II n n n
n

    
        

and gives the contribution of a stretched FJC chain consisting of  elastically active segments to eln

the elastic energy. In eq. (13), the function  in an antiderivative of the inverse Langevin ( )x

function 

    .
1

1
1

( )( ) ( ) ln
sinh[ ( )]

xx x x
x







 
    

 

LL
L

It is also convenient to introduce the function  defined as( )x

    .1 1( ) (3 ) ( )x x x   L

Finally,  in eq. (12).1/2
0 ( ) ( )n n  

Equation (12) is a generalization of the neo-Hookean elastic energy to the case of 

permanently cross-linked FJC chains. 19 The first term on the r.h.s. of eq. (12) describes the the 

entropic elasticity of stretched polymer chains, and the second term is the contribution of the ideal 

gas of permanent crosslink points. 

As noted previously, all the subchains between the cross-links are assumed to have  n l

segments. One half of the subchains contain a loop, and the loops are assumed to be folded in the 

un-deformed gel. In eq. (12), the first two contributions to the entropic elasticity term account for 

the subchain configurations having the folded and unfolded loops, for which  and eln n

, respectively. The number of elastically active segments for the unfolded 2
el (1 / )n n l n 

configuration is taken to be equal to the effective number  because in the 2
el (1 / )n n l n 
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calculations of the rate of folding, the subchains with folded and unfolded loops are considered to 

have the same end-to-end distances. The third contribution to the entropic elasticity term in eq. 

(12) describes the subchains that contain dangling chains and for which . The entropic eln n l 

elasticity contribution of the dangling chains bound to the exposed cryptic bonds is taken into 

account separately and is discussed further below.

The second term on the r.h.s. of eq. (11) describes the polymer-solvent interaction 

according to the Flory-Huggins model

   (14) 1/2
FH 3 3( ) (1 ) ln(1 ) ( , ) (1 )FHu I I T         

In eq. (14), the volume fraction of polymer  itself depends on  as , where  is the  3I 1/2
0 3I   0

volume fraction of polymer in the un-deformed state, and is the Flory-Huggins ( , )FH T 

interaction parameter. 

The dangling chains contribute to the elastic energy only when they form temporary cross-

links by attaching to the exposed cryptic bonds. The contribution of the temporary cross-links is 

described by the last term on the r.h.s. of eq. (11) and has the following form:

   . (15)

* 1/20
el 0 0 1 3

* 1/20
0 0 1 3

0

( )( ) ( ,0) ( ( ,0), ) ln( ( ,0))
2

( )( , ) ( ( , ), ) ln( ( , ))
2

t

mu t c v t I t m I t

mc v t I t m I t d




    


      

       

Equation (15) is the generalization of eq. (12) to the case of transient networks, where deformations 

at a given time are affected by deformations that occurred earlier in the sample.20,21 Specifically, 

the stress tensor within a transient network depends on the relative strain tensor , which ˆ ( , )t b

characterizes deformations in the network at time t relative to the (deformed) state of the network 

at . Correspondingly,  depends on the invariants of the relative strain tensor  and  el( )u t
1( , )I t 
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.21 It is worth noting that . We calculate  by averaging the relative 3( , )I t  ˆ ˆ( ,0) ( )t tb B ( , )t 

principal strains, namely, , where  and , , 31/2 2 2
1( , ) 3 ( ) ( )i iit t     

  ( )i  ( )i t 1,2,3i 

are the principal strains calculated at the moments of time  and , respectively. t

The function  on the r.h.s. of eq. (15) determines the number of cross-links that were ( , )t 

created before the time  and still exist at time . The time derivative determines  t  ( , ) /t   

the number of cross-links that exist at time  and were created during the period of time from  t 

to . To specify the functions  and , we write the formal solution of eq. d  ( ,0)t ( , ) /t   

(2) for the fraction of bound dangling chains :Bp

   . (16)
0 0

( ) (0)exp[ ( ,0) ] exp[ ( , ) ] ( )
t t t

B B uB uB Bp t p K d K d K d


            

In the above equation, the rate of binding  is defined as( )BK t

   , (17)1
0 0 ( )(1 )( )B compl B U BK c K p p p    

and depends on time  through the time-dependent fractions of unfolded loops, , and bound t Up

dangling chains, , and the time-dependent volume fraction of polymer . Correspondingly, the Bp 

functions  and  on the r.h.s. of eq. (15) are calculated as( ,0)t ( , ) /t   

   , (18)
0

( ,0) (0)exp[ ( ,0) ]
t

B uBt p K d   

   . (19)( , ) exp[ ( , ) ] ( )
t

uB Bt K d K


     


