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Predicting the Characteristics of Defect Transitions on Curved
Surfaces†

Siddhansh Agarwal and Sascha Hilgenfeldt∗

The energetically optimal position of lattice defects on intrinsically curved surfaces is a complex
function of shape parameters. For open surfaces, a simple condition predicts the critical size for which
a central disclination yields lower energy than a boundary disclination. In practice, this transition
is modified by activation energies or more favorable intermediate defect positions. Here it is shown
that these transition characteristics (continuous or discontinuous, first or second order) can also
be inferred from analytical, general criteria evaluated from the surface shape. A universal scale of
activation energy is found, and the criterion is generalized to predict transition order as symmetries
such as that of the shape are broken. The results give practical insight into structural transitions to
disorder in many cellular materials of technological and biological importance.

1 Introduction

A plethora of mechanical systems in nature and technological ap-
plications consist of interconnected units that form a thin shell or
surface1–7. The shape of these manifolds informs their function,
and often intrinsic (Gaussian) curvature KG is required. Closed
surfaces like viral capsids 8,9 or molecular cages 10 have received
much attention, but maybe even more common are open sur-
faces with a boundary, whether they are curved arrangements of
microlenses 11, the faceted eyes of insects 12, or topographically
warped sheets of graphene or other metamaterials 13–16. Capsids
only become closed surfaces through assembly from open-surface
states17,18, and strategies to disrupt the assembly through, e.g.
elastic frustration19, can be a powerful therapeutic tool 20 which
therefore need to be understood in detail. As is well known, non-
zero KG on a lattice manifold is incompatible with a defect-free
lattice; Euler’s theorem applied to lattices translates into a state-
ment about the topological charge Q, which on a triangulated
lattice must be equal to

Q =

V∑
i=1

qi = 6χ, (1)

where qi = 6 − ci is the departure of the coordination number
ci of the ith vertex from the ideal coordination number of a pla-
nar triangular lattice, and χ is the Euler characteristic. The most
ubiquitous example of this is the presence of (a minimum of) 12
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Fig. 1 The elastic ground state of a weakly curved surface has all de-
fects decorated at the boundary; upon increasing curvature or extent rb,
a disclination at the central apex eventually becomes favorable. This
state is reached either continuously via intermediate defect positions rD
(upper), or discontinuously (lower). The path taken can be predicted
by properties of surface shape, such as the apical curvature or degree of
rotational asymmetry.

five-fold disclination defects on a soccer ball (with χ = 2). Con-
siderable work in the past years has focused not on the require-
ment of the total charge of defects, but on their positioning on
the manifold 21–29. This is particularly relevant for open surfaces,
as here the magnitude of curvature controls the number of rel-
evant defects visible on the bulk of the manifold: while Euler’s
theorem with χ = 1 still requires at least 6 disclinations, in a
surface of small curvature they can be accommodated by the lat-
tice at the boundary with minimal elastic energy penalty, so that
the bulk of the surface remains defect-free. Only for sufficiently
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large curvature does it become energetically favorable for a sin-
gle disclination to leave the boundary and migrate to the bulk (cf.
Fig. 1). By extension, surfaces of varying Gaussian curvature have
been shown to be preferentially populated by different numbers
of defects 21,30,31.

For practical applications, it is highly desirable to have a unified
description of this transition from a regular open surface to one
with minimal disclination disorder. While local or integral Gaus-
sian curvature can hint at preferred defect positions 27,30, very re-
cently a general criterion was found that is applicable for a great
variety of open-cap shape families: rather than a particular lo-
cal value of KG or the value of the integrated Gaussian curvature
over the entire surface, a particular weighted integral of KG needs
to exceed a universal threshold in order for the defect migration
to be energetically favorable 32. For a certain surface shape, this
translates to a critical size (cap extent) beyond which the elastic
energy for the surface with a disclination at the apex of the cap
is lower than that for the surface with all defects at the boundary
(cf. Fig. 1).

However, what kind of transition is observed in practice upon
increasing cap size depends not only on which configuration
yields lower energy, but on the shape of the energy landscape:
a transition may proceed continuously through intermediate de-
fect positions representing energy minima, or discontinuously be-
cause an activation energy (energy barrier) needs to be over-
come. These different characteristics of transition are illustrated
in Fig. 1, and have previously been studied numerically for the
special case of spherical shells 28,29, where an analogy to first-
and second-order phase transitions has been made. The possibil-
ity of symmetry-breaking ground states in continuous transitions
is significant, as this alters the predictions of observable defect
patterns. Conversely, a discontinuous transition ensures that sym-
metric defect positioning is the only realizable option. In the con-
text of invertebrate eyes, asymmetric placement of defects would
disrupt optical regularity 33. While many atomistic simulations
allow for asymmetric equilibrium shell shapes, e.g., en masse as-
sembly of virus capsids34–36 or, more generally, protein cages 37,
often the initial building block sub-units themselves are assumed
to be symmetric.

In the present work, we show that these transition character-
istics can be reliably extracted for general shapes, via simple cri-
teria involving the shape of the surfaces. Our present findings
are applicable to a great variety of shapes and reveal universal
properties of the energy landscape around transition.

