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Collective dynamics of logic active particles

Matteo Paoluzzi,∗a,b Marco Leoni,c‡ and M. Cristina Marchettid

We examine the interplay of motility and information exchange in a model of run-and-tumble active
particles where the particle’s motility is encoded as a bit of information that can be exchanged upon
contact according to the rules of AND and OR logic gates in a circuit. Motile AND particles become
non-motile upon contact with a non-motile particle. Conversely, motile OR particles remain motile
upon collision with their non-motile counterparts. AND particles that have become non-motile
additionally “reawaken”, i.e., recover their motility, at a fixed rate µ, as in the SIS (Susceptible,
Infected, Susceptible) model of epidemic spreading, where an infected agent can become healthy
again, but keeps no memory of the recent infection, hence it is susceptible to a renewed infection.
For µ = 0, both AND and OR particles relax irreversibly to absorbing states of all non-motile or all
motile particles, respectively. The relaxation kinetics is, however, faster for OR particles that remain
active throughout the process. At finite µ, the AND dynamics is controlled by the interplay between
reawakening and collision rates. The system evolves to a state of all motile particles (an absorbing
state in the language of absorbing phase transitions) for µ > µc and to a mixed state with coexisting
motile and non-motile particles (an active state in the language of absorbing phase transitions) for
µ < µc. The final state exhibits a rich structure controlled by motility-induced aggregation. Our
work can be relevant to biochemical signaling in motile bacteria, the spreading of epidemics and of
social consensus, as well as light-controlled organization of active colloids.

1 Introduction
Swimming bacteria and living cells are examples of entities that
consume energy to generate autonomous motion. Through in-
teractions, these systems organize in complex patterns on scales
much larger than those of the individual constituents. This be-
havior has provided inspiration for the development of the field
of active matter that has had remarkable success at describing
some of the spontaneous organization seen in nature on many
scales, from the flocking of birds to the collective migration of
epithelial cells in wound healing1–4.

So far most active matter studies have focused on the role of
reciprocal mechanical or rule-based interactions, such as steric
repulsion or medium-mediated hydrodynamic couplings, in con-
trolling the emergence of nonequilibrium collective behavior. But
living entities often interact through the exchange of information
transmitted through biochemical signaling, chemical, visual and
other clues. Information exchange carried by motile individuals
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is often non-reciprocal and its role in controlling emergent struc-
tures in collections of motile agents is only beginning to be ex-
plored5–11.

Examples of information exchange common in nature are
biochemical signaling, that controls communication among mi-
crobes 12,13, and chemotaxis14,15, that drives the formation of
complex patterns16. Both have been modeled extensively by cou-
pling a diffusive agent to continuum models of active gels17 and
agent-based simulation18. Closer in spirit to the model consid-
ered here is recent experimental work on active colloids where
activity is controlled by an external feedback loop that tunes the
light intensity responsible for driving the colloids’ motility19,20,
mimicking the use of light intensity to control and trigger collec-
tive behavior of photokinetic bacteria21,22. More sophisticated
examples include light-activated colloidal particles able to learn
and to share information with other particles while interacting
with the external environment23. Finally, information exchange
among motile individuals is directly relevant to the understanding
of epidemic spreading, social dynamics and robotic communica-
tion8,24–27.

Much quantitative understanding of the behavior of active sys-
tems has come from minimal models of Active Brownian or Run-
and-Tumble Particles (ABP or RTP) consisting of collections of
self-propelled spherical particles with purely repulsive interac-
tions that propel themselves at fixed speed and change direc-

Journal Name, [year], [vol.],1–10 | 1

Page 1 of 10 Soft Matter



= 0.2 = 0.8

Tumbling rate 

Re
aw

ak
en

in
g 

fre
qu

en
cy

 

Fig. 1 Representative snapshots of the final configuration of AND par-
ticles for two values of the total packing fraction φ , φ = 0.2 (left) and
φ = 0.8 (right). Red particles are nonmotile, green particles are motile.
The tumbling rate is λ = 0.01,0.1,1 from left to right at each packing
fraction. At both packing fractions the system escapes the absorbing
state as the awakening rate is increased. At low packing fraction, the
mixed state separates into a cluster of non-motile particles surrounded
by a gas of motile ones. At high packing fraction, motile particles in the
active state exhibit MIPS, while the mixed state is homogeneous.

tion through rotational noise or tumbling events. Building on
this body of work, we recently considered a minimal model of
active agents where the particle’s motility is encoded as a bit of
information that can be exchanged upon contact interaction ac-
cording to logic rules corresponding to AND and OR gates in an

electronic circuit28. Motile particles obeying AND rules always
lose their motility upon interaction with non-motile ones. In this
case an initial state of one non-motile particle in a sea of motile
ones always evolves to an absorbing state where all particles are
nonmotile. Conversely, OR motile particles remain motile when
interacting with nonmotile ones. In this case an initial state of
one motile particle in a sea of non-motile ones always evolves
towards the absorbing state where all particles are motile. This
model is analogous to SI models (S, susceptible, I, infected) of
epidemic spreading where information is transmitted only in one
direction and irreversibly, with motile particles corresponding to
healthy agents and non-motile particles to infected ones.

