ChemComm

Electrochemical Behaviour of Uranium at a Tripolyphosphate Modified ITO Electrode

Journal:	ChemComm
Manuscript ID	CC-COM-07-2021-003877.R2
Article Type:	Communication

Chemical Communications

COMMUNICATION

Electrochemical Behaviour of Uranium at a Tripolyphosphate Modified ITO Electrode

Received 17th July 2021, Accepted 00th September 2021

DOI: 10.1039/x0xx00000x

Xiangyang Hou,^a Jeffrey R. McLachlan,^a and Christopher J. Dares^{a,*}

 UO_2^{2+} binds to the surface of a tripolyphosphate modified mesoporous indium tin-doped oxide electrode (*nano*ITO|P₃). Electrochemical studies reveal that *n*ITO|P₃ electrodes catalyze the 2-electron interconversion between UO_2^{2+} and U^{4+} with the P₃-ligand assisting in the rate-limiting proton-coupled reduction of U(V) to U(IV), based on the kinetic isotope effect (1.8). Product composition between *n*ITO|P₃(U⁴⁺) and surface adsorbed UO₂ can be controled by adjusting the proton concentration and/or scan rate in voltammograms. These studies with uranium suggest that *n*ITO|P₃ electrodes are good candidates for redox transformations with other actinides including neptunium, plutonium, and americium.

In acidic solutions, the most stable form of uranium is $UO_2^{2^+}$. This linear di-cation features hexavalent uranium and uranyloxygen bonds which are formally triple bonds.¹ These strong bonds make it a challenge to labilize the oxygen atoms. The 1electron reduction of $UO_2^{2^+}$ produces UO_2^+ , which can disproportionate to form U^{4+} and $UO_2^{2^+}$ (Scheme 1).² Stabilization of the pentavalent species can be enhanced through cation-cation interactions including the formation of $UO_2^{2^+}...UO_2^+$ associated complexes.³ Further proton-coupled reduction to the tetravalent state involves destruction of the uranyl cation.

Scheme 1. Latimer diagrams of U and Am in 1 M acid. Potentials are in V vs. SHE.

UO2 ²⁺	0.16 V	UO2 ⁺	0.38 V	U ⁴⁺	-0.52 V U ³⁺
Am0,2+	1.60 V	AmO,*	0.84 V	Am ⁴⁺	2.62 V Am ³⁺

The linear actinyl cation $(AnO_2^{n+}, n = 1 \text{ or } 2)$ is featured for other penta- and hexavalent actinides found in used nuclear fuel including Np, Pu, and Am. Reprocessing used nuclear material including actinides requires precise oxidation state control.⁴ While U, Np, and Pu oxidation states can be adjusted and maintained with various chemical oxidants or reductants (including U(IV)). Am exists as Am(III) and is a challenge to oxidize to the hexavalent state given the high Am(IV/III) potential (2.62 V vs. SHE).⁵ Reprocessing Am with the other actinyl species would decrease fuel cycle costs and increase storage and disposition options.⁶ Concentrated phosphoric acid solutions have been used to generate Am(IV), and feature stable Am(IV) phosphate complexes.⁷ The solubility of these same complexes is low hindering solution studies, while coordination site saturation inhibits the formation of actinyl species. Further oxidation in acidic media to AmO₂⁺ or AmO₂²⁺

is also a challenge because of the proton-coupled electron transfer (PCET) required to form the americyl cation. Ligands can be used to facilitate these redox events,⁸ and using the principle of microscopic reversibility, a ligand able to labilize the $An-O_{vl}$ bonds will also be able to facilitate their formation. Our work in actinide redox chemistry has included the development of ligand modified electrodes (LMEs). These include a mesoporous thin film of a conductive metal oxide such as indium tin-doped oxide (ITO) surface functionalized with a ligand capable of binding actinides.⁹ LMEs with N-donor ligands have yet to quantitatively oxidize Am(III) to Am(VI), and result in a mixture of Am(V) and Am(VI).¹⁰ While Am(V) is a weaker oxidant than Am(IV), slow sequential electron transfer hinders further oxidation. To that end, we have prepared a tripolyphosphate functionalized electrode $(nITO|P_3)$ (Figure 1), which can perform the 2-electron reduction of UO_2^{2+} to U^{4+} and UO_2 with minimal UO_2^+ generated as an intermediate at potentials as mild as -0.25 V in 0.1 M HClO₄. These surrogate studies provide evidence that our *n*ITO | P₃ electrodes will act as good electrocatalysts for the oxidation of Am(III) to Am(VI).