In Sec. 2 we sketch our rigorous theoretical framework for
quantifying elastic energy on surfaces of revolution, and review
results on the location of the transition in parameter space. Sec-
tion 3 derives simple analytical criteria to determine the contin-
uous or discontinuous character of transitions, reveals universal
properties in the energetic structure of states surrounding these
transitions, and discusses how these energy landscapes shift when
breaking the continuous rotational symmetry of the manifold’s
mechanical properties. Section 4 provides discussion and conclu-
sions.

2 Theoretical background

In this study, we explore single disclination transition characteris-
tics on a large set of bounded surfaces of revolution (unless stated
otherwise) using linear elastic continuum theory. The surface ge-
ometry is imposed, i.e, we disregard deformation degrees of free-
dom of the surface, whether elastic or through buckling, though
these may play a role in other contexts 8,9,38. We focus on the tran-
sition from an energetically favorable defect-free surface (more
precisely, all disclinations are located at the boundary) to one
with a single disclination in the bulk. While the presence of dis-
locations can strongly affect such transitions 26,27, for large defect
core energies dislocation distributions are prohibitively expensive
energetically, while the single disclination provides a well-defined
energy penalty scaling with the size of the surface 39. Going be-
yond previous work32, we shall allow the disclination to occupy
an arbitrary position on the surface in order to probe the energy
landscape.

2.1 Full covariant formalism

We follow the covariant formalism of Bowick et al. 21 , Giomi and
Bowick 24 with stress-free boundary conditions. The great accu-
racy of this approach for the present type of problem, and its
relation to other formalisms detailed in Li et al. 40 , have been dis-
cussed in Agarwal and Hilgenfeldt 32 . The elastic energy for an
arbitrary disclination position xD on a manifold P reads

Fel(xD) =
1

2Y

∫
Γ2(x,xD)dx, (2)

where the isotropic stress Γ can be decomposed as

Γ(x,xD) = −ΓD(x,xD)− Γs(x) + U(x,xD), (3)

and

ΓD(x,xD) = −π
3
Y GL(x,xD), (4a)

ΓS(x) = Y

∫
KG(y)GL(x,y)dy, (4b)

where

GL(x;xD) =
1

2π
log

∣∣∣∣ z(x)− z(xD)

1− z(x)z(xD)

∣∣∣∣ (5)

is the Green’s function of the covariant Laplace operator on P
and z(x) = %(r)eiφ is a point on the unit disk on the complex
plane while %(r) is the conformal radius of a map from the sur-
face onto the unit disk. Here, (4a) is the contribution due to
a disclination positioned arbitrarily at xD while (4b) captures
the screening effect of Gaussian curvature KG(x). The harmonic
term U(x,xD) is determined by the boundary conditions at the
rim of the surface; the sum of these three contributions is a fine
balance of different effects. Balancing ΓD and ΓS represents a
form of local curvature argument, where local Gaussian curvature
compensates for a defect charge, while U(x,xD) introduces non-
trivial boundary-dependent modifications. Going beyond Giomi
and Bowick 24 , in the present work we perform the explicit com-
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putation of the harmonic function U on the manifold P for arbi-
trary positioning of a disclination; one finds

U(x,xD) = −Y
∫

dyH(x,y)
(π

3
δ(y,xD)−KG(y)

)
, (6)

where the harmonic kernel H(x) is given by 41:

H(x,y) = − 1

2π
f0(%y)−

∑
n≥1

1

π
%nx%

n
y cosn(φy − φx)fn(%y) (7)

This formalism relies on being able to explicitly find a conformal
mapping from P onto the unit disk where points x,y on the sur-
face are mapped to complex numbers with moduli %x, %y and ar-
guments φx, φy, respectively (see Supplementary Information for
details and the functional forms of %, fn). The first term of (7) is
a radially symmetric contribution due to the boundary conditions
while the infinite sum acknowledges asymmetry introduced by,
e.g., an intermediate position of the disclination. Accordingly, (6)
can now be split into two terms: U(x,xD) = UK(x)+UD(x,xD),
corresponding to the boundary contributions due to Gaussian cur-
vature and the non-trivial disclination singularity, respectively,
viz.

UK(x) =Y

∫
dyH(x,y)KG(y), (8a)

UD(x,xD) =
f0(%D)

6
+
∑
n≥1

(%%D)n

3
fn(%D) cosn(φ− φD). (8b)

UK is a constant on surfaces of revolution, while UD(x,xD),
which was not taken into account in earlier work 24, has to be
computed with the series truncated at a large but finite n; in
general both computations are executed numerically. Note that
the infinite sum of (8b) vanishes for a disclination at the bound-
ary (where fn≥1 = 0) as well as for a disclination at the center
(where %D = 0). For intermediate positions, as considered here,
this term is generally non-zero.

Taking (2) together with (3) we have derived a rigorous co-
variant expression for the total energy that can be evaluated for
arbitrary positions of the disclination. This reads

Fel(xD) =
1

2Y

∫
[(UD − ΓD) + (UK − ΓS)]2 dx , (9)

indicating that the energy penalty can be interpreted as a combi-
nation of mismatches between topological charges and harmonic
contributions from disclinations and Gaussian curvature.