In the present paper we examine a richer model analogue to SIS
(Susceptible, Infected, Susceptible) models of epidemic spread-
ing29, where an infected agent can become healthy again, but
keeps no memory of the recent infection, hence it is susceptible
to a renewed infection 10. We do this by allowing non-motile par-
ticles to regain their motility or “re-awaken” at an average rate µ.
The dynamics is then controlled by the interplay between reawak-
ening rate and collision rate, with a critical value µc of reawak-
ening rate controlling the properties of the final steady state. For
µ ≥ µc the system reaches an absorbing state where all particles
are motile. In the terminology of absorbing state phase transi-
tions, this state, although composed entirely of motile particles,
is inactive because the spreading of nonmotile particles has ceased
30,31. For 0 < µ < µc we have a mixed state of motile and non-
motile particles. Again, in the language of absorbing states, this
is an active state because it is a dynamical steady state where
particles continue to exchange their motility. To avoid confusion,
we will refer to these two states as motile and mixed, respec-
tively. For µ = 0 the system evolves at long times to the absorbing
state where all particles are non-motile. Our simulation suggests
that this sate only exists for µ = 0, and that the system remains
mixed for any finite value of µ < µc. This could, however, be a
consequence of the unavoidable finite time scale of our simula-
tions. Whether there is a lower, but finite critical value µc below
which the system reaches the absorbing non-motile state remains
an open question. We note that previous work on absorbing states
in active systems has focused on particles with infinite run length,
where the system can get trapped in active absorbing states32.

A pictorial phase diagram depicting snapshots of representa-
tive steady-state configurations is shown in Fig. 1. Both motile
and mixed states show a rich spatial organization. In the motile
state at µ ≥ µc, motile particles exhibit motility-induced phase
separation (MIPS)33–35 at high density and low tumbling rates.
In the mixed state, we find spatial patterns at both low and high
total density. At low densities nonmotile particles form a cluster
surrounded by a gas of motile particles. At high densities the in-
terplay between aggregation of non-motile particles and MIPS re-
sults in the opening of bubbles in a mixed background resembling
a reverse MIPS, as observed in single components ABPs at very
high density and motility35–37. This effect is most pronounced
at low tumbling rates, where the dynamics is most persistent,
suggesting that it is indeed driven by motility. A quantitative
phase diagram depicting the various regimes as function of the
re-awakening and tumbling rates is shown in Fig. 2.
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AND OR
G+R→ R+R G+R→ G+G
R+G→ R+R R+G→ G+G
G+G→ G+G G+G→ G+G
R+R→ R+R R+R→ R+R

Table 1 The logic interaction rules that control motility exchange among
non-motile/red (R) and motile/green (G) particles interacting via AND
and OR rules.

Our work demonstrates that the interplay of motility and in-
formation spreading is responsible for complex spatial structures
that can be controlled by tuning the total particle density and the
re-awakeining rate. Our model may therefore be relevant to re-
cent experimental work on engineered active particles where the
motility of individual particles can be controlled optically. It also
provides a new approach to problems such as epidemics or opin-
ion spreading27,38,39. While these problems have been studied
extensively, most previous work has been carried out for agents
sitting on a network of fixed connectivity40,41. In our model, in
contrast, the connectivity changes in time as it is determined by
the agent dynamics, and the properties of such dynamics affect
information spreading. Finally, the model could be adapted to
describe the exchange of other internal traits other than motility.
In certain bacteria or eukaryotic cells contact interactions are in
fact needed for the exchange of chemical signaling, as is the case
for instance for C-signaling that mediates collective motility in the
bacteria Myxococcus Xantus.

The details of the agent-based model are introduced in Section
II. In Section III we present the results of the numerical simula-
tions and the metrics used to construct quantitative phase dia-
grams and to characterize the relaxation kinetics and the struc-
ture of the steady states. In Section IV we discuss a continuum
model and conclude with a few remarks in Section V.

2 Model
We consider N spherical particles of diameter a performing run-
and-tumble dynamics in two dimensions. The particles have iden-
tical size, self propulsion speed, and tumbling rate. They inter-
act via short-range repulsive interactions. They are only distin-
guished by their motility state (motile or non-motile) represented
by their color (green (G) for motile and red (R) for non-motile).
Particles exchange their motility state upon collision according to
rules inspired by logic gates. The motility state of AND particles
evolves according to the rules associated with the AND gate of a
logic circuit that gives a high output only if all its inputs are high.
Conversely, OR particles evolve according to the rules associated
with an OR gate that gives a high output if one or more of its
inputs are high. The corresponding interaction rules are given in
Table 1.

In the case of AND rules, non-motile (R) particles can also re-
acquire their motility, or “reawaken”, at a rate µ. When µ = 0
the loss/gain of motility is analogue to the spreading of disease in
the Susceptible-Infected (SI) model of epidemics dynamics, with
motile particles corresponding to infected individuals and non-
motile particles to susceptible individuals. For finite values of
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Fig. 2 Phase diagram for packing fraction φ = 0.2 (top) and φ = 0.8 (bot-
tom) in the plane of tumbling rate λ and re-awakening rate µ. The blue
diamonds correspond to the Absorbing State (AS) transition between
mixed and active states identified by the location of the peak in the sus-
ceptibility χs. The black circles are the points where the Binder cumulant
g4(λ ,µ)

42–44 becomes negative, signaling the onset of MIPS for φ = 0.8
and of de-mixing of motile and non-motile particles for φ = 0.2.