Figure 1. Structure of tripolyphosphate (P₃), and depiction of the binding of UO_2^{2+} at a *n*ITO|P₃ electrode.

Except for uranyl acetate and uranyl nitrate, which contained depleted uranium, and were donated by FIU Environmental Health and Safety from an existing stockpile, all chemicals and solvents were purchased as reagent grade or better from Fisher Scientific and used as received. Fluorine-doped tin oxide (FTO)

^{a.} Florida International University, Department of Chemistry and Biochemistry, 11200 SW 8th St. Miami, FL 33199 USA

⁺ email: <u>cdares@fiu.edu</u>

Electronic Supplementary Information (ESI) available: An include experimental details and supporting electrochemical data. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Chemical Communications

sputtered coated glass was purchased from Hartford Glass, Inc. *n*ITO electrodes were fabricated according to published procedures.¹⁷ *n*ITO | P₃ electrodes were prepared by soaking a *n*ITO electrode in a 2 mM solution of sodium tripolyphosphate for 24 h and then rinsed with fresh 0.1 M HClO₄ before use. Instrument details are included in the supplementary information.

X-ray photoelectron (XPS) spectra confirm the tripolyphosphate ligand (P_3) at the surface of $nITO|P_3$ electrodes (Figure S6) with a P 2p signal at 133.7 eV. Cyclic voltammograms (CVs) of 1 mM UO_2^{2+} in 0.1 M HClO₄ at a bare *n*ITO and a *n*ITO | P₃ electrode are shown in Figure 2. At the bare nITO electrode, a single U(VI) reduction is observed at -0.25 V vs. SCE, with a corresponding oxidation event at -0.14 V. This couple is ascribed to the diffusion-limited U(VI/V) redox couple (Figure S11). At potentials beyond the UO₂²⁺ reduction peak, further reduction of UO₂²⁺ occurs with possible slow proton reduction. The weak broad oxidation event at ca. 0.4 V is attributed to the oxidation of U(IV) oxides (mainly UO_2 though it may include U(IV)hydroxides). This assignment is consistent with bulk electrolysis of a 1 mM UO₂²⁺ solution in 0.1 M HClO₄ using a bare *n*ITO electrode with an applied potential of -0.40 V for 18 h (Figure S12). The first scan of the bare nITO electrode in fresh 0.1 M HClO₄ after electrolysis features a broad oxidation at ~0.45 V that becomes negligible after the first scan, while the reduction of UO₂²⁺ is subsequently observed at -0.25 V. The presence of uranium oxide at the surface is confirmed by XPS with the inclusion of U 4f signals at 383.05 eV (Figure S2 and S7).¹¹ The oxide layer formed during electrolysis is weakly adsorbed to the surface and is stripped from the surface upon oxidation. Oxidation of U(V) is not observed for the first scan but is after subsequent scans (vide infra).

Figure 2. CVs at 50 mV/s starting at 1.2 V of 1 mM UO_2^{2+} at bare *n*ITO electrode (**black**) and *n*ITO |P₃ electrode (**red**) in 0.1 M HClO₄.

CVs of a *n*ITO | P₃ electrode in 0.1 M HClO₄ with 1 mM UO₂²⁺, feature a current enhancement of the UO₂²⁺ reduction at -0.25 V, a weak UO₂⁺ oxidation at -0.14 V, and two significant and broad oxidation events at +0.45 V and +0.80 V assigned to the oxidation of UO₂ and U⁴⁺ respectively (Figure 2).¹² These redox events are diffusion-limited due to free dissociation of uranium (Figure S13).¹³ The oxidation of UO₂⁺ is observed from the stabilization imparted by the formation of cation-cation interaction species including UO₂²⁺...UO₂⁺ (Figure S14). Scan rate dependent linear sweep voltammetry studies in 0.1 M HClO₄ show that the composition of U(IV) as U⁴⁺ and UO₂ varies

as a function of scan rate (Figure S15). At slow scan rates, UO_2 is favoured, since the U^{4+} generated has more time to hydrolyze to UO_2 . At faster scan rates, the proportion of U^{4+} relative to UO_2 increases to a point where it becomes independent of scan rate.

