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Propulsion of an elastic filament in a shear-thinning
fluid at low Reynolds numbers

Ke Qin,a Zhiwei Peng,b Ye Chen,a Herve Nganguia,c Lailai Zhu,d and On Shun Pak∗a

Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via
the interaction of their flexible appendages with the surrounding fluid. While their locomotion have
been extensively studied with a Newtonian fluid assumption, in realistic biological environments
these micro-swimmers invariably encounter rheologically complex fluids. In particular, many bi-
ological fluids such as blood and different types of mucus have shear-thinning viscosities. The
influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers re-
mains largely unknown. Here, we present a first study to examine how shear-thinning rheology
alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at
low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning
rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate
interplay between elastic and viscous forces as well as the magnetic actuation. We also use a
reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propul-
sion observed in different physical regimes. These results and improved understanding could
guide the design of flexible micro-swimmers in non-Newtonian fluids.

1 Introduction
Locomotion of micro-swimmers has attracted considerable at-
tention in the past several decades1–3. These cross-disciplinary
efforts not only lead to a better understanding of cell motil-
ity in various biological processes4–7 but also design prin-
ciples that guide the recent development of artificial micro-
swimmers8–12. These artificial micro-swimmers demonstrate vast
potentials for biomedical applications such as drug delivery and
micro-surgery13–15. A fundamental challenge of swimming at the
microscopic scale is the dominance of viscous over inertial forces.
In this low-Reynolds-number regime, the flow exhibits kinematic
reversibility, which renders reciprocal motion (a deformation with
time-reversal symmetry) ineffective for self-propulsion as stated
by Purcell’s scallop theorem16. For instance, while the periodic
opening and closing motion of a scallop’s shell or flapping mo-
tion of a rigid body are effective macroscopic propulsion strate-
gies, such reciprocal motion cannot generate any net translation
in a purely viscous fluid at the microscopic scale. To escape from
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the constraints by the scallop theorem, some microorganisms ex-
ploit one or more flexible, slender appendages (called flagella)
to produce non-reciprocal deformations along their flagella for
self-propulsion1,4. Inspired by flagellar beating, artificial flex-
ible swimmers consisting of magnetic particles and DNA17,18,
nanowires19,20, hydrogels21, and other polymers22,23 have been
developed. Propulsion of these flexible structures, also known
as elastohydrodynamic propulsion24–34, emerges as a result of
the interplay between hydrodynamic and elastic forces. More re-
cent studies have examined factors such as variable bending stiff-
ness18,35, intrinsic curvatures36–38, and magnetic particle geom-
etry39 to enhance elastohydrodynamic propulsion.

While low-Reynolds-number locomotion is relatively well stud-
ied with a Newtonian fluid assumption, biological and artificial
micro-swimmers invariably encounter complex (non-Newtonian)
fluids in their natural habitats and operating environments. These
biological fluids often display rheological properties such as vis-
coelasticity and shear-thinning viscosity40. While extensive stud-
ied focused on locomotion in viscoelastic fluids41,42, including
the effect of viscoelasticity on flexible swimmers32,43–47, the ef-
fect of shear-thinning rheology has been largely overlooked un-
til more recently. A shear-thinning fluid loses its viscosity with
increased shear rates due to changes in the fluid microstruc-
ture. Various theoretical and experimental models, including
waving sheets48–50, squirmers51,52, rotating helices53,54, nema-
todes55–57, among others51,58–60, have revealed scenarios where
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the swimming speed can increase, decrease, or remain unchanged
in a shear-thinning fluid relative to that in a Newtonian fluid. Al-
though the wide variety of swimmer models considered in pre-
vious studies demonstrate the profound effects of shear-thinning
rheology on locomotion, the shape and swimming gaits of these
swimmers are prescribed and fixed. It remains largely unknown
how shear-thinning rheology affects the performance of flexi-
ble swimmers, whose shapes and gaits are not known a pri-
ori but emerge as a result of fluid-structure interactions. A list
of questions of both fundamental importance and practical sig-
nificance remain unanswered: how does shear-thinning rheol-
ogy affect the shape and gait of an elastic swimmer? Do they
swim faster or slower in a shear-thinning fluid? What are the
mechanisms underlying any enhancement or hindrance of propul-
sion? How should artificial flexible propellers be designed to
maximize its propulsion performance in a shear-thinning fluid?
An improved understanding of elastohydrodynamic propulsion in
shear-thinning fluids will not only guide the design of this major
class of artificial micro-swimmers, but also shed light on how mi-
croorganisms may adapt to rheologically complex fluids by better
exploiting fluid-structure interaction for locomotion.

In this work, we present a first study on the effect of shear-
thinning rheology on elastohydrodynamic propulsion via a sim-
ple yet representative elastic swimmer actuated by an external
magnetic field. We note that shear-thinning rheology can induce
both local and non-local effects on locomotion61. The local effect
corresponds to the reduction of fluid viscosity due to increased
local shear rates, whereas the non-local effect is concerned with
change in the flow field around the swimmer50,53,61. As a first
step, we focus only on the local effect in this work by adopting a
local drag model recently proposed by Riley and Lauga61, which
is effective in capturing the main physical features of swimming
in a shear-thinning fluid. The local drag model is based on the
Carreau constitutive equation40, which was shown to describe
well rheological measurements of various biological fluids such
as blood62,63, bile64, lung and cervical mucus49. We will utilize
this framework to fill in the gap of missing knowledge on elasto-
hydrodynamic propulsion in a shear-thinning fluid.