µ the model corresponds to the Susceptible-Infected-Susceptible
(SIS) model of epidemics spreading29.

Agent-based model. Denoting the motility state of particle i by
an internal variable σi(t), with σ = 0,1 for non-motile and motile
particles, respectively, the dynamics of the system is described by
the equations

vi = v0eiσi(1− si)+ξ ∑
i6= j

f(ri j) , (1)

ω i = tr
i si σi , (2)

where vi = ∂tri and ω i = ei × ∂tei are the translational and an-
gular velocity of a particle at positions ri. The orientation ei

specifies the direction or motion during the run phase. The first
term on the right hand side of Eq. (1) describes propulsion at
speed v0, with si an auxiliary state variable that is 0 during the
run and 1 in the tumble state. Details about the model can be
found in45,46. In the tumbling state, particle i receives a random
torque tr

i that rotates the direction of its orientation ei. Tumbles
are Poisson-distributed with mean rate λ . The second term on
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the right hand side of Eq. (1) describes repulsive interactions,
with f(ri j) = −∇iV (ri j) and V (r) = ε

12 (
a
r )

12 the interaction poten-
tial among two particles at separation ri j = |ri− r j|, ε the energy
scale and ξ the mobility. We choose ε = 1 in all the following.
For the case of overdamped dynamics considered here, particles
exchange momentum instantaneously upon collision. Hence, col-
lisions do not lead to rearrangement of non-motile particles.

3 Numerical results
We have simulated the dynamics of N particles in a square box
of side L, with periodic boundary conditions. We have varied the
packing fraction φ = NAs/L2 ≡ ρAs, with As = π(a/2)2, by varying
the number of particles N at fixed L. We have solved numerically
Eqs. (1),(2) using a second order Runge-Kutta scheme with time
step dt =10−3 and µ = v0 =1. The results presented below have
been obtained considering L = 80a and varying φ in the range
[1 · 10−2÷ 0.79] for λ =0.01,0.05,0.1,0.5,1,5. All simulations are
initiated with one nonmotile (R) particle in a sea of motile (G)
particles The logic interaction is turned on after the system has
reached a steady-state configuration by evolving according to its
active dynamics. This typically takes a simulation time larger than
10/λ .

In Fig. (2) we show the phase diagram obtained by numerical
simulations for two values of packing fraction. A generic fea-
ture is the appearance of two non-equilibrium phase transitions:
a structural phase transition due to MIPS, and a non-equilibrium
absorbing state phase transition. In Appendix A we report de-
tails about the case µ = 0, where the system evolves towards an
absorbing state whose color depends on the type of logic gate
considered.

3.1 Mixed state and MIPS

When µ is small but finite, non-motile particles reawaken, i.e.,
become motile again, at an average rate µ.

We have studied numerically AND particles at two values of
the total packing fraction: (i) high packing fraction (φ = 0.8),
where one expects that the relaxation towards the steady state
may be captured by a mean-field description, and (ii) interme-
diate packing fraction (φ = 0.2), where local density fluctuations
become important. We have constructed a phase diagram by vary-
ing the tumbling rate λ and the reawakening rate µ, at fixed self-
propulsion speed v0. Working at fixed density allows us to quan-
tify the importance of density fluctuations due to self-propulsion
on the phase transition to the absorbing state.

Because of reawakening, the fraction of motile particles m(t) =
N−1

∑i σi(t) fluctuates in time in the steady-state. For finite µ, the
behavior is controlled by the interplay between reawakening and
collisions. Starting with one motile (G) particle in a sea on non-
motile (R) particles, AND particles relax to one of two states: (i)
an absorbing state of all motile particles with 〈m〉= 1 for µ > µc,
referred to as motile state, and, (ii) a mixed state with 〈m〉 < 1
and a finite fraction of non-motile particles for µ < µc. Here
〈O〉 denotes the time-average of the dynamical observable O(t)
in the steady-state. This behavior is evident in the relaxation of
m(t) shown in Fig. (3) for φ = 0.2 (left) and φ = 0.8 (right). The
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Fig. 3 Time evolution of m(t) as the reawakening frequency increases
(µ = 10−4,10−3,2× 10−3,3× 10−3,4× 10−3,10−1, from violet to yellow)
from green to violet, respectively), for φ = 0.2 (left column) and φ = 0.8
(right column) at different values of λ : λ = 0.01 (top row), λ = 0.1
(middle row) and λ = 1 (bottom row). Dashed red lines are fits to the
mean-field model.

absorbing state of all non-motile particles (〈m〉 = 0) is obtained
only for µ = 0. The structural and dynamical properties of this
state were studied in Ref.28. The behavior of 〈m〉 is shown in Fig.
(4) as a function of µ for the two representative packing fractions.

The dashed red lines in Fig. 3 are fits to the analytical mean-
field solution given in Eq. (12) below, with µ and τ fitting pa-
rameters. The mean-field model fits well at high packing fraction
(right column, φ = 0.8), but fails at low packing fraction when
density fluctuations are important (left column, φ = 0.2).