Controlled potential electrolysis of a 0.1 M HClO₄ solution with 10 mM UO₂²⁺ at -0.40 V with a *n*ITO|P₃ electrode in a 2compartment cell with concurrent spectroscopic monitoring features the generation of U⁴⁺ with a Faradaic efficiency of 88 % and a first-order rate constant for the appearance of U⁴⁺ of 5.4×10^{-3} min⁻¹ (Figure S17). This is superior to a bare *n*ITO electrode under the same conditions which has a Faradaic efficiency of 68 % and a first-order rate constant for U⁴⁺ appearance of 2.8×10⁻³ min⁻¹ (Figure S16).

Soaking a *n*|TO|P₃ electrode in a 1 mM UO₂²⁺ solution of 0.1 M HClO₄ for 10 min followed by rinsing 3-times with fresh 0.1 M HClO₄ reveals that UO₂²⁺ is bound to the tripolyphosphate ligand with a surface coverage of 8.5 nmol/cm² (Figure S19). Surface coverage was determined using eq. 1, where Γ is the surface coverage in mol/cm², Q is the charge passed during the oxidation at +0.97 V, n is the number of electrons transferred (2.0), F is the Faraday constant (96,485 C/mol), and A is the area of the electrode (1.00 cm²). Negligible UO₂²⁺ binding to bare *n*ITO is observed.

$$\Gamma = Q/nFA \tag{1}$$

XPS of nITO | P₃ soaked in UO₂²⁺ confirms U(VI) at the surface with U 4f signals at 382.45 eV (Figure S8).11 The relative atomic ratio between uranium and phosphorous at the surface measured by XPS is 1:3, or one uranium atom per P_3 ligand (Table S4). UO_2^{2+} dissociates from the *n*ITO | P₃ electrodes in fresh 0.1 M HClO₄ solutions with a first order rate constant of 9.7×10⁻⁴ s⁻¹, while U⁴⁺ dissociates with a rate constant of 11×10⁻⁴ s⁻¹ (Figures S20-22). Scan rate dependent studies of freshly UO_2^{2+} loaded *n*ITO | P₃ electrodes show a linear dependence between the peak current associated with UO₂²⁺ reduction and scan rate, highlighting the surface nature of the reduction event (Figure S23). Soaking a nITO | P₃ electrode in a 1 mM solution of electrochemically generated U⁴⁺ in 0.1 M HClO₄, results in binding of U^{4+} to the *n*ITO | P₃ electrode with the same surface coverage as with UO₂²⁺ (Figure 3).¹⁴ Starting from 0 V with an anodic scan direction, the CV of the U^{4+} soaked *n*ITO|P₃ electrode in fresh 0.1 M HClO₄ after rinsing first features the 2electron oxidation of bound U^{4+} to UO_2^{2+} at +0.97 V, with no evidence of UO_2^+ (vide infra). A single reduction at -0.25 V is attributed to the re-reduction of the P₃-bound electrochemically generated UO₂²⁺ (Figure S24). The XPS spectra of the U⁴⁺ soaked *n*ITO P₃ electrode features U 4f signals at 383.05 eV (Figure S9), a 0.60 eV shift to higher energy relative to the UO_2^{2+} soaked $nITO|P_3$ electrode, and is indicative of tetravalent uranium.11

Figure 3. CV at 50mV/s starting at 0 V of nITO|P₃ electrode in 0.1 M HClO₄ after soaking in 1 mM U⁴⁺ for 10 min.

The absence of additional UO_2^{2+} in solution prevents the formation of a $\mathsf{UO}_2{}^2{}^+{}\cdots{}\mathsf{UO}_2{}^+$ cation-cation interactions and explains the absence of a UO₂⁺ oxidation. The large separation between the U⁴⁺ oxidation and UO₂²⁺ reduction ($\Delta E = 1.22$ V) highlights the challenges associated with the reversible formation and destruction of the uranyl structure. Successive cycling of uranium-soaked nITO | P3 electrodes in fresh 0.1 M HClO₄ results in a minor reductive shoulder at ~+0.3 V which is indicative of a minor amount of UO_2^+ generated from the oxidation of U⁴⁺. This assignment was confirmed by performing partial bulk reduction of a 1 mM UO₂²⁺ solution at -0.2 V in 0.1 M HClO₄ with a Pt coil electrode to generate a solution that includes UO_2^{2+} , U^{4+} and UO_2^{+} (Figure S25). CVs of the resultant solution feature a more prominent UO₂⁺ reduction to U(IV) at +0.26 V (Figure 4). Square-wave voltammetry of this partially reduced solution more clearly shows the reduction of U(V) (Figure S26).