The difference of Fel for a configuration with one defect at ar-
bitrary xD and Fel for a configuration with only boundary defects
(defect position xD = xb) is more explicitly

∆Fel(xD) =
1

2Y

∫
(UD − ΓD) [(UD − ΓD) + 2(UK − ΓS)] dx,

(10)

because only UD and ΓD depend on xD. Equation (10) is the gen-
eralization of the results of Agarwal and Hilgenfeldt 32 to arbitrary
disclination position xD. For the portion of the present work that
considers radially symmetric surfaces, we can write ∆Fel(rD). In

Fig. 2 Normalized energy difference ∆Fel/FB as a function of normal-
ized defect position rD/rb (varying cap extent rb) resulting from the full
covariant formalism for (a) Sphere (κ = 1): the defect moves contin-
uously from the boundary to the apex as rb is increased (the optimum
intermediate positions are marked by crosses) — it starts migrating at
rb = r

(1)
c (orange curve) and reaches the center at rb = r

(0)
c (blue

curve) (cf. Li et al. 28,29 ); (b) Prolate spheroid (κ = 5): the defect
migration is discontinuous and occurs abruptly once rb ≥ r

(1)
c (orange

curve). (c) Red curve is the boundary marking transition in the shape
family of spheroids reproduced from Agarwal and Hilgenfeldt 32 , while
gray dots are numerically obtained roots using (10). The orange-dashed
r
(1)
c and blue-dashed r(0)c curves flanking the nominal red transition curve
intersect it at a higher-order critical point κh ≈ 1.3 (indicated by the
magenta cross) and switch numerical order. Insets show a close-up of
the curves for two distinct regimes of κ, on either side of the higher-order
critical point.

the following, we scale out the (constant) material modulus, set-
ting Y = 1.

2.2 Critical cap extent
The formalism above simplifies if the defect position is the apex
of an axisymmetric cap surface (xD = 0), which eliminates all
angular dependences and makes UD and UK straight surface av-
erages of ΓD and ΓS , respectively. For a given surface shape, a
critical cap radius rb = rc can then be defined as the extent of
the surface for which ∆Fel(0) = 0 according to (10). In Agar-
wal and Hilgenfeldt 32 it was shown that, rather than numerically
evaluating (10), a simple criterion predicts rc with great accuracy,
namely,

ΓS(0) ≡
rc∫
0

KG(r) log %(r)
√
g dr = −ΓS0 , (11)

where ΓS0 ≡ 1/6 is a universal constant. Thus, the Gaussian cur-
vature weighted with the characteristic singularity log %(r) of the
defect stress governs the transition in parameter space. Eq. (11)
yields rb = rc as a function of shape parameters of the surface.
In deriving this analytical criterion, an approximation was pur-
sued that uses direct leading-order Taylor expansions of ΓD(r)

and g(r) around r = 0, i.e., the small-slope approximations

ΓssD (r, 0) = −1

6
log (r/rb) ,

√
gss = r, (12)
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but uses a non-local approximation for ΓS(r) that matches the
values of this function at r = 0 and the boundary position r = rb,
i.e.,

ΓnlS (r) = ΓS(0)
(
1− r2/r2b

)
, (13)

where ΓS(0) is explicitly given by the integral in (11), rather than
using the small-slope expansion

ΓssS (r) = −1

4
KG(0)r2b

(
1− r2/r2b

)
. (14)

While the use of (11) allows for accurate prediction of the tran-
sition in parameter space, superior to the small-slope approxima-
tion32, in this work we shall show that in order to predict the
characteristics of the transition a further improvement in analyti-
cal theory is needed.

3 Characteristics of the Transition
We parametrize general surfaces of revolution as z = Z/Lr =

f(r) with a radial length scale Lr, e.g. the equatorial radius of
a spheroid. The dimensionless center curvature f ′′(0) ≡ κ then
represents a ratio of axial to radial length scales and is our pri-
mary parameter to vary shape within a shape family. For example,
f = κ

√
1± r2 describes spheroids (−) and hyperboloids (+) of

various aspect ratio. We investigated many different shape fami-
lies32, but confine ourselves to cap shapes with unique z(r). For
central defects (rD = 0) on spheroids, Fig. 2c shows that the
approximation (11) (red line) predicts the transition to a cen-
tral defect extremely accurately, compared with the numerical
computation of ∆Fel(0) = 0 from (10) (symbols). Caps of ex-
tent rb > rc(κ) have lower energy with the disclination at the
apex, while smaller caps have lower energy with all defects at the
boundary. As pointed out above, this picture is complicated by the
possibility of energy barriers or energy minima for intermediate
disclination positions 0 < rD < rb.