The paper is organized as follows. In §2 we introduce the
model elastic swimmer and formulate the equations governing
its elastohydrodynamics in a shear-thinning fluid. In §3, we con-
trast the propulsion performance in a Newtonian fluid (§3.1) with
that in a shear-thinning fluid (§3.2). We also use a reduced-order
model in §3.3 to further elucidate the essential physics underly-
ing the observed propulsion characteristics in different physical
regimes. Finally, we conclude this work with remarks on the lim-
itations and future directions in §4.

2 Problem Formulation

2.1 Elastic force

We consider an elastic and inextensible filament of radius a and
length L, and assume the filament to be slender, a� L. The po-
sition vector of a material point of the filament neutral line in
the laboratory frame is denoted as x(s, t), where t represents time
and s ∈ [0,L] is the arclength along the filament. We consider

n t
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Fig. 1 Schematic diagram and notation of a model swimmer consisting
of an elastic filament with a prescribed magnetic moment m at one of its
ends (s = L). Here we examine the effect of shear-thinning rheology on
the propulsion of the elastic swimmer under an external magnetic field B.

the motion of the filament confined in the x-y plane spanned
by the basis vectors ex and ey, with ez = ex× ey. The local unit
tangent and normal vectors along the filament are defined as
t = xs = cosψex + sinψey and n = ez× t, where ψ(s, t) is the an-
gle between the tangent vector t and ex (Fig. 1). The subscript s
here denotes differentiation with respect to the arclength.

We model the elastic filament as an Euler-Bernoulli beam with
an energy functional65,66,

E =
1
2

∫ L

0
Aκ

2ds+
1
2

∫ L

0
σ (xs ·xs−1)ds, (1)

where A is the bending stiffness, κ = xss ·n = ψs is the local cur-
vature, and σ(s, t) is the Lagrange multiplier enforcing the local
inextensibility condition, xs ·xs = 1. The elastic force density along
the filament is obtained by a variational derivative,

fe =−δE /δx =−∂s[Aκsn− τt], (2)

where τ = σ +Aκ2 represents the tensile force along the filament.
The elastic force density emerging in both normal and tangen-
tial directions acts to restore the deformed filament into its unde-
formed configuration (i.e., a straight filament). We remark that
both bending and inextensibility of the filament contribute to the
normal and tensile elastic force25,65,66. As a first step, we con-
sider in this work the Euler-Bernoulli beam theory, which does
not account for shear and is expected to be less accurate with
large bending displacement. Other geometrically nonlinear rod
theories that allow for large displacements (e.g., Kirchhoff’s rod
theory) or other modes of deformation (e.g., Cosserat-type rod
theories)67,68 may be used to extend the present model.

2.2 Fluid force

At low Reynolds number, the hydrodynamic force density along a
slender filament fh depends only on the local velocity u in a New-
tonian fluid to leading order as described by the local resistive
force theory (RFT)69,70. Riley and Lauga61 proposed a modified
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RFT for locomotion of slender bodies in a shear-thinning fluid as

fh =−RC

(
ξ⊥nn+ξ‖tt

)
·u, (3)

where u = xt , and ξ‖ = 2πη0/[ln(L/a) − 1/2] and ξ⊥ =

4πη0/[ln(L/a)+ 1/2] are given by classical RFT results in a New-
tonian fluid with dynamic viscosity η0. Here RC is a correction
factor accounting for the local shear-thinning effect based on the
Carreau constitutive model40,61

RC = [1+(λC γ̇avg)
2](n−1)/2, (4)

where 1/λC represents a critical shear rate beyond which the non-
Newtonian behavior becomes significant, n is the shear-thinning
index, and the local average shear rate γ̇avg is given by

γ̇avg =

√
ξ 2
⊥u2
⊥+2ξ 2

‖ u2
‖

2
√

2aπη0
. (5)

In general, the tangential (u‖ = u · t) and normal (u⊥ = u ·n) ve-
locity components and hence the local shear rate vary along a de-
forming filament. The hydrodynamic force density fh is therefore
modified by the spatially and temporally varying correction fac-
tor RC. Riley and Lauga61 showed that such modifications cause
undulatory swimmers with a prescribed shape to swim slower in
a shear-thinning fluid than in a Newtonian fluid. Here we adopt
the modified RFT to examine the effect of shear-thinning rheol-
ogy on the propulsion of a flexible filament, whose shapes are not
known a priori but emerge as a result of the interaction between
the deforming filament and its surrounding fluid.

2.3 Force balance

Neglecting the inertia of the filament and its surrounding
fluid, there is a local balance between the viscous and elas-
tic forces, fh + fe = 0. The force balance can be inverted as
xt =

[
nn/(RCξ⊥)+ tt/(RCξ‖)

]
· fe, which in terms of the angle for-

mulation is given by

xt =
1

RCξ⊥
(−Aψsss +ψsτ)n+

1
RCξ‖

(Aψsψss + τs)t. (6)

Differentiating Eq. (6) with respect to the arc-length s, together
with the local inextensibility condition, the normal and tangential
components of the resulting equation are, respectively, given by

ψt =
1

ξ⊥
∂s

[
1

RC
(−Aψsss +ψsτ)

]
+

1
RCξ‖

(
Aψ

2
s ψss +ψsτs

)
, (7)

0 =
1

RCξ⊥
(Aψsψsss−ψ

2
s τ)+

1
ξ‖

∂s

[
1

RC
(Aψsψss + τs)

]
, (8)

which can be solved for the tangent angle ψ(s, t) and tensile
force τ(s, t). Here the shear-thinning correction factor RC de-
pends on the local velocity components based on Eqs. (4) and
(5). Since u = xt , the local velocity components can be expressed
via Eq. (18) as

u‖ =
1

RCξ‖
(Aψsψss + τs), u⊥ =

1
RCξ⊥

(−Aψsss +ψsτ), (9)

in terms of RC(u‖,u⊥), which depends also on the local velocity
components. The correction factor RC therefore can be deter-
mined implicitly as part of the solution to the coupled system of
equations above. In the Newtonian limit (RC = 1) the above cou-
pled nonlinear partial differential equations reduce to the govern-
ing equations in the Stokesian limit18.