Figure 4. CV starting at 1.5 V of *n*ITO|P₃ electrode in 0.1 M HClO₄ acquired at 50 mV/s in a 1 mM U solution containing UO_2^{2+} , UO_2^+ , and U^{4+} from reduction at -0.20 V (Figure S15).

To understand the effect proton concentration has on the electrochemical behaviour of uranium at nITO|P₃ electrodes, the proton concentration was varied. In 3 M HClO₄, at bare nITO with 1 mM UO₂²⁺, an increase in reductive current with E < -0.1 V is observed with a possible UO₂⁺ re-oxidation at -0.05 V (Figure S27). This behaviour is similar to what has been reported at a Pt electrode in 0.1 M HClO₄, ^{12, 15} With a nITO|P₃ electrode, a peak for the UO₂²⁺ reduction to U⁴⁺ is observed at -0.19 V, while again a minor UO₂⁺ oxidation is observed at +0.05 V. In contrast to studies in 0.1 M HClO₄, in 3 M HClO₄, UO₂ oxidation is not observed, and solely oxidation of U⁴⁺ is observed (E_{ox} = 1.10 V).¹² Adjusting the CV windows of nITO|P₃ electrodes soaked in 1 mM UO₂²⁺ for 10 min highlights features of the electrochemical

behaviour of uranium in 3 M acid at nITO|P₃ (Figure S28). Cycling between 0 V and 1.4 V do not feature any U-based redox events since only U(VI) is bound to the P₃ ligand (Figure S29). Performing a full CV scan starting at 1.4 V to -0.4 V and ending at 0.6 V features a prominent UO₂²⁺ reduction at -0.25 V. This feature is less intense on a subsequent cycle which scans between +0.6 V and -0.4 V. This is because the U⁴⁺ formed from the previous full scan was not re-oxidized and now occupies some of the spaces on the P_3 ligand, and therefore less UO_2^{2+} present. A final full scan reproduces the previous full scan with a full intensity UO₂²⁺ reduction event. These multiple cycles confirm that U⁴⁺ binds to P₃ even at these high acidity solutions. Varying the proton concentration from 0.1 M to 3 M using a constant ionic strength of 3 M through the addition of NaClO₄ highlights the proton dependence of the observed U-based redox couples using nITO|P₃ in the presence of 1 mM UO₂²⁺ (Figure S31) and after soaking in 1 mM UO₂²⁺ for 10 min (Figure S32). The reduction ascribed to eq. 5 at nITO | P₃ is expected to have a pH dependent slope of -118 mV/pH unit if it adheres to the Nernst equation (eq. 2).

$$E = E^{o} - \frac{Rt}{nF} \ln \frac{[Red]}{[Ox]} - 0.059 \frac{n_{H^{+}}}{n_{e^{-}}} pH$$
(2)

$$UO_2^2^+ + 1e^- \to UO_2^+ \tag{3}$$

$$UO_{2}^{2+} + 2e^{-} + 4H^{+} \rightarrow U^{4+} + 2H_{2}O$$
(4)
(4)

$$U^{4+}_{2} + 2H_{2}O \rightarrow UO_{2}^{+} + 1e^{-} + 4H^{+}$$
(6)

$$UO_2^+ \to UO_2^{2+} + 1e^-$$
 (7)

$$U^{4+} + 2H_2 O \rightarrow UO_2^{2+} + 2e^- + 4H^+$$
(8)

Assuming that the proton activity is equal to its concentration, the pH dependence of *n*ITO|P₃ electrodes soaked in UO₂²⁺ have a slope of -88 mV/pH unit, which suggests an electron-proton ratio between 1:1 and 1:2 and indicates that both the 1-electron (eq. 3 and 4) and 2-electron (eq. 5) reductions of UO₂²⁺ are occurring. The oxidation event which we ascribed to the oxidation of U⁴⁺ to UO₂²⁺ has a pH dependent slope of -102 mV/pH at *n*ITO|P₃ and is within expectations to assign the peak to the 2-electron oxidation of *n*ITO|P₃ bound U⁴⁺ to bound UO₂²⁺(eq. 8). The oxidation of UO₂⁺ (eq. 7) observed in solutions containing UO₂²⁺ is independent of proton concentration (as expected).