3.1 Covariant formalism—effect of shape on secondary tran-
sition characteristics

The example of spheroids illustrates both of these characteristics
of continuous and discontinuous transitions: Fig. 2a plots the
full covariant ∆Fel vs. defect position rD/rb for spherical caps
(κ = 1), varying the cap extent rb through the critical value rc.
Here and in the following, we normalize energy differences by an
elastic background energy scale

FB ≡ πκ4r6b/384, (15)

whose value is obtained by inserting the small-slope (14) and
UK = (1/A)

∫
ΓssS dA = −(1/8)KG(0)r2b into (2) for a defect

free surface, i.e. ΓD = UD = 0, and noting KG(0) = κ2.
The red line in Fig. 2a (for rb = rc) shows that, while

∆Fel(0) = 0, the energy is even lower for an intermediate defect
position. Increasing rb smoothly moves this optimum disclination
position from the boundary to the apex (crosses). This process
begins at rb = r

(1)
c < rc determined by ∆F ′el(rD = rb) = 0

(orange curve) and ends at rb = r
(0)
c > rc determined by

∆F ′el(rD = 0) = 0 (blue curve). Outside of this interval of rb
values, ∆Fel(rD) is monotonic. These results are consistent with

Fig. 3 Normalized energy difference ∆Fel/FB at transition (rb = rc)
as a function of normalized defect position rD/rc (varying κ) for (a)
Spheroid: f(r) = κ

√
1− r2, (b) Hyperboloid: f(r) = κ

√
1 + r2, (c)

“Bell-shaped" cap: f(r) = κ/3(1 − r2)3/2 and (varying λ) for (d) a
prototypical higher-order surface: f(r) = κr2/2 +λr4/24; the character
of the transition is continuous for λ/κ & 3. The large κ asymptote for all
shapes has a common energy barrier – identical to that of a Paraboloid
(indicated by solid curves). The location of the intermediate extremum is
obtained by solving (20) and is approximately rD,m = rc/

√
3 (indicated

by dashed vertical lines).

predictions from the covariant formalism and numerical simula-
tions of Li et al. 28,29 — spherical caps show a "second-order" dis-
order transition, with defect positions adjusting continuously.

By contrast, Fig. 2b displays the energy landscapes for a pro-
late spheroid of κ = 5. At rb = rc, the critical energy curve now
shows a maximum, and this remains true for all rb in an inter-
val r(0)c < rb < r

(1)
c , where the r(i)c are defined as above, but

have switched numerical order. As a result, upon increasing rb,
an energy barrier prevents the disclination at the boundary from
moving until rb > r

(1)
c > rc, when the defect abruptly jumps to

the apex. This discontinuous transition thus requires a larger cap
extent than rc or equivalently “overcharging" beyond the q = 1

single disclination 27. In Fig. 2c, we plot the κ-dependent values of
r
(0)
c (blue-dashed) and r(1)c (orange-dashed) for the entire family

of spheroidal caps. They flank the red line of the nominal transi-
tion criterion ∆Fel(0) = 0 closely and intersect it at a higher-order
critical point where r(0)c and r(1)c switch order and, therefore, con-
tinuous transitions become discontinuous. The range of cap sizes
over which the transition character manifests itself (for a given κ)
is relatively small, as illustrated in the two insets of Fig. 2(c).

Can we observe such features more generally, going beyond
spheroids? In Fig. 3, we take a closer look at the shape and scale
of the energy landscape at critical extent rb = rc for four different
shape families, varying κ = f ′′(0) for the first three and the fourth
apical derivative λ = f (4)(0) (keeping κ fixed) for the last one.
Figure 3a again illustrates the transition from continuous to dis-
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continuous in spheroids, and pinpoints the higher-order critical
point at κ ≈ 1.3. Hyperboloids (a shape family with potentially
infinite cap extent, Fig. 3b) and a family of "bell-shaped" surfaces
whose Gaussian curvature changes sign on the surface (Fig. 3c),
by contrast, never show continuous transitions. For large κ, how-
ever, the normalized energy difference ∆Fel/FB for all shapes
approaches a common energy barrier. Figure 3d shows that the
transition character can be changed at constant κ by changing the
value of the fourth apical derivative λ.

This is an indication that higher apical derivatives of the sur-
face shape play a central role here. Indeed, when solving this
problem for the unique surface without higher derivatives (the
paraboloid), the result accurately depicts the common asymptotic
shape of the energy landscape (solid lines in Fig. 3).

The numerical integration of (10) yields these results, but gives
little physical insight. When do we expect continuous vs. discon-
tinuous transitions? Is the scale of the energy landscape (a few
percent of the normalization value FB) indeed universal, as sug-
gested by these examples? Exactly which features of the surface
are determinants of the transition character? To answer these
questions, we turn to analytical approximations.

3.2 Analytical theory: non-local approximation

As detailed in section 2.2, the accurate prediction of the tran-
sition line in Fig. 2c was not possible with a small-slope Taylor
expansion, but needed the non-local improvement (13) 32. Using
either ΓssS or ΓnlS , and the resulting changes in UK , while main-
taining the approximations (12), ∆Fel(rD) becomes analytically
tractable. Consistent with previous work 28,29, Figure 4a repro-
duces the continuous structure of the transition for rb around rc
for spherical caps according to the rigorous numerical computa-
tion of the covariant theory, whereas the small-slope approxima-
tion in Figure 4b predicts a first-order transition. Intriguingly, the
non-local approximation in Figure 4c likewise does not produce
any secondary characteristics at all — the energy difference at
transition is flat, and monotonic at every other value of rb. Thus,
even though the non-local approximation reproduces the spread
of energy values more accurately than the small-slope model, it
does not probe the shape properties of the surface that are re-
sponsible for the order of the transition.