   
 
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The rate constant of unbinding  in eqs. (18) and (19) is calculated according to eq. (10), ),( tKuB

and depends on both the time  and the time of bond creation . The latter dependence arises t t

because a newly formed cross-link experiences no force at the moment of creation , and the force 

acting on it at the time  depends on the relative chain extension . t ( , )t 

After specifying the energy density, the constitutive equation, which provides the stress-

strain relationships in the material, is readily formulated21 to obtain the following equation for the 

stress tensor :σ̂

   , (20)el FH elˆˆ ˆ ˆ( , ) ( )T t    σ σ I σ

where  is the unit tensor. In eq. (20),  is the elastic stress due to the FJC chains Î elσ̂

   , (21)

0 0

0

0 0 0 0
0

ˆˆ (1 )
2

ˆ[ ( ) ( )]
4

el U U
c v np p

n ln n l

c v n n l

     


 


     
                

  

σ B

I

and  is the osmotic pressure of the polymer in the system according to the Flory-Huggins FH ( , )T 

model

   . (22)2
FH ( , ) [ log(1 ) ( , ) ]T T          

Finally,  is the elastic stress due to the temporary cross-linkselˆ ( )tσ

(23)

* 0
el 0 0

0

* 0
0 0

0 0

( )( ,0) ˆ ˆˆ ( ) ( ,0) ( ,0)
2

( )( , ) ˆ ˆ( , ) ( , )
2

t

mtt c v t t
m

mtc v t t d
m

  


      
 

   
    

  

  
      



σ b I

b I
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In eq. (22), the interaction parameter  is related to the Flory-Huggins interaction parameter ( , )T 

 in eq. (14) as . All other notations are the ( , )FH T  ( , ) ( , ) (1 ) ( , )FH FHT T T         

same as introduced before. 

The equilibrium swelling of a gel that contains both cryptic bonds and dangling binding 

chains is determined by solving of eqs. (1), (2), and (20) in the steady-state limit, i.e., by solving 

the system of equations , , and . In order to determine the / 0Udp dt  / 0Bdp dt  ˆ σ 0

equilibrium value of , we note that  at , and that  and  at elˆσ ( ,0) 0t  t   ˆ ˆ( , )t  b I ( , ) 1t  

equilibrium. According to eqs. (16), (18), and (19), the probability of binding can be calculated as 

. Then, the following equilibrium limit of eq.(23) is found: 
0

( ) ( ,0) ( , )
t

Bp t t t d  



 



   . (24)* 1
el 0 0 0 0 ˆˆ (2 ) ( )Bp c v m   σ I

The equilibrium value rate constant of unbinding , eq. (10), should be calculated at the chain uBK

extension , because  depends on the relative strain.1  uBK

C. Computational model

The 3D gel lattice spring model (gLSM) computational technique16–18 allows to 

numerically solve the above analytical equations and thus simulate the dynamic behavior of the 

gels with loops and dangling chains with reactive ends. The combination of finite element and 

finite difference approaches at the core of the gLSM provides an effective method to numerically 

solve the elastodynamic equations characterizing the behavior of chemo-responsive polymer gels. 

The gLSM was initially developed to simulate the dynamic behavior of self-oscillating polymer 

gels undergoing the Belousov-Zhabotinsky (BZ) reaction 16–18,22,23 and to predict the response of 

these BZ gels to an applied force.24–27 For instance, we focused on a BZ gel confined in a capillary 
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tube and determined the effect of applying a compressive force P to the confined ends. Our 

computer simulations revealed that upon introduction of chemo-responsive crosslinks to the 

polymer network, the compression of the BZ gel leads to an increase in the cross-link density 

within the sample and thus, a stiffening of the gel.26 Subsequent experimental studies27,28 validated 

the predictions that emerged from these computational studies. We later modified the gLSM to 

account for the formation of additional, reversible cross-links due to changes in the degree of 

oxidation of polyacrylamide-based BZ gels; we obtained excellent agreement between our findings 

and the corresponding experiments.29 

Through further modifications of the gLSM, we simulated the dynamics of photo-

responsive gels, which encompass chromophores that undergo a light-induced isomerization 

reaction.30–32 Additional modifications of the model allowed us to capture the behavior of 

chemically-reactive microposts embedded in a thermo-responsive gel33 and optimize the self-

regulating behavior of the system. Recently, we augmented our 3D gLSM to take into account the 

finite extensibility of the chains within gels containing loops5. We now adapt the latter model to 

account for the dynamic (temporary) binding of dangling chains.