The shape of the catalytic UO_2^{2+} reduction at $nITO|P_3$ makes it possible to perform the foot-of-the-wave analysis (FOTW analysis) developed by Savéant and co-workers to determine the related catalytic rate constants.¹⁶ This includes using eq. 9 and eq. 10 to derive eq. 11 for our heterogenous system. In eq. 9-11, i is the experimentally measured current during catalysis, i_p is the current associated with the reduction of the substrate in the absence of the catalyst, Γ is the surface coverage of P_3 bound UO_2^{2+} , F is the Faraday constant, R is the ideal gas constant, T is the temperature, A is the electrode area, E is the applied potential, E^o is the reduction potential for UO_2^{2+} , v is the scan rate, and k_{obs} is the observed rate constant associated with the catalytic process.

$$i_p = \frac{rA}{4RT}$$
(9)

$$i = \frac{2FAI}{1 + \exp\left[\frac{F}{RT}(E - E^o)\right]} k_{obs}$$
(10)

COMMUNICATION

Chemical Communications

$$\frac{i}{i_p} = \frac{8RT}{Fv\left\{1 + \exp\left[\frac{F}{RT}(E - E^o)\right]\right\}} k_{obs}$$
(11)

In 0.1 M HClO₄, k_{obs} for the reduction of UO₂²⁺ at *n*ITO|P₃ can be determined from the slope of the rising region of eq. 5 where interferences from catalyst inhibition from bound U⁴⁺ are minimized. Varying the concentration of UO₂²⁺ from 0.01 mM to 0.5 mM (Figure S33), we observe a linear increase in k_{obs} (Figure 5) from 1 s⁻¹ to 5 s⁻¹. The H/D kinetic isotope effect (KIE) for UO₂²⁺ reduction at *n*ITO|P₃ was determined by comparing the k_{obs} value determined from FOTW analysis in 0.1 M HClO₄ and DClO₄ (Figure S34). A KIE value of 1.8 from these experiments indicates the rate limiting step in the reduction of UO₂²⁺ to UO₂²⁺ at *n*ITO|P₃ involves proton transfer. This is consistent with expectations of a fast reduction of UO₂²⁺ to UO₂⁺ followed by a rate limiting reduction of UO₂⁺ to U⁴⁺ (eq. 12 and 13). The P₃ ligand is clearly involved in this rate limiting step as no catalysis is observed at bare *n*ITO.

 $nITO|P_3(UO_2^{2+}) + 1e^{-} \rightarrow nITO|P_3(UO_2^{+})$ (fast) (12)

Figure 5. FOTW analysis of the reduction of UO_2^{2+} at a $nITO|P_3$ electrode in 0.1 M HClO₄. First order rate constants (k_{obs}) values were determined from slopes of the rising region.

In summary, *n*ITO | P₃ electrodes effectively facilitate both the 2electron reduction of UO_2^{2+} and the 2-electron oxidation of U^{4+} in acidic solutions and feature good chemical reversibility in these conditions. The rate-determining step in the decomposition or formation of the uranyl cation involves PCET. FOTW analysis for the reduction of UO22+ indicates it is first order in uranyl concentration. Given that reduction of UO₂²⁺ to U(IV) is observed at $nITO|P_3$ electrodes at proton concentrations up to 3 M, while this is not observed at bare *n*ITO or *n*ITO | PO₄ (Figure S20), it can be concluded that the P_3 ligand is involved in this critical PCET event. The redox behaviours of uranium uncovered here provide a reference for the redox behaviour of transuranic elements with a special interest in Am(III) which may feature electrocatalytic oxidation to AmO₂⁺ or AmO₂²⁺, especially in concentrated acid solutions where AmO_2^+ can disproportionate to form AmO_2^{2+} .

This research was supported by the U.S. Department of Energy (US-DOE), Office of Nuclear Energy through the Nuclear Energy University Program (NEUP) under award number DE-NE0008539, and the Center for Actinide Science and funded by the US-DOE, Office of Science, Basic Energy Sciences, under Award Number DE-SC0016568. J.R.M was supported by the U.S. Nuclear Regulatory Commission with a Graduate Student Fellowship (NRC-HQ-84-14-G-0038).