Snapshots of the long-time configurations shown in Fig. 1 dis-
play a clear propensity of particles to aggregate. The aggrega-
tion of motile green particles at high density is a manifestation
of motility-induced phase separation (MIPS) that is most pro-
nounced at low tumbling rates, when the single-particle dynamics
is persistent. At φ = 0.2 no MIPS is expected in the range of pa-
rameters considered here. Snapshots of the absorbing state at low
reawakening for φ = 0.2 show a different type of aggregation, cor-
responding to phase separation between green and red particles,
with a compact cluster of non-motile red particles surrounded by
a gas of motile green particles.

The phase diagrams shown in Fig. 2 for φ = 0.2,0.8 have
been obtained for λ ∈ [0.01,5] and µ ∈ [10−4,10−1]. To quan-
tify the transition between motile and mixed states, we have
examined χs = limt→∞ χ(t) where we have introduced χ(t) ≡
〈(ms(t)− 〈m〉s)2〉s, with 〈· · · 〉s denoting a sample average. χ(t)
is analogous to, but distinct from, the 4-point susceptibility used
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Fig. 4 The order parameter 〈m〉 as a function of µ for φ = 0.2 (left) and
φ = 0.8 (right).
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Fig. 5 Steady-state susceptibility χs as a function of µ for φ = 0.2 (left)
and φ = 0.8 (right). The position of the peak depends on λ for φ = 0.2,
while it is essentially independent of λ for φ = 0.8.
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Fig. 6 Probability distribution function of density fields for φ = 0.2 (left)
and φ = 0.8 (right) and λ = 0.01.

in glassy physics that measures sample-to-sample fluctuations of
the overlap between configurations accessed by the system at dif-
ferent times47. The typical behavior of χ(t) is shown in Appendix
A. χs is the long-time limit value of χ(t), it does not provide any
information about dynamics, however, since it measures the fluc-
tuations of 〈m〉 in the steady-state, it is suitable for identifying
regions in the phase diagram where 〈m〉 changes from motile to
mixed state. The behavior of χs is shown in Fig. (5) as a function
of µ for different values of λ . We identify µc with the location
of the peak in the susceptibility (blue diamonds in Fig. 2). At
intermediate density the location of the peak shifts to lower val-
ues of µ with increasing tumbling rate, while at high density it is
essentially independent of tumbling rate.

To quantify the structural properties of the steady state, we
have evaluated the probability distribution P(φ̂) of local packing
fractions φ̂ (details are provided in Appendix C). shows an evo-
lution from a unimodal distribution corresponding to a homoge-
neous state to a bimodal distributions corresponding to a phase
separated state (see Fig. 6). The mechanisms driving the phase
separation are, however, distinct at intermediate and high density.
For φ = 0.2 one observes phase separation between motile and
non-motile particles in the asymptotic mixed state. This phase
separation is driven by reaction-diffusion and weakly affected by
µ. For φ = 0.8 we find MIPS of motile particles in the absorbing
state, hence the phase separation is driven by motility. The black

symbols in Fig. 2 have been obtained by calculating the Binder
cumulant g4 of the distribution of local density P(φ̂) defined as
g4 = 1−〈φ̂ 4〉/3〈φ̂ 2〉2 42–44. A negative peak in g4 corresponds to a
bimodal P(φ̂), signaling a first-order phase transition48.

At high densities, density fluctuations are suppressed and the
transition line at µ = µc is essentially independent of λ , confirm-
ing that the mean-field model provides a good description of the
system. In contrast to what observed for φ = 0.2, the absorbing
state is highly homogeneous, as evident from the snapshots in Fig.
(1). For µ > µc, however, motile particles undergo MIPS33–35.
We note that at low λ , when the active dynamics is most persis-
tent, MIPS actually occurs even in the mixed phase, provided the
fraction of motile particles is sufficiently large. This means that,
for a fixed tumbling rate λ , MIPS disappears below a critical value
µc and the system becomes homogeneous upon approaching the
absorbing state.

4 Continuum Model
Here we formulate a continuum model of particles interacting
with AND rules that incorporates re-awakening. The continuum
equations for the number densities ρG and ρR of motile (G) and
non-motile (R) particles are written as36,49

∂tρR = βρGρR−µρR , (3)

∂tρG =−βρRρG +µρR−∇∇∇ · [v(ρG)J] , (4)

∂tJ(r, t) =−λe f f J− 1
2

∇∇∇ [v(ρG)ρG]−∇∇∇κ∇
2
ρG , (5)

where J is the current density of motile particles and v(ρG) is their
propulsive speed that can be suppressed by crowding as in models
of MIPS. We use the simple form

v(ρG) = v0

(
1− ρG

ρ∗

)
, ρG ≤ ρ

∗ (6)

and v(ρG) = 0 for ρG > ρ∗, where ρ∗ is a characteristic density
that depends on particle motility, tumbling rate and strength of
repulsive interaction. It was estimated via kinetic arguments for
instance in Ref.36. In our model non-motile particles are truly
static and do not diffuse, and we neglect small cross-diffusion
terms 49. Collisions instantaneously change the state of a particle
from motile to non-motile and are incorporated in the reaction
term proportional to β , hence do not contribute to the suppres-
sion of the propulsive speed. On the other hand, the reaction
kinetics that changes the particles’ motility at rate ∼ β renormal-
izes the tumbling rate of the motile agents to an effective tum-
bling rate λe f f = λ + βρR (see Appendix (B) for details). This
arises because collisions with non-motile particles result in an ef-
fective rotational diffusion rate ∼ βρR of motile ones that adds to
the tumbling rate. We also neglect small cross-diffusion terms
in the dynamics of motile particles. Finally, the last term on the
right hand side of Eq. (5) represents a phenomenological surface
tension κ > 0 that controls gradients in the density of motile par-
ticles.