The gLSM is based on the two-fluid model for polymer networks.34–36 The dynamics of 

the polymer network is assumed to be purely relaxational, so that the forces acting on the swollen, 

deformed gel are balanced by the frictional drag due to the motion of the solvent. It is also assumed 

that the gel motion occurs solely due to the polymer-solvent interdiffusion. Hence, the velocity of 

the polymer, , can be calculated as 17( )pv

 , (25)( ) 3/2
0 0 ˆ( ) (1 )p      v σ

where  is the kinetic coefficient, which is inversely proportional to the polymer-solvent 0

friction coefficient . In the computer simulations, we choose some  and  for the respective 0 0l 0t
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units of length and time, and stress is measured in the units of , where  is the volume 0/Bk T v 0v

of a monomeric unit within a polymer chain. Then, the kinetic coefficient  is dimensionless 0

and calculated as 17  . 2 1 1
0 0 0 0 0( )Bk T v l t   

Within the framework of the gLSM, a 3D gel sample is represented by a set of lineal 

hexahedral elements.37,38 Initially, the sample is undeformed and consists of  

 identical cubic elements; here  is the number of nodes in the -( 1) ( 1) ( 1)x y zL L L     iL i

direction, . In the un-deformed state, each element is characterized by the same volume , ,i x y z

fraction  and cross-link density . (It is worth recalling that by definition, the cross-link density 0 0c

is equal to the concentration of elastically active subchains in the network.) Upon deformation, the 

elements move together with the polymer network so that the amount of polymer and number of 

cross-links within each hexahedral element remain equal to their initial values. Correspondingly, 

the volume fraction of polymer in the element  is determined as , ( , , )i j km 3
0( ) / ( )V  m m

where  and  are the un-deformed element size and volume of the deformed element,  ( )V m

respectively. 

The gel dynamics is described through the motion of the nodes of the elements caused by 

forces acting on these nodes. After specifying the energy density , eq. (11), we use the 1 3( , )u I I

finite element approximation (FEA) to determine the element energy density  as described in )(mu

ref.18 As a result, we obtain the total energy of the gel as

     , (26)3 ( )totU u  m m

where the contribution from the element , , depends only on the coordinates of the nodes m ( )u m

of this element denoted as , . (Note that  is the gel energy per unit volume ( )n mx 1, 2,...,8n  )(mu

of the un-deformed element.) Then, the force acting on each node is given by the equation
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  . (27)( )
( )
tot

n
n

U
 


F m

mx

The same node can belong to several elements, so the right hand side of the above equation 

contains contributions from all elements adjacent to a given node. Finally, the velocity of the node 

is proportional to the force and is determined from an equation similar to eq. (25)

   , (28)( ) ( ) ( )n
n n

d M
dt


m m F mx

where  is the mobility of the node proportional to the kinetic coefficient .( )nM m 0

The contributions to  and  due to the elastic energy of the permanent network ( )u m ( )nF m

and the polymer solvent interactions, i.e., the first three terms on the r.h.s. of eq. (11), and the 

mobility  are calculated as described in detail in ref. 17. Below, we focus solely on ( )nM m

applying the FEA to the last term on the r.h.s. of eq. (11), , that then gives the contribution el( )u t

of the temporary cross-links to the nodal forces.

Here, we focus on the state of equilibrium swelling of a gel that contains both cryptic bonds 

and dangling binding chains. 

D. Model parameters and verification of the computational approach

We use the known experimental values that characterize poly(N-isopropylacrylamide) 

(pNIPAAm) gel.39 Correspondingly, the polymer-solvent interaction is taken to be 

, where  with , , , 0 1( , ) ( )T T      1
0 0( ) ( )T h T T s    902.44h   3.4163s  0 273.15T 

and .39 The subchains between the cross-links contain  Kuhn segments with  1 0.518  n l 4n 

and , and the dangling chains contain  Kuhn segments (see Fig. 1). The volume fraction 8l  2m 

of polymer under the conditions of fabrication is taken to be , and the corresponding 0 0.129 

cross-link density is determined according to eq. (8)  1 1 3
0 0 0 0 ( ) 1.84 10c v a b n l m       