2.4 Magnetic actuation

To actuate the swimmer magnetically, we impose a typical exter-
nal magnetic field B = Bxex + By sinωtey = bex + bλ sinωtey em-
ployed in previous studies17,71–73. The magnetic field consists
of a homogeneous static field of strength b in the x-direction
and a sinusoidal field of amplitude bλ and frequency ω in the
y-direction; here λ = By/Bx compares the magnitude of the si-
nusoidal field to that of the homogeneous static field. The re-
sulting uniform magnetic field B therefore oscillates around the
x-axis. We consider a simple model swimmer consisting of an
elastic filament with a magnetic moment m = m t(s = L, t) of
strength m prescribed at the right end of the filament in the tan-
gential direction (see Fig. 1 for the setup), where t(s = L, t) =
cosψ(s = L, t)ex + sinψ(s = L, t)ey. The uniform external mag-
netic field thus exerts no net force but a magnetic torque Tm =

m×B = T mez = mb [λ cosψ(s = L, t)sinωt− sinψ(s = L, t)]ez at the
right end (s = L) of the filament, whose boundary conditions are
given by

Fext(L, t) = τ(L, t)t−Aψss(L, t)n = 0, (10)

Text(L, t) = Aψs(L, t) = T m. (11)

At the other end (s = 0), the filament is free of force and torque:

Fext(0, t) =−τ(0, t)t+Aψss(0, t)n = 0,

Text(0, t) =−Aψs(0, t) = 0. (12)

2.5 Non-dimensionalization

We non-dimensionalize lengths by L, time by 1/ω, and forces by
L2ξ⊥ω. We use the same notations for the corresponding dimen-
sionless variables but with tildes ( ˜ ). The governing equations,
Eqs. (7) and (8), in dimensionless forms are given by

Sp4
ψt̃ = ∂s̃

[
1

RC
(−ψs̃s̃s̃ +Sp4

ψs̃τ̃)

]
+

γ

RC
(ψ2

s̃ ψs̃s̃ +Sp4
ψs̃τ̃s̃), (13)

0 =
1

RC
(ψs̃ψs̃s̃s̃−Sp4

ψ
2
s̃ τ̃)+ γ∂s̃

[
1

RC
(ψs̃ψs̃s̃ +Sp4

τ̃s̃)

]
, (14)

where

RC =
(

1+Cu2 ˜̇γ2
avg

)(n−1)/2
. (15)

Here Sp = L(ξ⊥ω/A)1/4 is the sperm number comparing the mag-
nitude of the viscous to elastic forces, Cu = ωλC is the Carreau
number comparing the actuation rate ω with the critical shear
rate 1/λC, and γ = ξ⊥/ξ‖ is the drag anisotropy ratio. As a remark,
the modified RFT in a shear-thinning fluid is valid for fluids with
sufficiently large critical shear rates (1/λC) in order to be consis-
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Fig. 2 Propulsion of a magnetically-driven elastic filament in a shear-thinning fluid under a relatively strong [M = 1, panels (a)–(c)] and weak [M = 0.02,
panels (d)–(f)] magnetic torques with λ = 1. (a) & (d): Average propulsion speed 〈V 〉 of the filament as a function of the sperm number (Sp) for
varying Carreau number (Cu). The numerical results based on finite element method (FEM) simulations are compared against the results based on
the multi-link model (see Appendix) with 100 links in the Newtonian limit (gray inverted triangles). Insets in (a) display filament deformations over one
actuation period T = 2π at equal time intervals (T/4) in the Newtonian limit at various Sp. While the filament generally propels slower in a shear-thinning
fluid at most Sp under a strong magnetic torque [M = 1, panel (a)], a small enhancement in propulsion speed can also occur under a relatively weak
magnetic torque [M = 0.02, panel (d)]. (b) & (e): filament deformations over one actuation period T = 2π at equal time intervals (T/4) in Newtonian and
shear-thinning fluids at different Sp; the intensity of color increases as time advances. (c) & (f): the trajectory of the filament’s actuated end in Newtonian
(solid black, Cu = 0) and shear-thinning (solid green, Cu = 0.1) fluids at Sp = 2 in the first six periods. We set a/L = 1/1000 and a shear-thinning index
n = 0.25 in all simulations in this work.

tent with the local nature of the model. We therefore confine our
studies only to the dynamics in the low Carreau number regime
(Cu ≤ 0.1) in this work. Considering an artificial flexible swim-
mer with an actuation frequency of O(1 Hz)43, a Cu of 0.1 limits
the shear-thinning time scale λC to be O(0.01 s). In practice, we
expect Cu to be O(1) or higher, given larger actuation frequency
and λC (e.g., λC can range from a tenth of a second to seconds for
blood62,63 or larger for other biological fluids49,64). Neverthe-
less, in the same spirit of other low Cu analyses49,61,74,75, results
in the low Cu regime will reveal the first effects of shear-thinning
rheology assuming small departures from the Newtonian limit.
The physical insights and qualitative features obtained may be
useful in interpreting results at higher Cu as suggested by recent
studies50,52,54.