On time scales long compared to λe f f , we can neglect the left
hand side of Eq. (5) and eliminate the current from Eq. (4) to
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obtain an effective diffusion equation for the density of motile
particles, given by

∂tρG(r, t) =−βρRρG +µρR +∇∇∇ · [D(ρG)∇∇∇ρG]−κ∇
4
ρG , (7)

where

D(ρG) =
v(ρG)

2λe f f (ρR)

[
v(ρG)+ρGv′(ρG)

]
, (8)

with the prime denoting a derivative with respect to density. The
effective diffusivity D incorporates the effects of crowding due to
motility34–36 and can change sign, signaling the spinodal instabil-
ity associated with MIPS. We therefore expect that at high enough
density the structural properties of the system will be controlled
by the interplay of MIPS physics and the exchange of internal
motility regulated by collisions and reawakening.

Mean-field model. Neglecting all spatial variations, Eqs.
(Eq.(3)) and Eq.(4)) reduce to a logistic model augmented by
re-awakening,

∂tρG = −βρGρR +µρR , (9)

∂tρR = βρGρR−µρR . (10)

The total density ρ = ρG +ρR is constant, ρ = ρ0, and the coupled
equations can be recast in the form of a single equation for the
fraction m = ρG/ρ0 of motile particles, given by

∂tm =−βρ0m(1−m)+µ(1−m) . (11)

The homogeneous steady states are controlled by the interplay
between the time τ = (βρ0)

−1 at which collisions turn motile
particles into non-motile ones and the reawakening rate µ. One
finds two stable states: an absorbing state of all motile particles
(m∗ = 1) when µ > µc = τ−1 and a mixed state with a fraction
m∗ = µ/µc of motile particles for µ < µc.The rate µc = βρ0 pro-
vides the mean-field value of the transition point between ab-
sorbing and mixed states. In the absence of reawakening (µ = 0)
the mixed state is an absorbing state where all particles are non-
motile. We will see below that fluctuations not captured by the
mean-field model given in Eq. (11) can yield a rich structure for
both the absorbing and mixed states. The mean-field model can
be solved exactly to obtain the kinetics of approach to the steady
state, with the result

m(t) =
m0−µ/µc−µ/µc(m0−1)e(1−µ/µc)tµc

m0−µ/µc− (m0−1)e(1−µ/µc)tµc
(12)

for a given initial fraction m0 = m(t = 0) of motile particles.
Clearly m(t) relaxes to m∗ = 1 for µ/µc > 1 and to m∗ = µ/µc for
µ/µc for all initial values m0, other than m0 = 1,µ/µc. The kinet-
ics of approach to the steady states is controlled by the shortest
of the collision and reawakening times, and the dynamics can be-
come very slow near the critical line separating the two steady
states, where these two time scales are comparable.

Stability of homoegeneous states. We now examine the linear
stability of the two homogeneous steady states to spatially vary-
ing fluctuations. We write ρG,R = ρ0

G,R+δρG,R, where ρ0
G,R are the

homogeneous fixed points, and expand to linear order in the fluc-

tuations. Working in Fourier space, we let δρG,R =∑q eiq·rρ̂G,R(q).
The linearized equations for the Fourier amplitudes are then given
by

∂t ρ̂R =
(

βρ
0
G−µ

)
ρ̂R +βρ

0
Rρ̂G , (13)

∂t ρ̂G =
(

µ−βρ
0
G

)
ρ̂R−

(
βρ

0
R +D(ρ0

G)q
2 +κq4

)
ρ̂G . (14)

Stability of motile state. When reawakening is faster than col-
lisions (µ > µc = βρ0), the homogeneous state is the absorbing
state where all particles are motile, i.e., ρ0

G = ρ0 and ρ0
R = 0. In

this case Eqs. (18) and (19) are decoupled. Letting ρ̂G,R(q,t) ∼
eiωt ρ̂G,R(q), the dispersion relations of the relaxation rates are

iωR =−µ +µc (15)

iωG =−
(
D(ρ0)q2 +κq4

)
, (16)

where

D(ρ0) =
v2

0
2λ

(
1− ρ0

ρ∗

)(
1−2

ρ0

ρ∗

)
(17)

becomes negative at ρ0 = ρ∗/2. Fluctuations in the density of non-
motile particles always decay. On the other hand, fluctuations in
the density of motile particles grow when D(ρ0) < 0. The motile
particles aggregate and undergo MIPS for ρ0 > ρ∗/2. Therefore
if ρ∗ < µ/β the motile state will be homogeneous for ρ0 < ρ∗/2
and will undergo MIPS for ρ∗/2 < ρ0 < µ/β .