Page 19 of 43 Soft Matter



20

with the size of a monomeric unit  and the Kuhn length .40 Note that the above 0 2Åa  0Å1b 

value of cross-link density is greater than the critical value of 

 when the non-cross-linked subchains in solution start to 3 3 3/2 4
0 0 0 ( ) 1.92 10c v a b n l      

overlap. As  and  are related through eq. (8),this choice of   ensures that the polymer 0 0c 0 0c c

network is cross-linked. The dimensionless kinetic coefficient was chosen to be .18 In our 0 100 

gLSM simulations, the dimensionless units of time and length correspond to 1s and 40 m, 

respectively, for the given choice of parameters.16–18

The rate constant of folding relative to that of bond rupture at zero force was taken 

. As the rate of folding is significantly greater than the rate of rupture, the loops (0) (0)/ 200rfk k 

have a higher probability of being folded. The rate constant for bond rupture was assumed to be 

equal to the rate constant for  unbinding, . This assumption implies that the probability (0)(0) / 1r uBk k 

for the rate of rupture in both the loops and the  reactive ends of the dangling chains are similar. 

Further, the ratio of the rate constant of complex formation and that of the unbinding at zero force 

was set to . The latter implies that the dangling chain ends have a higher (0) 4
0 / 2 10uBK k  

probability of being bound to the unfolded loops than being detached from them. The above values 

were chosen to highlight the difference between the case where the unfolded loops can bind to the 

reactive ends and the case where the ends of the dangling chains are non-reactive and hence, the 

gel does not undergo the comparable binding interactions.

The force sensitivity parameters for the rate constants of bond rupture and unbinding were 

set to  and , respectively. We note that in experiment, the force sensitivity 0 1.5R  0 0.75uB 

could be altered by using an appropriate chemical modification.11 The weakly interacting labile 

bonds in our system could be moieties containing thiol or disulfide units leading to thiol/disulfide 
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exchange reaction41–44 or hydrogen bonds45 or metallo-supramolecular bonds formed by metal 

ligand coordination.46 Also, there are synthetic modular polymers that exhibit reversible unfolding 

due to non-covalent bonds between monomers.47–49

For affine deformations, the degree of swelling (  in Fig. 2) is equal to the chain extension, 

so the same notation is used for the both values. The degree of gel swelling  is defined as the 

lateral extension of the gel sample i.e.,  where  is the length of the gel sample along the 0/l l  l

specified direction and  is the length of the reference gel. We simulate the equilibrium swelling 0l

of a pNIPAAm gel as a function of temperature for the case where: (1) binding is prohibited, and 

(2) binding is allowed in the absence and presence of force. 

First, we carried out the gLSM simulations with  grid elements (samples that are 1 1 1 

approximately 40 on a side). The time step used in the gLSM simulation is . To m 0.001t 

verify the gLSM approach, in Figs. 3 and 5, we compare the results of the gLSM simulations with 

numerical solutions of the constitutive equation (see below). The agreement between the output 

from the gLSM simulations and the numerical solutions in both plots validates our computational 

approach. Then, we model the deformation of a gel sample of  elements in size under 11 3 5 

action of a constant tensile force applied at one end of the sample while the other end is held fixed. 

Starting from the undeformed state, we show that the probability of binding  in a gel element Bp

could depend on the element position within the sample due to non-uniformity of the deformation.

III. Results and Discussion

We first consider an ideal scenario where at a given temperature , a cube-shaped gel of T

size  experiences a constant, externally applied tensile force . We assume that the force is 0h gF

applied along the  axis. In this case, the strain tensor is diagonal and is expressed asX
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   . (30)

2

2

2

0 0
ˆ 0 0

0 0









 
   
  

B

Here,  and are the degrees of swelling along the longitudinal and transverse directions,  

respectively. By balancing the forces (eqs. (20)-(24)) in the two orthogonal directions, we obtain 

the following equations to determine the equilibrium values of  and : 

(31)1 1 2 1 2
0 0 0 0 0 FH 02 [ ( ) 2 ( ) ( )] ( ) ( )B gc v P P p m h F           

   

(32)1 1 2 1
0 0 0 0 0 FH2 [ ( ) 2 ( ) ( )] ( ) 0Bc v P P p m         

    

The functions  and  depend on the average chain extension , and are P 0P 3/)2( 22
 

defined as:

   1/2 1 1/2 1/2( ) ( ) ( ( ) ) [1 ( )] ( ) ( ( ) )U UP p n n l p n n l               

 .0 0 0( ) ( ) ( )P n l n    

Here,  and  as functions of  are the solutions of eqs. (1) and (2) in the steady state, namely, Up Bp 