At the actuated end (s̃ = 1), the dimensionless boundary condi-

tions for ψ and τ̃ are given by

ψs̃(1, t̃) = MSp4 [λ cosψ(1, t̃)sin t̃− sinψ(1, t̃)] ,

ψs̃s̃(1, t̃) = 0, τ̃(1, t̃) = 0, (16)

where M = mb/(L3ξ⊥ω) compares the magnetic to viscous
torques. For instance, a typical magnetic torque in previous ex-
periments with magnetic nanowire swimmers19,20 is given by
mb = Msa2

mπLmb, where Ms = 485× 103 A/m is the spontaneous
magnetization of Ni, am = 100 nm and Lm = 2 µm are, respectively,
the radius and length of the Ni segment, and b = O(1 mT) is the
magnetic field strength. The characteristic viscous torque acting
on the elastic filament is given by L3ξ⊥ω, where η0 = 10−3 Pa · s,
a = 50 nm and L = 4 µm. With an actuation frequency f of
O(1 Hz)–O(10 Hz), M is typically of O(1) or higher. The value
of M can vary substantially depending on the applied magnetic
field strength b, but a relatively strong magnetic field (M ≥ 1) is
typically applied such that the magnetic segment can follow the
magnetic field synchronously [see also Fig. 3(b) in later discus-
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sion].
The dimensionless boundary conditions at the free end (s̃ = 0)

are given by

ψs̃(0, t̃) = 0, ψs̃s̃(0, t̃) = 0,

τ̃(0, t̃) = 0. (17)

Hereafter we drop the tildes for simplicity and only work with
dimensionless variables unless otherwise stated.

We solve the coupled system of nonlinear partial differential
equations, Eqs. (13)–(15), subject to the boundary conditions,
Eqs. (16)–(17) numerically. The numerical simulations are con-
ducted by a finite element method (FEM) based on COMSOL Mul-
tiphysics. A backward differentiation formulation is used for time
marching the equations. We use 50 to 100 seventh-order Hermite
elements to discretize the filament depending on the value of Sp,
and a direct solver for solving the linear systems. The computa-
tional model are cross-validated against results in the Newtonian
limit (Cu = 0) based on a multi-link framework (see §3.1 and Ap-
pendix for details).

3 Results and Discussion
In this section, we will first discuss the propulsion characteristics
of the magnetically actuated flexible filament in a Newtonian fluid
(§3.1). In §3.2, we examine how shear-thinning rheology affects
the propulsion performance depending on relevant dimensionless
groups. Finally, we use a reduced-order model to further eluci-
date mechanism underlying the observed propulsion behaviors in
§3.3.

3.1 Elastohydrodynamic propulsion in a Newtonian fluid

The displacement and shape of the filament x(s, t) = x(0, t) +∫ s
0 [cosψ(s′, t),sinψ(s′, t)]ds′ can be obtained from the solution for

ψ(s, t) determined in §2. We characterize the propulsion per-
formance of the filament by an average swimming speed 〈V 〉 =
|∆x|/(2π), defined as the magnitude of the filament’s mid-point
(s = 1/2) displacement ∆x = x(1/2, t0 +2π)−x(1/2, t0) in a period
of actuation (2π) divided by the period, where t0 is a sufficiently
large time chosen in each simulation such that the displacement
per period ∆x has approached a steady state. First, we examine
the elastohydrodynamic propulsion performance of the filament
in a Newtonian fluid (Cu = 0) at different regimes of Sp in Fig. 2.
The numerical results based on FEM (black triangles) are com-
pared against the results based on a multi-link model (gray in-
verted triangles; see Appendix); the results by these two different
approaches display excellent agreements.

The dynamics of a flexible filament in a Newtonian fluid in
different regimes of Sp has been characterized in previous stud-
ies17,19,24,29,76. Despite differences in various configurations, the
elastohydrodynamic propulsion mechanisms display similar gen-
eral characteristics as a function of Sp. We illustrate these char-
acteristics with our model swimmer: at low Sp (e.g., Sp=0.5),
the filament is relatively too stiff to undergo significant deforma-
tion along the filament; the filament thus behaves largely like a
rigid rod performing reciprocal motion [inset, Fig. 2(a)], which

leads to ineffective propulsion as constrained by the scallop theo-
rem. As Sp increases, the deformation of the filament enhances its
propulsion speed, which reaches a maximum at Sp≈2.4 [see the
corresponding filament deformations in Fig. 2(a) inset]. At ex-
ceedingly large Sp (e.g., Sp=10), the filament becomes too soft
and hence the deformation is largely localized around the actu-
ated end, as shown in the inset [Fig. 2(a)]; here a large portion of
the filament remains horizontal throughout the actuation, which
leads to minimal propulsion. A typical swimming trajectory of
the filament at Sp = 2 is shown in Fig. 2(c) for the Newtonian
case (Cu = 0, black solid line). The filament follows an oscillatory
trajectory with net translation in the x-direction.

As a remark, the filament becomes effectively more flexible as
Sp increases, which could lead to large deformations that may not
be captured quantitatively by the Euler-Bernoulli beam model.
Although previous predictions based on the beam model show
quantitative agreements with experimental measurements over
the experimentally relevant range of of Sp17,19,76, future inves-
tigations based on geometrically nonlinear rod theories can be
considered to address these limitations67,68.