Stability of mixed state. When collisions dominate over reawak-
ening (µ < µc = βρ0), the final state always contains a fraction of
non-motile particles, with ρ0

G = µ/β and ρ0
R = ρ0− µ/β . In this

case the linearized equations become

∂t ρ̂R = (µc−µ) ρ̂G , (18)

∂t ρ̂G =−
(

µc−µ +D(ρ0
G)q

2 +κq4
)

ρ̂G . (19)

Fluctuations in the density of non-motile particles are slaved to
those in the density of motiles ones, whose decay is controlled by
the rate

iωm =−
(

µc−µ +D(ρ0
G)q

2 +κq4
)
, (20)

with

D(ρ0
G) =

v2
0

2(λ +µ)

(
1− µ

βρ∗

)(
1−2

µ

βρ∗

)
. (21)

The mixed homogeneous state is then unstable if the following
conditions are satisfied

D(ρ0
G)< 0 and |D(ρ0

G)|>
√

4κ(µc−µ) . (22)

The first condition is satisfied for µ/β > ρ∗/2, which provides a
necessary, but not sufficient condition for the instability. At the
onset of instability only one mode is unstable, with wavevector
q0 =

(
|D(ρ0

G)|/2κ
)1/2. Using Eq. (22), we can also write

q0 =

√
µc−µ

|D(ρ0
G)|
∼ (µc−µ)1/2 . (23)

The wavevector q0 sets the length scale of the spatial pattern.
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Combining, Eq. (23) and Eq. (21) one finds that after the onset
of MIPS (µ > βρ∗/2) q0 decreases monotonically as µ→ µ−c , and
the length scale of the resulting pattern grows with increasing µ,
diverging at µc.

In this regime fluctuations in the density of non-motile particles
are slaved to those in the density of motile ones. As a result, both
go unstable for ρ0 > ρ∗/2 above a critical value µm(ρ0) of the
reawakening rate given by the solution of Eqs. (22). As a result,
the system shows regions that are essentially void of particles in a
well mixed background. This is seen in our numerical simulations
at high density. Although the numerics do not seem to show the
emergence of patterns at a characteristic length scale, the size of
the voids does increase with increasing µ as seen in the fourth
and fifth column of Fig. 1 and consistent with Eq.(23).

5 Conclusions
We have used numerics and mean-field theory to study a model
of active particles carrying a Boolean variable coupled to their
motility. When the motility state is exchanged irreversibly ac-
cording to AND and OR logic rules, the system always evolves
towards an absorbing state where all particles are motile (OR)
or non-motile (AND), as shown in earlier work28. The coupling
between motility and the spreading of information affects this ir-
reversible dynamics, as evidenced by the asymmetry of the relax-
ation. OR particles relax faster than AND particles, as shown in
Fig. 9, because their collisional reaction rate is enhanced by activ-
ity, consistent with a simple mean-field estimate. The key role of
motility is also highlighted by examining a model where the in-
ternal state that evolves according to Boolean rules is simply the
particles’ color, while the particles remain motile at all times. In
this case the relaxation of AND and OR particles is identical.

When AND particles are allowed to reacquire their motility at
a rate µ, we find both absorbing and active steady states con-
trolled by the interplay of collision and reawakening rates. For µ

above a critical value µc the system evolves towards an absorbing
state where all particles are motile. For 0 < µ < µc the system
evolves towards an active state with finite fractions of motile and
non-motile particles, recovering the absorbing state of non-motile
particles only at µ = 0. The value of µc is controlled by the total
packing fraction and the collision rate. The steady state exhibits
a rich spatial structure, with motility-induced phase separation
(MIPS) of motile particles in the high density motile absorbing
state and aggregation of non-motile particles or void formation in
the active mixed state. Some of this behavior is reproduced by a
mean-field model that incorporates suppression of motility due to
crowding as in models of MIPS.

We have focused our attention on pattern formation in the
mixed state. We showed that different types of aggregates are
developed by logic interactions. At intermediate densities, the
formation of aggregates is driven by the reaction-diffusion pro-
cess that leads to the spreading of a cluster of nonmotile parti-
cles. At high densities, the phase separation is driven by motility.
In both cases, the non-equilibrium structural phase transition be-
tween homogeneous and phase-separated states shows features
of a first-order phase transition that is signaled by a negative peak
of the Binder cumulant g4. We leave the detailed study of the ab-

Fig. 7 Top: phase diagram obtained from linear stability analysis of the
continuum model. The motile steady state for µ/β > ρ0 is homogeneous
for ρ0 < ρ∗/2, while the motile (G) particles undergo MIPS for ρ0 >

ρ∗/2. In the mixed state for µ < µc motile and non-motile particles
are uniformly mixed for values of the reawakening frequency below the
critical line determined by the solution of Eq.(22) and shown in the
figure for ρv = v4

0/(16λ 2κβ ). Above this line, fluctuations in the density
of both motile and nonmotile particles are unstable, resulting in spatial
patterns. Bottom: stability boundaries in the mixed state for different
values of the characteristic density ρv = ρ∗,10ρ∗,100ρ∗ ( with µ/β , and
ρ0 also measured in units of ρ∗). For simplicity we have neglected the
renormalization of λ .