   , (33)2(1 ) ( ) 0r U U f U Bk p p k p p   

   , (34)1
0 0 ( )( )(1 ) ( ) 0compl U B B uB Bc K p p p K p       

and the functions  and  are given in Section II. In eqs. (31)-(34), the volume fraction of ( )x 0 ( )n

polymer  depends  and  because . The respective reaction rate constants of    1 2
0    



rupture and formation of the labile bond between two ends of a loop,  and , are functions of rk fk

the average chain extension  and thus depend on  and  (see Section IIA). (In the absence of   

the applied force, , this scenario reduces to an isotropic swelling of the gel where .)0gF   
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Figure 2 shows the numerical solutions of eqs. (33) and (34) for the probability of unfolding 

the loop, , and that of binding between the exposed sites and the reactive ends of the dangling Up

chains, , as functions of the degree of gel swelling, , at no applied force ( ). For an Bp  0gF 

isotropically swollen gel,  and . Note that at a given , eqs. (33) and (34) describe   3
0   

the dynamic equilibrium between folding/unfolding of the loops and binding/unbinding of the 

dangling chains. 

As seen in Fig. 2, the probability of unfolding a loop, , is about 0.9 in the un-deformed Up

gel ( ), and remains close to 1 for the entire range of  considered here. For the 1  0.6 2 

range , the sample is under isotropic compression, leading to an increase  in . The 0.6 1  

probability of binding between an exposed site and a reactive end, , is relatively high in this Bp

range due to the increase in the rate of complex formation, , with the increase in  (see eq. complK 

(9)). (Note that the rate constant for complexation is higher than the rate of breaking the 42 10

bonds between the loops and reactive ends.)  Under compression, the probably of unfolding the 

loops is still rather high (see Fig. 2) because the binding of the dangling chains to the exposed 

cryptic sites inhibits the folding of the loops (see eqs. (1) and (33)). 

With the relative decrease in compression (as approaches 1),  shows a slight decrease  Up

because the isotropic expansion of the gel at  is not large enough to unfold more loops, but ~ 1

the decrease in  with an increase in  permits some loops to refold.Bp 

Beyond , the gel is swollen and the strain induced by the swelling causes loops to 1.0 

unfold, as evidenced by the increase in . Most of the temporary cross-links are broken by the Up

increase in strain and hence, the binding probability progressively decreases. 

A. Effect of varying temperature
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We first determine the behavior of the system in the absence of an applied force. Recall 

that the gel exhibits LCST behavior and thus swells as the temperature is lowered. To gain insight 

into the behavior of this system, we plot the equilibrium degree of gel swelling as a function of 

temperature (Fig. 3). Using the gLSM, we determine  for the equilibrated gels in the temperature 

range  to . The gels are  units in size, corresponding to samples that are 15 CT   45 CT   1 1 1 

40  on each side. We consider two different scenarios: (1) the ends of the dangling chains are μm

treated as inert and cannot participate in binding and (2) the ends of the dangling chains are reactive 

and can bind to sites that are exposed as the loops unfold. For scenario (1), we use  and 0 0K 

 in the simulations. The rest of the parameters are the same for the both scenarios.0 0uB 

One significant difference between the cases involving binding (red) and no binding 

(green) (Fig. 3) is a shift in the volume phase transition temperature, , to lower values when cT

binding is present. Another apparent difference between the binding and no binding cases is that 

the binding interactions (red curves) lead to a decrease in the lateral extension of the gel relative 

to the solid green curve (no binding). Both the shift in the volume phase transition temperature and 

the reduction in the gel size near  are due to the presence of the temporary cross-links between cT

the exposed cryptic sites (on the opened loops) and the reactive dangling ends. These cross-links 

act as “struts” that inhibit the swelling of the gel. In effect, the struts increase the stiffness of the 

network and thus, the gel undergoes a self-stiffening in response to the decrease in temperature. 

Below , the swelling of the LCST gel leads to a buildup in the internal force acting on cT

the loops (even in the absence of applied force). The dangling chains that are bound to the exposed 

cryptic sites experience the force due to the swelling of the gel and the rupture rate between a 

dangling end and cryptic site increases. As the temperature is lowered well below  (Fig. 3), the cT
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temporary cross-links gradually rupture and hence, the difference between the red (binding 

allowed) and green  (no binding) lines diminishes. 