We now describe a minimal model that captures the dominant
effects of the secondary transition character. Noting that a more
accurate representation of the intrinsic isotropic stress ΓS(r) was
crucial for predicting the transition location, we improve further
on the approximation (13): in addition to matching the function
value and first derivative at r = 0 and function value at r = rb,
we now require a match of the second derivative at the apex. By
symmetry, this requires a fourth-order polynomial in r, namely,

ΓnlS (r) =− Γ′′S(0)r2b
2

(
1− r2

r2b

)

+

(
ΓS(0) +

Γ′′S(0)r2b
2

)(
1− r4

r4b

)
, (16)

Fig. 4 Normalized energy difference ∆Fel/FB for a sphere (κ = 1),
comparing different approaches (varying rb around rc): (a) full covariant
Eq. (10) (numerical) (cf. Li et al. 28,29 ), (b) small-slope (cf. Azadi
and Grason 27 , Li et al. 29 ), (c) non-local formalism from Agarwal and
Hilgenfeldt 32 , (d) non-local formalism of Eq. (18). Only the latter, non-
local analytical approach captures the characteristics of the transition.

with the full rigorous expressions

ΓS(0) ≡
rb∫
0

KG(r) log %(r)
√
g dr, Γ′′S(0) =

KG(0)

2
=
κ2

2
. (17)

We use (4a) and (5) for arbitrary defect position xD but employ
the small-slope %ss(r) = r/rb and

√
gss = r. Inserting these into

(10) and (8), the energy integral can be executed analytically
(see Supplementary Information for details) and results in the
following closed form expression:

∆Fel(rD) =
πr2b
864

(
1− r2D

r2b

)2 [
3 + 8

(
2 +

r2D
r2b

)
ΓS(0)

−
(

1− 4
r2D
r2b

)
κ2r2b

2

]
. (18)

The transition threshold is defined as the extent rb at which
∆Fel(0) = 0 and (18) results in

ΓS(0) = −3/16 + κ2r2c/32 (19)

as the transition criterion within this level of approximation. The
extremum of the energy landscape is obtained from

∆F ′el(rD) =
πrD
72

(
r2D
r2b
− 1

)[
1 + 4

(
1 +

r2D
r2b

)
ΓS(0)

−
(

1− 2
r2D
r2b

)
κ2

2
r2b

]
(20)
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by setting ∆F ′el(rD)|rb=rc = 0. Inserting the transition crite-
rion (19) leads to a straightforward non-trivial solution for the
position of the minimum or maximum of the energy landscape
rD,m = rc/

√
3. This result is indicated by dashed vertical lines

in Fig. 3 and in good agreement for the vast majority of shapes.
Inserting rD,m together with (19) into (18) yields the scale of the
secondary structure. Normalizing by FB , one obtains

∆F sec
el /FB =

4

81κ4r4c

(
−2 + 3κ2r2c

)
(21)

This rigorously shows why a small-slope formalism is incapable of
predicting secondary transition structure (since κ2r2c = 2/3 in this
approximation 27). Further analytical progress can be made by
determining rc(κ) at transition within the present approximation.
By symmetry, the large κ expansion of rc on surfaces of revolution
is rc = a/κ+b/κ3+. . . (cf. Agarwal and Hilgenfeldt 32). Inserting
this into (19) and Taylor-expanding both sides for κ→∞ allows
us to solve for the coefficients a, b, . . . , order-wise. With the
definition of ΓS(0), this reads

ΓS(0) =1−
√

1 + a2 + log

[(
1 +
√

1 + a2
)

2

]
+
b(1−

√
a2 + 1)

aκ2

+

(
−a4 + a2 − 2

√
a2 + 1 + 2

)
(λ/κ)

18
√
a2 + 1κ2

+ . . . (22)

Finally, expanding the RHS of (19) and equating with (22) we
obtain a ≈ 0.844, b ≈ −0.042λ/κ. Note that a generic surface
(with one dominant radial length scale) will have λ = O(κ) and
b = O(1). Inserting into a large κ expansion of (21), we obtain:

∆F secel /FB =
4(−2 + 3a2)

81a4
+

8(4− 3a2)b

81a5κ2
+ . . .

≈ 0.0135− 0.018
λ

κ3
+ . . . (23)

This suggests a universal scale for the energy barrier at transition
for surfaces with large central curvature, consistent with the ob-
servations of Fig. 3. For κ→∞, higher derivatives are negligible
and the behavior mimics that of a paraboloid. Furthermore, the
result predicts a change from an energy maximum to a minimum
at transition (a higher-order critical point), only if the quantity
λ/κ is positive. Note that for spheroids λ/κ = 3 > 0, whereas for
the hyperboloids or “bell" shapes of Fig. 3bc λ/κ = −3 < 0. Like-
wise, increasing λ from zero should lead to the development of
an energy minimum and thus a continuous transition, as shown
in Fig. 3d.

