ChemComm

Mesoporous Perovskite Titanates via Hydrothermal Conversion

Journal:	ChemComm
Manuscript ID	CC-COM-09-2021-005343.R1
Article Type:	Communication

COMMUNICATION

Received 00th January 20xx,

Mesoporous Perovskite Titanates via Hydrothermal Conversion

Tianyu Li^a and Efrain E. Rodriguez^a

Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

We demonstrate the successful hydrothermal conversion of mesoporous TiO_2 to mesoporous perovskite $SrTiO_3$. This method allows for control of pore size distribution and can be readily applied for the preparation of other mesoporous titanates such as $BaTiO_3$ and Li_2TiO_3 . Such high-surface perovskites have potential in high-temperature applications due to their thermal stability.

ABO₃ perovskite oxides have drawn great interest in multiple research fields such as catalysis^{1,2}, solid oxide fuel cells³ and oxygen storage⁴ due to their highly modifiable structure, adjustable chemical composition, and extraordinary thermal and mechanical stabilities. SrTiO₃ is one of the most studied perovskite oxides and is widely used as a photocatalyst and support for other catalysts^{5,6}. Compared with the various polymorphs of TiO₂, SrTiO₃ is chemically more modifiable (i.e., can support more doping and substitutions) and displays superior thermal and mechanical stabilities. However, high surface areas (100-300 m²/g) are easily achievable in mesoporous TiO₂ whereas most reports for SrTiO₃ show low surface areas (<10m²/g). The low surface area of SrTiO₃ materials greatly limits potential applications in catalysis.

Great effort has been made to synthesize mesoporous metal oxides for various applications^{7–9}. To synthesize a mesoporous oxide, one usually employs templates (including silicates^{10,11} carbon¹², and block copolymers^{13–15}) to control the final pore architecture. The main impediment for preparing mesoporous SrTiO₃ with high surface areas lies in the relatively high preparation temperatures compared to those of binary metal oxides. Since the synthetic temperature of TiO₂ is relatively low (< 400°C), such templates persist during synthesis or break down slowly enough to preserve the porosity¹⁶. Common approaches to synthesize SrTiO₃ include either solid state¹⁷ or sol-gel reactions¹⁸. Both reactions occur at relatively high

temperatures (> 700°C) and are therefore not amenable to traditional templating strategies. Soft templates will break down before ternary oxides such as SrTiO₃ can crystallize. Hard templates, such as carbon or silica, either react with SrTiO₃ or the precursors and are not suitable for obtaining pure products. To circumvent the problem of thermal instability of templating agents, we must turn down the temperature of synthesis. We found a reaction that occurs at significantly lower temperatures to form $SrTiO_3$. $SrTiO_3$ can form at 100-300°C through a hydrothermal reaction between solid TiO₂ and Sr(OH)₂ solutions^{19,20}: TiO₂(s) +Sr(OH)₂(aq) \rightarrow SrTiO₃(s) + H₂O(l). As mentioned previously, mesoporous TiO₂ can be easily prepared via plenty of routes. Thus, our strategy is to convert mesoporous TiO₂ into mesoporous SrTiO₃ via this hydrothermal reaction instead of directly synthesis of mesoporous SrTiO₃ through precursor reagents on a template. This alternative approach should be more facile due to the significantly lower reaction temperatures. In this study, we explore hydrothermal reactions between solid TiO₂ and Sr(OH)₂ solutions and study the best routes for the conversion of mesoporous TiO_2 to mesoporous SrTiO₃. We summarize our three major strategies and findings in the schematic presentation shown in Figure 1. First, we present direct conversion of mesoporous crystalline TiO₂ to SrTiO₃ under hydrothermal conditions. We synthesized high surface area mesoporous crystalline TiO₂ via the Evaporation Induced Self-Assembly (EISA) method reported elsewhere¹⁶. Next, we placed the as-synthesized mesoporous crystalline TiO₂ in water with excessive Sr(OH)₂, followed by hydrothermal treatment at 200°C for 24 hours. The solid product was washed several times with dilute acetic acid and

water to remove excess Sr(OH)₂ and then dried in air at 90 °C.

The detailed synthesis, as well as the basic characterizations,

are presented in the supplementary information (SI) file. The Xray diffraction (XRD) powder pattern (**Figure 1c**) reveals a pure

cubic phase of SrTiO₃, indicating a full conversion of

mesoporous crystalline TiO₂ into SrTiO₃. However, from

Transmission Electron Microscopy (TEM) (Figure 1b), we

observed that the original porosity of mesoporous crystalline

^{a.a} Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2115, USA

^{b.} Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Figure 1. Illustration of strategies as well as TEM, XRD and pore distribution (From nitrogen adsorption measurement) results for converting mesoporous TiO_2 into mesoporous $SrTiO_3$: a)-d) Direct hydrothermal conversion. e)-h) Hydrothermal conversion of mesoporous crystalline TiO_2 after filling carbon support into pores. i)-l) Hydrothermal conversion of amorphous TiO_2 after filling carbon support into pores. Scale bar of the TEM is 100 nm.