sorbing state phase transition for future work.
The simple model studied here provides a step towards under-

standing the role of motility in information spreading. Specifi-
cally, the model of AND particles with reawakening is analogous
to SIS models of epidemic spreading, but, in contrast to most
existing studies, where infection is spread on a static network,
here we examine the case where the infection is spread by motile
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Fig. 8 Top: fraction 1−m(t) of motile OR particles as a function of time
for various values of the packing fraction φ . The curves through the data
are fits to the logistic form, Eq. (12). Bottom: Susceptibility χ(t) as
a function of time (in arbitrary units) obtained from sample-to-sample
fluctuations for AND (dashed) and OR (solid) particles. The different
curves are for the same values of packing fraction used in the top panel.
Both figures are for λ = 1 and µ = 0.
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Fig. 9 Relaxation time, τm, as a function of packing fraction. Red
diamonds refer to AND particles, blue circles to OR particles. Filled
symbols correspond to the case where particles change their motility state
upon collision according to the logic rules of Table 1. Open symbols are
for the case where particles only exchange their color upon collisions,
but always retain their motility. When the internal state and motility are
decoupled the relaxation to the steady state is the same for AND and
OR rules. When motility is exchanged according to the logic rules, OR
particles relax faster than AND ones. The black dashed line is a fit to
τm ∼ φ−0.67.

agents and demonstrate that motility affects both the dynamics
and the structure of the final state. The interplay of information
spreading and motility is also relevant to pattern formation in
bacterial colonies containing phenotypes with different motility,
such as single- and multi-flagellated Pseudomonas aeruginosa50

or B. Subtilis, where a crossover from fractal to compact bacterial
aggregates has been observed51, as well as to the understanding
of biofilm formation.
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A No reawakening and absorbing states
We first examine the results of the model with µ = 0. Clearly
in this case for both AND and OR rules the system evolves ir-
reversibly towards an absorbing state with all red (AND) or all
green (OR) particles. It is clear from the rules given in Table 1
that if the particles were to only exchange their color upon colli-
sion, while retaining their motile state, the two sets of rules would
be symmetric when interchanging green and red. In this case the
relaxation of AND and OR particles will be identical. Exchanging
motility removes this symmetry and affects the dynamics.

To quantify the relaxation kinetics, we measure the fraction
m(t) of motile particles. The evolution of 1−m(t) for OR parti-
cles is shown in Fig. 8 (top panel) for different densities. At low
and high density the dynamics is well reproduced by the logistic
model given in Eq. (12) with µ = 0 shown as dashed lines. The
logistic model fails, however, at intermediate densities. The evo-
lution of m(t) for AND particles was shown in Ref.28. The fact that
the logistic model does not fit the data at intermediate densities
indicates that in this regime the relaxation dynamics cannot be
described by a single time scale. The existence of a distribution
of relaxation times is highlighted by the dynamical susceptibility
χ(t). The height of χ(t) represents the variance of m(t) at a given
time, and thus the higher the peak the farther a given sample
is from the average state. The growth in the height of the χ(t)
peak seen in Fig. 8 then reflects sample-to-sample fluctuations
in the relaxation time. The non-monotonic behavior of the peak
height with density arises because the distribution of relaxation
times becomes narrow at both low and high density, where the
mean-field logistic model fits the data. We note that the complex
kinetics obtained at intermediate density is not associated with
the coupling between AND/OR rules and motility, but it also oc-
curs for particles that only exchange color upon collision, while
remaining always motile. The broad distribution of relaxation
times arises instead from the anomalous density fluctuations that
are a signature of active systems.

Finally, we extract a mean relaxation time τm = 〈τ̂〉s, where τ̂ is
defined by m(τ̂) = 0 for AND particles and m(τ̂) = 1 for OR par-
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ticles. The mean time τm is shown in Fig. 9 as a function of the
total packing fraction. The plot clearly shows the faster relaxation
of OR particles at low packing fraction. At high packing fraction,
the curves are essentially on top of each other, and also agree
with the relaxation for the case when motility and particle color
are decoupled and all particles retain their motility upon colli-
sion. The difference in the relaxation of OR and AND particles
when the internal state is coupled to motility can be easily un-
derstood by noting that for AND rules the density of non-motile
particles grows at a rate ∼ βρ0 controlled entirely by collisions
with other particles. In contrast, for OR rules motile particles can
additionally diffuse due to their motility, hence density variations

over a region ` grow at a higher rate ∼ βρ0 +
v2

0
λ`2 . When interac-

tions only result in color exchange, while particles remain always
motile, then all particles diffuse and the relaxation rates become
identical, as shown in Fig. 9.

B Renormalization of tumbling rate by interactions
In this Appendix we show that the exchange of the particle state
through collisions yields a renormalization of the tumbling rate.
For simplicity, we carry out the calculation for the case of Ac-
tive Brownian Particles (ABP) instead of Run-and-Tumble Parti-
cles (RTP). For ABP interacting with AND logic rules, we show
that the rotational noise Dr is renormalized by interactions to the
value De f f

r = Dr+βρR, where β is the collision rate per unit den-
sity. Correspondingly, for RTP with AND interaction rule the effec-
tive tumbling rate is λe f f = λ +βρR. We also provide an estimate
of the parameter β .