The formalism outlined here also settles the question of the
range of the secondary structure effects described in Sec. 3.1 i.e.,
the values of r(0)c and r(1)c . Using the defining criteria ∆F ′el(rD =

0)|
rb=r

(0)
c

= 0 and ∆F ′el(rD = rb)|rb=r(1)c
= 0 in (20) results in

the following implicit equations:

ΓS(0) = −1

8
+

(κr
(0)
c )2

16
, ΓS(0) = −1

4
+

(κr
(1)
c )2

8
, (24)

respectively. As before, we insert the large κ expansion r
(i)
c =

a/κ + b/κ3 + . . . , Taylor expand and determine the respective

coefficients a, b, . . . to finally obtain

(r(1)c − r(0)c )/rc ≈ 0.038− 0.07λ/κ3 (25)

This suggests that the range of the secondary features is about
4% relative to the critical rc for surfaces with large central cur-
vature — again, the large κ limit universally asymptotes to that
of a paraboloid. On the other hand, shapes with small κ could
have larger ranges, but are not accurately described by this ap-
proach. Empirically, we see for all shape families analyzed that
the range of secondary characteristics remains of this order up to
the smallest κ consistent with unique f(r) shapes.

All of these predictions are in complete qualitative agreement
with the numerical computations, while quantitative discrepan-
cies in ∆F sec

el can be systematically improved upon employing
higher order approximations of the type that also improve the
predictive error of rc(κ)32. Matching the third derivative of the
metric

√
g at r = 0 yields

√
g = r +

κ2

2
r3. (26)

With only this modification (ΓD remains unchanged from (12)
to permit analytical evaluation of the integrals) we go through
the same steps outlined above and, while the explicit expressions
are more complicated, we obtain a slightly different transition
criterion rc ≈ 0.829/κ−0.039(λ/κ)/κ3 and an altered secondary
energy,

∆F sec
el /FB ≈ 0.052− 0.017

λ

κ3
+ . . . , (27)

which more closely approximates the empirical universal barrier
height for κ→∞, which is ∆F sec

el /FB ≈ 0.034 in the full covari-
ant computation. Eq. (27) predicts that the higher-order critical
point is given by λh ≈ 3κ3

h. For spheroids, this locates the transi-
tion from continuous to discontinuous behavior at κh ≈ 1, again
in good agreement with the covariant computation (κh ≈ 1.3).
The remaining quantitative discrepancies can be systematically
alleviated by including higher order terms in the non-local ex-
pansions, although not all integrals may be tractable analytically.

3.3 Non-local vs. local approximations

The results from the previous subsection would suggest that only
local information about the surface (such as κ or λ) is sufficient to
predict the nature of the transition, even though we employed a
non-local formalism with the full ΓS(0). This raises the question
whether a local higher-order small-slope formalism would yield
similar quantitative agreement with the full covariant formalism.
In order to test this, we instead employ a local fourth-order ex-
pansion of ΓS(r) that reads:

ΓlS(r) = −κ
2r2b
4

(
1− r2

r2b

)
+
κ4r4b
96

(
3− 4

λ

κ3

)(
1− r4

r4b

)
,

(28)

where we now use the small-slope expansion for ΓS(0) =

−κ2r2b/4 + (3−4λ/κ)κ4r4b/96 + . . . , retaining terms up to O(r4).
Together with (26) (ΓD remains unmodified from (12)), we go
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Fig. 5 (a) Scale of the normalized secondary energy structure ∆F sec
el /FB

at transition: the red dots were obtained numerically by integrating the
full covariant equation. While both non-local approximation (blue) and
a higher order O(r4) local approximation (magenta) have the same large
κ asymptote, the local approach has large unphysical deviations from
the covariant formalism for κ . 1. (b) Plotting the normalized energy
difference ∆Fel/FB at transition for a sphere (κ = 1) showcases this
large quantitative discrepancy in the secondary energy structure.

through the same steps as outlined in the previous subsection,
i.e. we evaluate the energy integral analytically, determine the
transition criterion at this level of approximation, compute the
position of the extremum and finally insert all these into ∆Fel/FB

to obtain the scale of the normalized secondary structure, which
reads

∆F sec
el /FB ≈ 0.057− 0.021

λ

κ3
+ . . . . (29)

We plot in Fig. 5(a) the full covariant ∆F sec
el /FB obtained by

numerically integrating (10) (indicated by red dots) and com-
pare the local approximation with the non-local one for the shape
family of spheroids as our prototypical example. The large central
curvature (κ→∞) limit for both converges to approximately the
same asymptote with similar deviations from the covariant pre-
diction (cf. (29) and (27)), however differences between the two
become significant for surfaces with smaller values of κ that are
arguably of more practical relevance 32. Fig. 5(b) exemplifies the
significant discrepancy for the particular case of κ = 1 (sphere)
— while the local approximation qualitatively captures the be-
havior at transition it greatly underestimates the magnitude of
the energy minimum and the disagreement only gets worse for
surfaces with κ < 1. Therefore, analogous to the transition crite-
rion from our previous work 32, quantitatively describing the scale
of the secondary structure around transition requires non-local in-
formation from the entire surface for shapes with κ ∼ O(1).

We now turn our attention to the question of how robust this
secondary-structure behavior is. In particular, the small range of
cap sizes over which it occurs suggests it may be qualitatively
altered by even slight deviations from the radial symmetry of the
surface shape.