3.2 Elastohydrodynamic propulsion in a shear-thinning
fluid

We next examine how shear-thinning rheology affects the propul-
sion of the same elastic filament. When the fluid becomes shear-
thinning, local shear-thinning effect can impact propulsion per-
formance via two different mechanisms. First, given the same
shapes and gaits of a swimmer, local viscosity reduction can still
modify the drag and thrust by different amount, resulting in dif-
ferent propulsion speed. Such effect was shown to cause undula-
tory swimmers with prescribed shapes and gaits to swim slower
in a shear-thinning fluid than in a Newtonian fluid61. The second
mechanism, specific to deformable swimmers, is the modification
of the shape and gait of the swimmer induced by shear-thinning
rheology. Unlike swimmers with prescribed shapes and gaits, the
shape and gait of a flexible swimmer are not known a priori but
emerge from the interaction between the elastic structure and its
surrounding fluid. The shear-thinning viscosity modifies the fluid-
structure interaction along the elastic structure (in a non-uniform
manner generally) and hence the propulsion performance of the
swimmer. In Fig. 2, we depart from the Newtonian limit (Cu = 0)
by increasing the value of Cu to probe the effect of shear-thinning
rheology on the propulsion speed of the magnetically actuated fil-
ament. The propulsion speed as a function of Sp at varying values
of Cu is shown in Figs. 2(a) and (d) under, respectively, relatively
strong and weak magnetic torques, M.

Under a relatively strong magnetic torque (e.g., M = 1), the
propulsion speed generally decreases as the fluid becomes shear-
thinning (increasing value of Cu) at most Sp, as shown in
Fig. 2(a). The reduction is more substantial at lower Sp (e.g.,
Sp = 2). Although shear-thinning rheology was shown to re-
duce the swimming speed for undulatory swimmers of prescribed
shapes previously61, the mechanism underlying the observed re-
duction here is more complex, because shear-thinning rheology
also alters the shape and gait of the swimmer. We visualize the
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shape of the filament at different time instances in Fig. 2(b), con-
trasting the deformation in a Newtonian fluid (Cu = 0) with that
in shear-thinning fluid (Cu= 0.1). At Sp=2, it is apparent that the
filament displays less deformation in a shear-thinning fluid than
in a Newtonian fluid. In Fig. 2(c), we also compare the swimming
trajectories of the filament in a Newtonian (solid black line) and
shear-thinning (solid green line) fluids at Sp = 2. While the os-
cillatory trajectories display similar amplitudes in the y-direction,
the net translation in the x-direction is substantially reduced at
this Sp.

Although the elastic filament generally propels slower in a
shear-thinning fluid under a relatively strong magnetic torque
in Fig. 2(a)–(c), we demonstrate in Fig. 2(d)–(f) that shear-
thinning rheology can also enhance propulsion under weaker
magnetic torques (e.g., M = 0.02). As shown in Fig. 2(d), whether
shear-thinning rheology enhances or hinders propulsion also de-
pends on the value of Sp. At lower Sp (e.g., Sp . 3), enhanced
propulsion in a shear-thinning fluid is observed, whereas hin-
dered propulsion occurs at higher Sp. Similar to the results in
Fig. 2(b), we visualize the shape of the filament at different time
instants in a Newtonian and shear-thinning fluids in Fig. 2(e). At
Sp = 2, it is apparent that the filament displays a greater range
of angular movements in a shear-thinning fluid than in a Newto-
nian fluid. We also contrast the swimming trajectory at Sp=2 in
a Newtonian fluid (solid black line) with that in a shear-thinning
fluid (solid green line) in Fig. 2(f). Unlike the trajectories under a
relatively strong magnetic torque in Fig. 2(c), which display simi-
lar oscillatory amplitudes, the trajectory of the filament in a shear-
thinning fluid has a substantially larger amplitude compared with
that in a Newtonian fluid under a relatively weak magnetic torque
in Fig. 2(f).

Taken together, shear-thinning rheology can either increase or
decrease the propulsion speed of a flexible swimmer, depending
on the specific values of M and Sp. This is unlike the case of
undulatory swimmers with prescribed gaits in a shear-thinning
fluid61, where the swimming speeds are systematically lowered.
Our observations here thus highlight the effect of gait changes
of a flexible swimmer in a shear-thinning fluid (i.e., the second
mechanism referred to above) on the propulsion performance.
We will further elucidate these results with the use of a reduced-
order model in §3.3.

3.3 Reduced-order modeling: A two-link model

To better unravel the essential physics underlying elastohydrody-
namic propulsion in a shear-thinning fluid, we seek a minimal
model reproducing the enhanced and hindered propulsion per-
formance observed in §3.2. Specifically, we replace the elastic
filament by two rigid links (each of length L/2) connected by a
torsional spring with an elastic spring constant k [see Fig. 3(a) for
the setup]73,77. We specify the position of the i-th link (i= 1,2) by
the position vector of its left end xi = xiex+yiey and its orientation
by the angle θi made between its tangent ti = cosθiex+sinθiey and
ex. The position of any point on the i-th link can then be simply
given by Xi(s, t) = xi + sti, where s ∈ [0,L/2] is the length along
each link. Similar to the original setup (Fig. 1), the same mag-

netic moment m is prescribed at the right end of link 2 and the
left end of link 1 is free of force and torque. Under the same
external magnetic field B, we probe the propulsion characteristic
of this minimal elastic swimmer in a shear-thinning fluid in this
section.