Conflicts of interest

There are no conflicts to declare.

Notes and references

1. A. Kiernicki, J. J.; Cladis, D. P.; Fanwick, P. E.; Zeller, M.; Bart, S. C., *J. Am. Chem. Soc.* 2015, **137**, 11115–11125; B. Denning, R. G., *J. Phys. Chem. A* 2007, **111**, 4125-4143; C. Cowie, B. E.; Purkis, J. M.; Austin, J.; Love, J. B.; Arnold, P. L., *Chem Rev* 2019, **119**, (18), 10595-10637.

2. A. Nocton, G.; Horeglad, P.; Vetere, V.; Pecaut, J.; Dubois, L.; Maldivi, P.; Edelstein, N. M.; Mazzanti, M., *J. Am. Chem. Soc.* 2010, *132*, 495–508; B. Teyar, B.; Boucenina, S.; Belkhiri, L.; Le Guennic, B.; Boucekkine, A.; Mazzanti, M., *Inorg Chem* 2019, *58*, (15), 10097-10110.

3. A. Ekstrom, A., *Inorg. Chem.* 1974, **13**, (9), 2237-2241; B. Newton, T. W.; Baker, F. B., *Inorg. Chem.* 1965, **4**, (8), 1166-1170; C. Madic, C.; Guillaume, B.; Morisseau, J. C.; Moulin, J. P., *J. Inorg. Nucl. Chem.* 1979, **41**, 1027-1031.

4. Lumetta, G. J.; Allred, J. R.; Bryan, S. A.; Hall, G. B.; Levitskaia, T. G.; Lines, A. M.; Sinkov, S. I., *Sep. Sci. Tech.* 2019, *54*, (12), 1977-1984.

5. McCann, K.; Mincher, B. J.; Schmitt, N. C.; Braley, J. C., *Ind. Eng. Chem. Res.* 2017, *56*, (22), 6515-6519.

6. Gelis, A. V.; Kozak, P.; Breshears, A. T.; Brown, M. A.; Launiere, C.; Campbell, E. L.; Hall, G. B.; Levitskaia, T. G.; Holfeltz, V. E.; Lumetta, G. J., *Sci. Rep.* 2019, *9*, (1), 12842.

7. Myasoedov, B. F.; Mikhailov, V. M.; Lebedev, I. A.; Koiro, O. E.; Frenkel, V. Y., *Radiochem. Radioanal. Lett.* 1973, *14*, 17.

8. A. Chiang, M.-H.; Soderholm, L.; Antonio, Mark R., *Eur. J. Inorg. Chem.* 2003, **2003**, 2929-2936; B. Bell, N. L.; Shaw, B.; Arnold, P. L.; Love, J. B., *J. Am. Chem. Soc.* 2018, **140**, (9), 3378-3384.

9. Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J., *Science* 2015, *350*, (6261), 652-655.

10. Lopez, M. J.; Sheridan, M. V.; McLachlan, J. R.; Grimes, T. S.; Dares, C. J., *Chem. Commun.* 2019, *55*, (28), 4035-4038.

11. Ilton, E. S.; Bagus, P. S., Surf. Inter. Anal. 2011, 43, (13), 1549-1560.

12. Ikeda-Ohno, A.; Hennig, C.; Tsushima, S.; Scheinost, A. C.; Bernhard, G.; Yaita, T., *Inorg. Chem.* 2009, *48*, (15), 7201-7210.

13. Agarwal, R.; Sharma, M. K., *Inorg. Chem.* 2018, **57**, (17), 10984-10992.

14. Eller, P. G.; Penneman, R. A., *J. Less. Comm. Met.* 1987, **127**, 19-33.

15. Mizuguchi, K.; Park, Y.-Y.; Tomiyasu, H.; Ikeda, Y., *J. Nucl. Sci. Tech.* 1993, *30*, (6), 542-548.

16. Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M., *J. Amer. Chem. Soc.* 2012, **134**, (27), 11235-11242.

17. Sheridan, M. V.; McLachlan, J. R.; Gonzalez-Moya, J. R.; Cortes-Medina, N. D.; Dares, C. J., *ACS Appl Mater Interfaces* 2021, *13*, (33), 40127-40133.