3.4 Rotational symmetry breaking
In general, the boundary of open surfaces will not obey radial
symmetry; the Drosophila eye, for example, is well approximated
by an ellipsoidal cap with an elliptical boundary 42. While a fully
covariant formalism in such a general scenario might be feasible

numerically, we are not aware of any previous work that stud-
ies this role of breaking of continuous rotational symmetry. In
order to estimate the magnitude of the effect of breaking bound-
ary shape symmetry on the energy landscape, we shall utilize the
small-slope approximation; as we have shown above, this does
not, by itself, lead to any secondary structure of the transition (cf.
Fig. 4b). As we have furthermore shown that the energy scale of
intrinsic secondary structures is bounded at least for large cen-
tral curvature κ, we can give a quantitative estimate of whether
symmetry breaking will change this structure.

We apply a leading-order shape perturbation to a general sur-
face of revolution, generating an ellipse from the circular bound-
ary by stretching/contracting perpendicular axes by an amount ε.
Thus,

x = (1 + ε)r cosφ, y = (1− ε)r sinφ, z = f(r) (30)

with ε� 1, while the metric tensor in the small-slope limit is

gij =

[
1 + ε(2 + ε) cos 2φ −2rε sin 2φ

−2rε sin 2φ r2 (1 + ε(ε− 2) cos 2φ)

]
. (31)

Here,
√
g = r(1− ε2) and eccentricity e =

√
1− (1−ε)2

(1+ε)2
= 2
√
ε+

O(ε3/2), while the small-slope Gaussian curvature is constant to
O(ε) and is given by

KG(r, φ) = κ2 +O
(
ε2
)
. (32)

The elliptical boundary of a section cut parallel to the xy-plane is
given by

r(φ) =
rb(1− ε2)√

1 + ε(ε− 2) cos 2φ
≈ rb(1 + ε cos 2φ). (33)

Breaking rotational symmetry of the surface leads to coupling of
stresses in the radial and azimuthal directions. Therefore, the
isotropic stresses are not as easily computed as in the previous
subsections. Instead, we start by observing that the Airy stress
function χ satisfies the following equation in polar coordinates 27:

∇4
⊥χ =

π

3

δ(r − rD)δ(φ− φD)
√
g

−KG(r, φ) (34)

subject to a zero normal stress boundary condition and reg-
ularity conditions at r = 0. Here, ∇2

⊥ is the 2D Laplace-
Beltrami operator in the small-slope limit and is given by ∇2

⊥f =
1√
g
∂i
(√
|g|gij∂jf

)
using the small-slope limit (31). Here, gij is

the inverse of the metric tensor such that gijgjk = δik. The Airy
function is related to the stress components in the usual way,

σrr =
1

r

∂χ

∂r
+

1

r2
∂2χ

∂φ2
, σrφ = − ∂

∂r

(
1

r

∂χ

∂φ

)
, σφφ =

∂2χ

∂r2
. (35)

Analogous to the case of a circular boundary, we impose vanishing
normal stress, i.e. σ ·n̂ = 0 on (34), where n̂ = nrêr+nφêφ is the
normal vector to the elliptical boundary. Therefore, one obtains
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two scalar equations:[
(nrσrr + nφσrφ) êr + (nrσrφ + nφσφφ) êφ

]
r=rb(φ)

= 0 . (36)

The total in-plane elastic energy for a surface with stress-free
boundary and metric g in terms of the stress components (as-
suming a linear constitutive relation) is given by 24,27:

Fel =
1

2

∫
Γ(r, φ)2dA =

1

2

∫
(σrr + σφφ)2 dA, (37)

where Γ = σrr + σφφ is the trace of the stress tensor.

Writing χ, and thus σij , as a Fourier series expansion in
(cosnφ, sinnφ) and consistently expanding the stress compo-
nents as well as ∇2

⊥ and the boundary condition in powers of
ε, we evaluate the elastic energy up to O(ε) (see Supplemental
Information for details). Inserting the expansion Γ = Γ0 + εΓ1

into (37), the elastic energy can be cast explicitly as

Fel =
1

2

2π∫
0

rb∫
0

(
Γ2
0 + 2εΓ0Γ1

)
rdrdφ +O(ε2). (38)

In terms of Fourier components, it is evident that only the squares
of the modes will contribute to the energy while the cross terms
will integrate out to zero.

Systematically evaluating the O(1) and O(ε) contributions to
the stress tensor, we obtain an angular correction to ∆Fel. The
final expression reads

∆Fel(rD)

FB
≈

2
(
2− 3κ2r2b

)
3κ4r4b

(
1− r2D

)2
+

4

3
εr2D cos 2φD

(
−1 + 2r2D − 3r4D + 2r6D − 4 log rD

κ4r4b

)
,

(39)

where rD = rD/rb. The leading order is the small-slope energy
expression for a symmetric cap obtained, e.g., by Azadi and Gra-
son 27 , while the next term represents the leading effect of the
shape perturbation and depends, in addition to rD, on the angu-
lar position φD of the defect.