We consistently use the same non-dimensionalizations de-
scribed in §2.5 to scale lengths, time, and forces in this reduced-
order model. Hereafter we shall work with dimensionless vari-
ables only while adopting the same notations for their dimension-
less counterparts for convenience. Instead of Sp for a continuous
elastic filament, a dimensionless spring constant K = k/(L3ξ⊥ω),
which compares the elastic to viscous torques, emerges in this
two-link model. Here we note that the dimensionless spring con-
stant K here plays a physically similar (but inverse) role as Sp
in a continuous filament in Fig. 2. The dynamics of the two-link
swimmer is governed by the balance of forces,

Fh
1 +Fh

2 = 0, (18)

and torques (only non-zero in the z-direction),

Th
1,1 +Th

2,1 +Tm = 0, (19)

of the overall swimmer, together with the torque balance on the
actuated link (link 2),

Th
2,2 +Te +Tm = 0. (20)

Here Tm = M(λ cosθ2 sin t − sinθ2)ez is the external magnetic
torque, Fh

i =
∫ 1/2

0 fh(Xi)ds is the hydrodynamic force acting on

the i-th link, Th
i, j =

∫ 1/2
0 (Xi− x j)× fh(Xi)ds is the hydrodynamic

torque generated by the i-th link about the left end of the j-th
link (x j), and Te = −K∆θez is the elastic torque from the tor-
sional spring. With the kinematic constraints x2 = x1 +(cosθ1)/2
and y2 = y1 +(sinθ1)/2, the system of four scalar first-order dif-
ferential equations (Eqs. 18–20) are solved numerically for four
unknowns x1(t), y1(t), θ1(t), and θ2(t), which completely describe
the position and shape of the two-link swimmer in time.

The distinct effects of shear-thinning rheology on propulsion
performance under strong and weak magnetic torques revealed
in Fig. 2 can be better understood by examining the response of
the two-link swimmer to the magnetic actuation. In this two-link
model [Fig. 3(a)], the actuation comes from link 2 attempting to
follow the external magnetic field (characterized by the angle θ2),
whereas link 1 responds elastically to the actuation via the tor-
sional spring (characterized by the relative angle ∆θ = θ2− θ1).
The propulsion behavior of the two-link swimmer can be de-
scribed in terms of the amplitude of the angles θ̂2 = max(θ2)

and ∆̂θ = max(∆θ). Therefore, understanding the effect of shear-
thinning rheology on elastohydrodynamic propulsion can be re-
duced to elucidating how θ̂2 and ∆̂θ are modified in a shear-
thinning fluid in various scenarios.

The maximum angle θ̂2 spanned by the actuated link (link 2)
under the oscillating magnetic field largely depends on the rel-
ative strength of the magnetic torque, M. We first examine this
dependence in a Newtonian fluid in Fig. 3(b). At low M, the am-
plitude θ̂2 increases with M before leveling off to the maximum
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Fig. 3 Reduced-order modeling of elastohydrodynamic propulsion. (a) The elastic filament in Fig. 1 is represented by a minimal model consisting of
two rigid links connected by a torsional spring. (b) The amplitude of the angle of the actuated link (link 2), θ̂2, as a function of the relative strength of
the magnetic torque, M, at different values of λ = By/Bx in a Newtonian fluid with K = 0.1. The amplitude θ̂2 increases with M before leveling off to the
maximum value tan−1 λ set by the external magnetic field at larger values of M. (c) & (d): the shape of the two-link swimmer over one actuation period
T = 2π at equal time intervals (T/4) in a Newtonian fluid; the intensity of color increases as time advances. The dotted lines in (c) & (d) represent the
external magnetic field B and the angle spanned by its oscillation for λ = 1. At low M [e.g., M = 0.02 in (c)], the actuated link spans an angle smaller
than that spanned by the external magnetic field, θ̂2 < tan−1 λ = π/4. At a large M [e.g., M = 1 in (d)], the actuated link follows closely the external
magnetic field and attains the same angle spanned by the external magnetic field, θ̂2 ≈ tan−1 λ = π/4.

angle (tan−1 λ) set by the external magnetic field (λ = By/Bx) at
large M ≥ 1. For instance, Fig. 3(c) displays the time evolution
of a two-link swimmer under a weak magnetic torque (M = 0.02
and λ = 1), where the actuated link spans an angle much smaller
than tan−1 λ = π/4; essentially, the magnetic torque is relatively
too weak to actuate the link fast enough to follow closely the os-
cillatory magnetic field. On the other hand, when the magnetic
torque is relatively strong (e.g., M ≥ 1), the actuated link fol-
lows the magnetic field almost synchronously, spanning the max-
imum angle θ̂2 ≈ tan−1 λ = π/4 as shown in Fig. 3(d); in this syn-
chronous regime, further increase in the strength of the magnetic
torque M has little effect on the dynamics of the actuated link
and hence that of the swimmer. The difference in the dynamics
of the actuated link under relatively weak and strong magnetic
torques is crucial in understanding the hindered and enhanced
propulsion observed in a shear-thinning fluid. We next discuss
how shear-thinning rheology modifies the propulsion of the two-
link swimmer under relatively weak and strong magnetic torques
in terms of θ̂2 and ∆̂θ and compare the results with that for a
continuous filament in Fig. 2.

3.3.1 Propulsion at large M. Under a relatively strong mag-
netic torque (e.g., M = 1), shear-thinning rheology generally re-