These changes in the internal structure of the gel are reflected in the behavior of the 

probability of unfolding, , and the probability of binding,  , with variations in temperature, Up Bp

as shown in Fig. 4. When the ends are reactive and complexation can occur (Fig 4a),  decreases, Bp

and concomitantly  slightly increases with lowering temperature just below  , thus indicating Up cT

smooth variations in the number of temporary cross-links between the exposed cryptic sites and 

dangling ends. These temporary cross-links reduce the effect of the swelling-induced internal 

strain and hence act as a restoring force. On the other hand, when the ends of the dangling chains 

are non-reactive (i.e., binding is prohibited and does not inhibit folding of the loops), the internal 

strain due to gel swelling is sufficiently large to unfold the loops, as indicated by a relatively steep 

increase in  just below  (Fig. 4b). Up cT

Figure 4 also confirms that when the temperature is decreased further below , the cT

temporary cross-links are broken by the increasing internal strain as indicated by the monotonic 

decrease in the value of . Additionally, the internal strain due to gel swelling causes the loops Bp

to unfold, as seen by the gradual increase in .Up

Near , the complexation leads to ~18% decrease in the degree of swelling of the gel as cT

compared to the no binding case (Fig. 3). In other words, the formation of the temporary cross-

links leads to the self-stiffening behavior. 

As the temperature is increased above , the difference between the green (no binding) cT

and red (binding) curves in Fig 3 diminishes. Above , the gel behavior changes from hydrophilic cT

to hydrophobic. The polymer network expels the solvent and the gel stays relatively collapsed so 
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that . (The free dangling chains undergo a coil-globule transition and thus are also effectively 1 

collapsed). In the theoretical model, the molecular interaction governing the phase transition is 

captured through the empirical parameter  in the Flory-Huggins term,39 which depends : ( , )T  

on the volume fraction of the polymer network,  and the temperature . The volume fraction of  T

the polymer in the as-prepared gel network is the same in both the scenarios i.e., binding and no 

binding. In this temperature range, although ~40% of the dangling chains remain bound to the 

open cryptic sites (Fig. 4a), binding has little effect on the volume of the gel because the value of 

 is nearly the same for both binding and no binding cases. Additionally, we checked the swelling 

curve for a corresponding gel that does not undergo internal restructuring i.e., at zero probabilities 

of both loop unfolding and chain binding (not shown here). The example of  and  is 0Up  0Bp 

a limiting case for the scenario where binding is not allowed. The zero probability of unfolding 

does not allow the gel to swell as temperature is decreased below the LCST and thus leads to a 

smaller degree of swelling as compared to the gel system where folding-unfolding is allowed but 

binding is not allowed (see green curve in Fig. 3).

B. Effect of applying a constant force. 

In the cases considered above, the binding of the dangling chains to the exposed cryptic 

sites shows a pronounced effect on gel swelling for the chosen values of the reaction rate constants 

and chain segment lengths. The internal force due to swelling was sufficiently strong to unfold 

only a fraction of the loops (see Figs. 4a and 4b). We demonstrate below that the introduction of 

an applied force amplifies the differences between the cases involving binding and no binding. For 
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this discussion, it is convenient to introduce the dimensionless force as , where 0/ FFF g

 is the unit of force. Figure 5 shows how  and , i.e., the extensions of the sample 2
0000 hvcF   

along and normal to the direction of force, respectively, vary with temperature if a constant tensile 

force of  is applied.3F 

In the direction of the applied force (Fig. 5a), the disparity between the binding and no 

binding curves for F=3 around and below  is even smaller than that for the situation. The cT 0F 

external force amplifies the effects of the internal strain due to the gel swelling and thus, the 

probability of unfolding, , is increased. Consequently, with an applied force of F=3, the system Up

encompasses a greater fraction of unbound temporary cross-links than the  case.0F 

In the direction transverse to the force, however, the gel is compressed as  (Fig. 5b). 1 

At , the sample with binding is compressed by 50% more than the case where the 33 CT  o

formation of the transient cross-links is not allowed (Fig. 5b). As the sample becomes compressed 

in the transverse direction, the reactive ends are brought closer to any exposed cryptic sites and 

thus, the dangling chains and unfolded loops can form temporary cross-links. 