We display in Fig. 6, Eq. (39) as a function of rD for ε = 0.05

(eccentricity of e ≈ 0.45) along (a) the major axis (φD = 0) and
(b) the minor axis (φD = π/2). As expected, breaking the circular
cross-sectional symmetry forces the system to select a preferred
direction of migration of the defect, which in this situation is the
minor axis: this perturbed small-slope formalism predicts a con-
tinuous variation of the defect position along φ = π/2 until the
apex position is established for a certain energy difference (here,
∆Fel/FB ≈ −0.35 as marked by the green curve in Fig. 6(b)).

To quantify the scale of the secondary structure, we set
∆Fel(0) = 0 in (39) to obtain the transition criterion rc =√

2/3/κ (unchanged from the rotationally symmetric situation),
while the position of the maxima/minima obtained by setting
∆F ′el(0) = 0 results in rD ≈ 0.55rb, a slight but significant differ-
ence from the position for intrinsic secondary structures described
in section 3.2. Finally, inserting into (39) we obtain the energy

Fig. 6 Normalized energy difference ∆Fel/FB for an ellipsoid (ε = 0.05);
varying the cap extent rb around transition, (a) along the major axis
(φ = 0), an energy maximum persists, whereas there is an energy mini-
mum along (b) the minor axis (φ = π/2) — thus the preferred direction
of defect migration is predicted to be along the minor axis. The en-
ergy landscape is displayed in (c) showing the location of these global
maxima/minima at transition, i.e. at rb = rc. Note that these plots
are independent of κ since we replace rb in (39) by multiples of the
small-slope value rc =

√
2/3/κ.

scale

∆F sec
el

FB
≈ 1.61ε cos 2φD +O

(
ε2
)
. (40)

At the critical cap extent rb = rc, the small-slope ∆Fel van-
ishes, so that the secondary energy structure is proportional to
ε and quadrupolar in φD. Within the small-slope approxima-
tion this correction does not depend on κ when normalized by
FB . The magnitude of secondary energy maxima and minima
(cf. Fig. 6) is well described by (40). Having identified a univer-
sal scale of intrinsic secondary structure maxima in section 3.2 as
∆F sec

el /FB ≈ 0.034 for moderate to large κ, we can say that sym-
metry breaking is likely to transform the transition character from
discontinuous to continuous along the minor axis beyond a strain
of ε � 0.02. Quite subtle symmetry breaking is thus capable of
qualitatively changing the disorder transition. We note that in-
clusion of the next order O(r4b ) terms introduces non-trivial cou-
plings between the shape perturbation and the secondary struc-
ture discussed in the previous subsections, leading to modification
of (40). We know from Sec. 3.2 that the leading term of the tran-
sition criterion rc becomes approximately a = 0.844. Defining the
deviation of a from the small-slope value as δ = a−

√
2/3, a Tay-

lor expansion of (39) in δ � 1 alters the numerical prefactor of
(40) to (1.61−7.9δ) ≈ 1.39. This is a small quantitative deviation
that does not change the nature of the effects discussed above.

4 Conclusions
The present work demonstrates that simple, general criteria can
be derived not just for the onset of energetically favored discli-
nation disorder on curved open surfaces, but to predict the sec-
ondary structure of that disorder transition.

The secondary structure of the transition, i.e., whether the dis-
placement of the disclination occurs continuously or discontin-
uously), is important for predictions of actual defect placement
in practical applications. In particular, symmetry-breaking defect
positions can be energetically favorable over well-defined ranges
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of parameters, such as the extent of the open surface. We have
shown that these secondary effects occur over a small, quantifi-
able range of sizes around the onset of disorder. Similarly, the
elastic energy of the surface universally changes by a well-defined
amount as the defect position changes — a few percent of the to-
tal energy.

Accordingly, this secondary structure can be altered by rela-
tively small modifications of the mechanics of the problem. In
particular, even slight anisotropy in the shape of the surface will
force the optimal position of the disclination onto one of the prin-
cipal axes, and will make defect displacements continuous even if
they are intrinsically discontinuous.

It is noteworthy that the analytical approximations yielding re-
sults for the secondary structure of the transition require more de-
tailed knowledge of the surface shape than those that allow for an
evaluation of the onset of disorder. In particular, the fourth apical
derivative of the surface shape (by symmetry the next order af-
ter the apical curvature) is a strong determinant of the transition
characteristics. Likewise, our formalism makes use of the second
derivative of the non-local weighted Gaussian curvature, Γ′′S(0),
as opposed to just its functional value. Our findings indicate that
an increased curvature away from the apex (λ > 0) is necessary,
though not sufficient, for the stabilization of intermediate defect
positions (continuous transition). Intuitively, this rationalizes po-
sitions rD > 0 as locally more "attractive" to defects than the
origin itself. How accurately a higher-order quantity like λ can be
determined in an application, and how the presence of positional
disorder (dislocations) may alter the results, will be the subject of
future study.

For a given shape with mobile disclinations, the current work
offers easy-to-check criteria for whether the onset of disorder re-
sults in robust central defect placement (discontinuous transition)
or whether a variety of configurations may be observed (continu-
ous transition). In applications of shells with Gaussian curvature,
be they viral capsids, tissue structures like insect eyes, or optical
engineering systems such as microlens arrays, these insights also
provide bounds on the degree of symmetry needed to maintain
an ordered lattice on such surfaces.
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