duces the propulsion speed of the two-link swimmer at most K as
shown in Fig. 4(a), similar to the results for a continuous filament
in Fig. 2(a). First, we examine how shear-thinning rheology alters
the gaits (characterized by θ̂2 and ∆̂θ) and hence the propulsion
speed of a two-link swimmer. At large M, due to the dominance of
the magnetic actuation on the dynamics of the actuated link, re-
duced viscous torques in a shear-thinning fluid has little influence
on the actuation angle θ̂2 [Fig. 4(b)]. The actuated link spans
approximately the same maximum angle θ̂2 = tan−1 λ = π/4 dic-
tated by the external magnetic field (λ = By/Bx = 1) at different
values of Cu. Modifications on the swimming gait in this large-
M regime therefore stem only from changes in the relative angle
∆̂θ in a shear-thinning fluid [inset, Fig. 4(b)]. As Cu increases,
the shear-thinning viscosity reduces the viscous torque; a smaller
elastic torque is thus required to balance the viscous torque, lead-
ing to a reduced amplitude of the relative angle ∆̂θ . The effect is
analogous to a further increase in the spring constant K. The two-
link swimmer hence behaves increasingly more like a rigid rod in
a shear-thinning fluid as Cu increases [Fig. 4(c), K = 0.1], which
acts to hinder propulsion. The same mechanism contributes to
the decrease in propulsion speed for a continuous filament at high
M [Fig. 2(a)], where shear-thinning rheology reduces the defor-
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Fig. 4 Propulsion of a magnetically-driven two-link swimmer in a shear-thinning fluid under relatively strong [M = 1, panels (a)–(c)] and weak [M = 0.02,
panels (d)–(f)] magnetic torques with λ = 1. (a) & (d): Average propulsion speed 〈V 〉 of the swimmer as a function of the dimensionless spring constant
(K) for varying Carreau number (Cu). Insets in (a) display the shape of the swimmer over one actuation period T = 2π at equal time intervals (T/4) in
the Newtonian limit at various K. We remark that K of a two-link swimmer plays a physically similar (but inverse) role as Sp of a continuous filament in
Fig. 2. Similar to the results for a continuous filament, while the two-link swimmer generally propels slower in a shear-thinning fluid under a relatively
strong magnetic torque [M = 1, panel (a)], enhanced propulsion can also occur under a relatively weak magnetic torque [M = 0.02, panel (d)]. (b) &
(e): The amplitude of the actuated link’s angle (θ̂2) and that of the relative angle (∆̂θ ; insets) as a function of K at varying Cu. (c) & (f): the shape of
the swimmer over one actuation period T = 2π at equal time intervals (T/4) in Newtonian and shear-thinning fluids at different K; the intensity of color
increases as time advances.

mation along the filament owning to reduced viscous forces [see
Fig. 2(a) & (b)]. As a remark, even without any shape changes,
an undulatory swimmer with the same gaits can swim slower in a
shear-thinning fluid, because thrust is reduced to a larger extent
than drag for undulatory swimmers61. This latter effect com-
bines with the effect due to gait changes to significantly reduce
the propulsion performance at larger values of K in Fig. 4(a) [or
smaller values of Sp in Fig. 2(a)]. On the other hand, at smaller
values of K (e.g., K = 0.01), propulsion is relatively ineffective in
the Newtonian limit due to the dominance of viscous over elastic
responses on the dynamics of link 1. In this regime, the reduc-
tion in the viscous effect caused by shear-thinning rheology in-
deed allows more effective swimming gaits to emerge (the effect
is analogous to an increased K). The two mechanisms, which act
in tandem to hinder propulsion at large K, now counter-act and
lead to less significant changes in the overall propulsion perfor-
mance overall in the small K (or large Sp) regime.

3.3.2 Propulsion at small M. The propulsion performance of
the two-link swimmer is modified by shear-thinning rheology in a
qualitatively different manner at small M [Fig. 4(d)], where en-

hanced propulsion can occur. We attribute the difference to the
distinct ways shear-thinning rheology alters the swimming gaits
at small and large M [compare Figs. 4(b) & (e)]. While θ̂2 at
large M always attains the maximum angle tan−1 λ = π/4 allowed
by the external magnetic field, the actuated link spans angles that
are considerably smaller (θ̂2� π/4) under a relatively weak mag-
netic torque (e.g., M = 0.02). The viscous effect dominates the
dynamics of the actuated link in this regime and limits the ampli-
tude of its angular movements, θ̂2. When the fluid becomes shear-
thinning, the reduced viscous effect on the actuated link allows
the link to span larger angles θ̂2 as Cu increases [Fig. 4(e)]. We ar-
gue that this increased angle of actuation [apparent in the visual-
izations shown in Fig. 4(f) at K = 0.1], induced by shear-thinning
rheology at small M, is responsible for the enhanced propulsion
observed in Fig. 4(d). A similar effect is at play for a continuous
filament actuated with a small M [Fig. 2(e), Sp = 2], where the
filament’s actuated (right) end displays increased amplitude and
hence propulsion speed in a shear-thinning fluid [Fig. 2(d)]. We
remark that the increase in actuation amplitude becomes less sig-
nificant at lower values of K (or higher Sp); in this regime, the
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other shear-thinning effect unrelated to gait changes but a greater
reduction in thrust than drag for undulatory swimmers61, which
acts to hinder propulsion, may become more important. A reduc-
tion in propulsion speed is apparent for a continuous filament at
high Sp in Fig. 2(d).

We summarize the essential physical pictures at large (§3.3.1)
and small (§3.3.2) M as follows. Via the two-link model, we
reduce the description of a flexible swimmer into two portions:
the portion responsible for actuation (link 2) and the portion
responsible for the elastic response (link 1). Under a relatively
small magnetic torque (M � 1), the amplitude of actuation is
suppressed by excessively large viscous effects on the actuated
portion. Here shear-thinning rheology enables a larger amplitude
of actuation (θ̂2) by reducing the viscous effect, which leads to
enhanced propulsion in this regime. In contrast, under a rela-
tively strong magnetic torque (M ≥ 1), the actuated portion al-
ready maximizes the amplitude of actuation allowed by the mag-
netic field; shear-thinning rheology hence alters the swimming
gait only via changes in the relative angle (∆̂θ). Shear-thinning
rheology generally reduces ∆̂θ because a smaller elastic torque
is required to balance the reduced viscous torque in a shear-
thinning fluid. At higher values of K, a reduced ∆̂θ renders the
two-link swimmer to behave more like a rigid rod with hindered
propulsion performance. On the other hand, at smaller values
of K, a reduced ∆̂θ could act to enhance propulsion by allow-
ing the two-link swimmer to deviate from relatively ineffective
gaits in a Newtonian fluid in this regime. Overall, while these
gait changes induced by shear-thinning rheology affect propul-
sion, we also note that, even without inducing any gait changes,
shear-thinning rheology can also hinder propulsion of undulatory
swimmers by reducing the thrust more than drag61. This later
effect can act in tandem or counter-act with the effect due to gait
changes to enhance or hinder propulsion by varying extents in
different physical regimes. Taken together, the physical picture
presented here captures qualitatively the behaviors observed for
a continuous filament.