Figure 5 shows that in the presence of the temporary cross-links, the LCST temperature is 

shifted to  from that of , when no binding of the dangling chains is allowed. This ~ 33 Co ~ 35.5 Co

results in a notable difference in the sizes of the gels with and without the temporary cross-links within 

the temperature range from  to  as seen in Fig. 5.~ 33 Co ~ 35.5 Co

The red curves in Fig. 5 shows that under deformation, the gel contracts by 3.2% in the 

lateral direction (Fig. 5a) and by 50% in the transverse direction (Fig 5b) when binding is 

permitted. In the latter scenario, essentially all the loops in the gel are unfolded at all temperatures, 

and a significant fraction of the unfolded loops are bound to the reactive ends for T > Tc. (see Fig. 
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6a). (To highlight the effects of the applied force on the binding interactions, the behavior of the 

system with no binding is shown in Fig. 6b.) As the applied force is sufficiently strong to unfold 

all the loops, the relative value of contraction is relatively low in the direction of force (red curve 

in Fig. 5a), and high in the direction normal to the force (red curve in Fig. 5b).

At T < Tc , Fig. 6a shows a monotonic decrease in the value of  with decreasing Bp

temperature, and helps explain the convergence of the red (binding) and the green (no binding) 

curves as T is decreased (Fig. 5). The decrease in  indicates a decrease in the self-stiffening Bp

effect when an external force is applied. Namely, the external force ruptures the temporary cross-

links that give rise to the self-stiffening. And hence, the red and green curves show a smaller 

difference near the transition temperature. 

To summarize, for the case, the system displays a roughly 18% decrease in the lateral 0F 

extension of the gel (at T 31.5o C) when the binding is present. For the  case, the gel ≈ 3F 

displays only roughly 3 % decrease (at T 33o C) in  along the stretching direction, and 50 % ≈ 

decrease  perpendicular to the stretching direction when the binding is present. 

 The above calculations reveal the behavior of the gel at steady state. Using the gLSM, we 

can analyze the dynamic response of the gel as the sample approaches the steady state 

configuration in the presence of a constant applied force (Fig. 7). Moreover, the gLSM simulations 

allow us to simulate the behavior of relatively large samples. In particular, we consider a gel that 

is  elements in size and is structurally uniform, i.e., all gel elements have the same 11 3 5 

molecular structure in the un-deformed state. As shown in Fig. 7a, all the nodes at the left most 

end of the gel are held fixed, and a constant tensile force  is applied along the entire face at the F

opposite end of the sample. In the simulations, we take  so the force per node is ~2.08 as 50F 
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there are twenty four nodes on the end surface. For comparison, the force per node is 0.75 in the 

gLSM simulations of a single gel element (Figs. 5 and 6). 

In the current simulations, we assume that the temporary crosslinks form and break fast 

enough that the contribution of the temporary crosslinks to the stress tensor can be described by 

the steady state equation, eq. (24). This assumption leads to a simplification of the simulations 

because the memory effects described by eq. (23) are neglected. Specifically, after each step of the 

gLSM simulation, we determine  for each element, update the local values of  and  by  Up Bp

solving numerically eqs. (33) and (34), and then apply eq. (24). 

The simulation results in Fig. 7 demonstrate that the application of force results in a non-

uniform gel structure. The non-uniform deformation of the sample is seen to result in a variation 

of the volume fraction of polymer and number of temporary cross-links within the initially uniform 

gel sample (Fig. 7). Figure 7 shows that the elements nearer to the right surface (where the force 

is applied) experience a greater strain when the sample is stretched. This strain leads to breakage 

of the temporary cross-links, as indicated by the decrease in the probability of binding from the 

right to the left side of the sample (Fig. 7). 

With an increase in time (Fig. 7b-d), the strain on the left end of the gel also contributes to 

a decrease in  in the nearby elements. Finally, the sample equilibrates at the given force, as Bp

evidenced by the symmetry in the probability of binding in the gel elements (see Fig. 7d).

IV. Conclusions

To harness the utility of bio-inspired cryptic bonds within gels, we designed polymer 

networks encompassing sites that are exposed under mechanical deformation and can subsequently 

bind to reactive groups on dangling chains, which are ever-present in polymer gels. Through 

models developed here, we showed that these temporary cross-links effectively reinforce the 
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material so that it resists swelling as the temperature is reduced (Fig. 3) or an external force is 

applied to the sample (Fig. 5). These studies were primarily aimed at demonstrating a proof of 

concept; in future work, we will utilize our model to pinpoint regions in parameter space where 

the binding between the exposed cryptic sites and the dangling ends provide maximal 

reinforcement of the system.

One of the advantageous features of this system is that the binding events are reversible. 

An increase in temperature or the release of the tensile deformation can lead to the breakage of the 

temporary cross-links and the return of the material to its original state. For instance, the initially 

designed state can be recovered after a critical loading event. Hence, the same system can be used 

or re-used for multiple applications. 