We consider N ABP at positions xn interacting with purely re-
pulsive interactions with an internal state described by sn = ±1
(sn = 1 motile, sn = −1 non-motile) and orientation ûuun. The in-
ternal state variable sn is related to the state variable σ used in
numerical simulations through σn = sn+1

2 . The dynamics is de-
scribed by coupled Langevin-like equations, given by

ẋn =
(1+ sn)

2
v0ûuun , (24)

ṡn =−β ∑
m6=n

(sn +1)δ (sn + sm)δ (xn−xm) , (25)

˙̂uuun =
(1+ sn)

2
ẑzz× ûuun

√
2Drηn(t) . (26)

The right hand side of Eq.(24) describes self-propulsion, which is
zero if sn = −1 (non-motile). The effect of interactions is only
included in Eq.(25), where interactions with non-motile agent
change the motility state of the particle. It is not included in the
translational dynamics that has been considered elsewhere 49.
The factor sn + 1 in Eq.(25) accounts for the sign of the deriva-
tive, which must be negative when switching from +1 to −1. Fi-
nally, Eq.(26) describes the dynamics of the orientation ûuun, with
Dr the rotational diffusivity and ηn(t) Gaussian white noise with
unit variance.

The parameter β can be estimated as β = (ρ0τc)
−1, where ρ0 is

the mean density of particles and τc the mean free time between
collisions. For a system of particles traveling with mean speed
〈v〉 and density ρ0, then τc = (ρ〈v〉σc)

−1, where σc is the collision

cross section, determined by the form of the repulsive potential.
The mean-free path is then `c = 〈v〉τc.

At high density, the mean free path is smaller than the per-
sistence length, `p = v0/Dr, or `c < `p, corresponding to ρ0 >

Dr/(v0σ), particles travel ballistically between collisions, hence
〈v〉= v0. This gives β ∼ v0σc ∼ v0ρ

−1/2
0 where in the last approxi-

mate equality we have assumed that at high density σc ∼ ρ
−1./2
0 .

At low density, `c > `p and particles travel diffusively with dif-

fusion coefficient D0 =
v2

0
2Dr

. This gives β ∼ v0σc, independent of
density. In both limits our estimates are consistent with the results
presented in28.

To derive continuum equations we focus on the dynamics of the
one-particle probability density52, given by

c(r, ûuu,s, t) = 〈δ (r−x(t))δ (ûuu− ûuu(t))δ (s− s(t)) 〉 (27)

that measures the probability of finding a particle with position r,
orientation ûuu and internal state s at time t.

The dynamics of the probability density is governed by a
Smoluchowski equation that can be derived by standard proce-
dure from the Langevin equations Eq.(24) - Eq.(26),53 Due to bi-
nary collisions, the equation for c couples to the two particle dis-
tribution function c2(x, ûuu,s, t;x′, ûuu′,s′, t). Using a Boltzmann-type
of approximation53, we treat the two microscopic densities as
uncorrelated and let c2(x, ûuu,s, t;x′, ûuu′,s′, t)≈ c(x, ûuu,s, t)c(x′, ûuu′,s′, t),
with the result

∂tc =−
1+ s

2
∇∇∇x(v0ûuuc)− (1+ s)2

4
DrR ·Rc

+∂s

(
β (s+1)c(r, ûuu,s, t)

∫
dûuu′c(r, ûuu′,−s, t)

)
, (28)

where R = ûuu× ∂

∂ ûuu is a rotation operator.
We then write the total concentration as the sum of the con-

centrations of motile and non-motile particles cG,R = ∑s
(1±s)

2 c ≈∫
s
(1±s)

2 c and introduce densities ρG,R =
∫

dûuucG,R and the polar
vector J = v0

∫
dûuu ûuucG. We carry out the integrals in s using

Leibnitz rule for functions defined on compact spaces, where∫
ds f (s)∂sg(s) =−

∫
dsg(s)∂s[ f (s)]. Thus we obtain

∂tcG =−∇∇∇r(v0ûuucG)−DrR ·RcG (29)

−βcG(r, ûuu, t)ρR(r, t) ,

∂tcR = βcG(r, ûuu, t)ρR(r, t) . (30)

Finally, integrating Eq.(29) and Eq.(30) over ûuu, we obtain
Eq.(29) and Eq.(30), with the result

∂tρG =−∇∇∇rJ−βρGρR , (31)

∂tρR = βρGρR , (32)

∂tJ =−1
2

∇∇∇r(v2
0ρG)− (Dr +βρR)J . (33)

C Probability distribution of density fields
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The structural properties of the system have been investigated
by looking at the probability distribution function P(φ̂) of local
packing fraction φ̂ obtained discretizing the simulation box into
a lattice of linear size ` = 4a. The transition lines have been
obtained studying the behavior of the binder cumulant g4 as a
function of the control parameters λ and µ. g4 is a continuous
function of the control parameters along a second-order phase
transition, while a negative jump in this quantity typically signals
a first-order phase transition.
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