4 Concluding Remarks
Unlike previous studies on locomotion in shear-thinning fluids
with prescribed swimming gaits, the shapes of an elastic swim-
mer are not known a priori but emerge due to the interplay of
the deforming body and its surrounding fluid. In this work, we
present a first study to elucidate how shear-thinning rheology
affects elastohydrodynamic propulsion at low Reynolds number.
Via a simple model consisting of an elastic filament actuated by
an external magnetic field, we demonstrate that such an elasto-
hydrodynamic swimmer can propel either faster or slower in a
shear-thinning fluid than in a Newtonian fluid in different phys-
ical regimes characterized by M and Sp. To complement results
for a continuous filament, we also use a two-link model to repro-
duce and interpret the observed hindered (enhanced) propulsion
under relatively strong (weak) magnetic torques. Our results also
show that when a relatively strong magnetic torque is used in
practice, the optimal Sp maximizing the propulsion performance
increases with Cu. These findings call for future experimental
investigations of magnetic flexible propellers in shear-thinning

fluids. In addition, future works incorporating various motor-
coordination schemes78,79 into the current elastohydrodynamic
framework may also shed light on cell motility in biological fluids
displaying shear-thinning viscosity.

We discuss several limitations in this work, which provide di-
rections for subsequent studies. First, as a first step we consider
a local drag model here and therefore only account for the local
shear-thinning effect. This also confines the validity of our re-
sults to the small Carreau number regime to be consistent with
the local nature of the model61. The change in the flow field
due to non-local shear-thinning effects and non-local hydrody-
namic interactions remains to be investigated. Second, for sim-
plicity we prescribe a magnetic moment at one of the filament’s
end as a minimal model of a magnetic swimmer in this work.
We have therefore ignored the hydrodynamic effect of the mag-
netic head geometry, which is another design parameter for op-
timizing the propulsion performance of magnetic swimmers39.
Finally, we remark that magnetic actuation is considered here for
its common use as an actuation mechanism for artificial micro-
swimmers80,81. The same framework can be employed to con-
sider other types of boundary or distributed actuation that are
more relevant to biological swimmers25,82–84. We believe the es-
sential physical pictures discussed in this work could still be gen-
erally useful in interpreting the effect of shear-thinning rheology
in other swimmer configurations.

A Appendix: Multi-link model
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x3

✓1

✓3

✓N

Fig. 5 Schematic diagram illustrating a multi-link discretization of an elas-
tic filament and notations.

In this appendix, we consider a framework based on a multi-
link discretization85–87 of an elastic filament. We use the results
from this multi-link model to cross-validate the numerical solu-
tions obtained by the FEM described in §2.5 in the Newtonian
limit [gray inverted triangles in Fig. 2(a) & (d)]. The multi-link
model may also be considered as a logical extension of the two-
link model considered in §3.3. In this multi-link model, an elastic
filament of length L is discretized by a chain of N rigid links of
equal length ` = L/N (Fig. 5). These links are serially connected
together by N−1 torsional springs with the same spring constant
k. Similar to the two-link model in §3.3, the position of the i-th
link (i = 1,2, ...,N) is specified by the position vector of its left end
xi = xiex+yiey, and its orientation is specified by the angle θi made
between its unit tangent ti = cosθiex + sinθiey and ex. The posi-
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tion vector along the i-th link is therefore given by Xi = xi + sti,
where the archlength s ∈ [0, `]. Similar to the continuous case,
the unit normal is given by ni = ez× ti. The discretization follows
kinematic constraints given by xi+1 = xi+[`cosθi, `sinθi] between
successive links. The description of hydrodynamic force on the
i-th link follows the same form in the two-link swimmer as

Fh
i =

∫ `

0
fh(Xi)ds, (21)

where fh is the hydrodynamic force density given by the resistive
force theory (Eq. 3). Similarly, the hydrodynamic torque on the
i-th link about x j follows the same form in the two-link swimmer
as

Th
i, j =

∫ `

0
(Xi−x j)× fh(Xi)ds. (22)

The dynamics of the multi-link model is governed by the overall
balance of force

N

∑
i=1

Fh
i = 0, (23)

and torque

N

∑
i=1

Th
i,1 +Tm = 0, (24)

of the N-link assembly, as well as the torque balances on the as-
sembly minus the n-th link (n = 1, ...,N−1)

N

∑
i=n+1

Th
i,n+1 +Te

n +Tm = 0. (25)

Here the elastic torque by the torsional spring Te
n = −k(θn+1 −

θn)ez and the magnetic torque Tm = mb[λ cosθN sinωt − sinθN ]ez

acts on the right end of the N-link. These force and torque bal-
ances together with the kinematic constraints between successive
links form a system of first-order ordinary differential equations
that can be solved numerically to determine the unknowns xi and
θi. The spring constant in the multi-link model k = A/(L/N) can
be adjusted to represent an elastic filament with bending stiffness
A86,87. For a sufficiently large number of links [e.g., N = 100 in
Fig. 2(a) & (d)], results from the N-link model display excellent
agreements with results from FEM simulations. As a remark, the
multi-link model may also be relevant to modeling the dynamics
of a single polymer/DNA when intrachain hydrodynamic interac-
tions are weak88–90.
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