Another distinct feature of the system is that its properties can be dynamically tailored 

through deformation. The mechanical routes to modifying the systems’ behavior described here 

do not require high temperatures or extreme conditions, and thus, could constitute energy-efficient 

and cost-effective methods for processing materials.

Applied as a coating, a network that becomes self-reinforcing or self-stiffening in response 

to deformation can act as “dermal armor” to protect the underlying system from damage. Such 

responsive self-forming armor can extend the life-time of manufactured components. More 

generally, our findings can help advance the burgeoning field of mechano-mutable materials by 

providing guidelines for “co-designing” the mechano-responsive elements and the applied forces 

to produce the desired mechanical behavior, and for addressing the pervasive need for materials 

that provide a beneficial response to mechanical stress.
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Figure Captions

Fig. 1 (top) Schematic of a polymer gel network containing loops in folded and unfolded state, and 

dangling chains with reactive ends. Polymer network is represented in green. Grey solid circles 

represent cross-links and the reactive labile bonds are shown in blue when bonded and forms a 

loop, and in red when the labile bonds of the loop are broken or when they form bonds with reactive 

ends of the dangling chains shown in yellow. The bottom panel displays a magnified representation 

of the chains with Kuhn segments containing loops with l Kuhn segments in folded (left) and n

unfolded state (center). The dangling chains contains m Kuhn segments and are shown as bound 

to the exposed cryptic bonds (right).

Fig. 2 The probability of unfolding of the loop, , and probability of binding of the dangling Up

chains, , in the steady-state as functions of the chain extension, . The model parameter values Bp 

are given in the text. The lines denote the numerical solution of the steady state equations, eqs. 

Page 34 of 43Soft Matter



35

(33) and (34), obtained using MathematicaTM. The symbols denote the numerical solution of the 

rate equations, eq. (1) and (2), in the long time limit obtained by the ODE solver used as a part of 

the gLSM code. Comparison of the two solutions serves as a partial verification of the gLSM code.

Fig. 3 The lateral extension of the gel  at the steady-state as a function of temperature for the  T

cases of binding allowed (red) and binding not allowed (green). Note that the difference in the 

degree of swelling between the two cases is greater near the transition temperature. The model 

parameter values are given in the text. The lines show the numerical solution of eq. (31) at  0gF 

and  obtained using MathematicaTM. The symbols show the numerical solution obtained  

using the gLSM code applied for a single gel element in the long time limit. Comparison of the 

two solutions serves as a partial verification of the gLSM code. 

Fig. 4 The probability of unfolding of a loop, , and probability of binding of a dangling chain, Up

, in the steady-state as functions of temperature  for the cases of binding (a) allowed and (b) Bp T

not allowed. The model parameter values are given in the text. The notations are the same as in 

Fig. (2). 

Fig. 5 (a) The lateral, , and (b) transverse, , extensions of the gel under the action of applied  

tensile force of  in the steady state as functions of temperature  for the cases of binding 3F  T

allowed (red) and not allowed (green). Application of the tensile force results in the lateral 

extension greater than that in the absence of force (see Fig. 3). Note that the difference in swelling 

between the two cases is greater near transition temperature. The model parameter values are given 

in the text. The lines show the numerical solution of eq. (31)-(34) obtained using MathematicaTM. 
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The symbols show the numerical solution obtained using the gLSM code applied for a single gel 

element in the long time limit. Comparison of the two solutions serves as a partial verification of 

the gLSM code.

Fig. 6 The probability of unfolding of a loop, , and probability of binding of a dangling chain, Up

, under the action of applied tensile force of  in the steady-state as functions of Bp 3F 

temperature  for the cases of binding (a) allowed and (b) not allowed. Note that the applied force T

is large enough to result in unfolding all the loops as indicated by . The model parameter 1Up 

values are given in the text. The notations are the same as in Fig. (2). 

Fig. 7 The effect of a tensile force on a gel sample of dimension  at . Coloring 11 5 3  30 CT  

represents the probability of binding, , in each gel element. The force of  is applied to Bp 50F 

the right end of the gel sample, and the left end is fixed to a solid wall. Panel (a) shows the initial 

gel sample. Panels (b) and (c) show the gel sample after the respective  and  time steps 410 43 10

of the gLSM simulations. Panel (d) shows the final stationary configuration attained by the gel 

sample under the applied constant force. It is assumed that the temporary crosslinks form and break 

fast enough to neglect the memory effects (see the text). The model parameter values are given in 

the text.
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