TiO₂ was totally lost after the direct conversion to SrTiO₃. The TEM image clearly shows that SrTiO₃ products are nanoparticles with the size range of 30-50 nm, much larger than the single grain size of original mesoporous TiO₂ (~10 nm). Rietveld refinement of the crystal structure with the XRD powder pattern indicates the refined crystalline size of SrTiO₃ is ~50 nm, consistent with TEM observation. The surface area and pore volume of the original mesoporous TiO₂ is 205.7 m²/g and 0.345 cm³/g, respectively; they dramatically decrease to 15 m²/g and 0.05 cm³/g after conversion. Therefore, while this route affords full conversion of TiO₂ to SrTiO₃, the change only occurred at the atomic scale while the microstructure was completely lost.

The hydrothermal conversion of TiO_2 into $SrTiO_3$ in $Sr(OH)_2$ is reported to be a dissolution–precipitation process²⁰ whereby TiO_2 first dissolves in the highly basic solution and then recrystallizes to $SrTiO_3$. In mesoporous TiO_2 , the closely packed particle grains help form the porous structure. The dissolution– precipitation process will therefore destroy the original porous structures, which cannot be recovered when $SrTiO_3$ precipitates due to the lack of any structure directing agent during the recrystallization step. Converting mesoporous TiO_2 to $SrTO_3$ while retaining porosity is not likely with only $Sr(OH)_2$ as the mineralizer. We therefore investigated alternative routes.

Since random and unconfined recrystallization of SrTiO₃ during the hydrothermal treatment prevents direct conversion, our next step was to effectively confine recrystallization during the hydrothermal treatment of mesoporous TiO₂. A common strategy to limit recrystallization is to use a physical barrier (template or support). Thus, we decided to fill the pores of mesoporous crystalline TiO₂ with a support before hydrothermal treatment. We started from the same mesoporous crystalline TiO₂ and then filled its pores with sugar (glucose). We then calcinated the mixture under Ar to carbonize the sugar. Once the composite TiO₂/carbon was formed, we treated it hydrothermally using the same treatment previously described. We recovered the final product after calcination in air at 450 °C for 4h to fully burn out the carbon support.

From this second procedure, we clearly see a mesoporous structure retained after hydrothermal treatment, as shown in the TEM images of the final product (Figure 1f). The particles, stacked to form the mesopores, are around 16.6 nm in size, which indicates that the carbon support during the hydrothermal effectively conversion confines SrTiO₂ recrystallization. The BET surface area of the product is $58 \text{ m}^2/\text{g}$, far beyond the previous SrTiO₃ product from the direct hydrothermal conversion. Figure 1h displays the pore distribution from nitrogen adsorption isotherms. The narrow pore size distribution indicates the mesoporous nature of the material is maintained. We found the mean pore size to be around 4 nm, smaller than the mean pore size of the original TiO_2 material (6nm). The pore volume is smaller (0.078 cm³/g) than the original TiO_2 (0.345 cm³/g), and we attribute the decrease of the pore size and volume to lattice expansion from anatase TiO₂ to perovskite SrTiO₃.

While the carbon support maintains the porous structure during hydrothermal conversion, unreacted TiO₂ remained in the final product. Selected Area Electron Diffraction (SEAD) images (**Figure S2f**) shows diffraction peaks from anatase TiO₂ in addition to cubic SrTiO₃. Diffraction peaks from anatase are also present in the XRD powder patterns, and structural refinements (**Figure 1g**) indicate around 24 wt. % anatase in the final product. Even after increasing the hydrothermal reaction time from 24 h to 96 h, we still observed around 10 wt. % anatase TiO₂ (**Figure S5**) in the final product. A clue as to the incomplete conversion from TiO₂ to SrTiO₃ comes from surface area measurements: while the original mesoporous TiO₂ has a surface area of around 200 m²/g, after filling with the carbon support, it falls below 5 m²/g. We believe the lower surface area from the filled pores leads to slower reaction kinetics.

Journal Name

Using a carbon support proved to be an effective approach to maintaining porosity but resulted in slow reaction kinetics. We therefore strategized to use amorphous instead of crystalline TiO₂ since amorphous materials can display higher reactivities and smaller lattice energies. We synthesized mesoporous amorphous TiO₂ via a modified EISA method²¹. Weak diffraction peaks observed in the XRD pattern (**Figure S6a**) confirms its amorphous nature. Nitrogen adsorption measurements show it has a similar surface area and pore size distribution as the mesoporous crystalline TiO₂ (**Figure S7**). We then adapted the same procedure to fill the carbon support, conducted hydrothermal conversion for 24h and finally removed the carbon support to yield mesoporous SrTiO₃.

Through various characterization techniques, we found that this new procedure produced pure and mesoporous SrTiO₃ product (Figure 1i-I). TEM images and nitrogen adsorption measurements confirm that the SrTiO₃ from mesoporous amorphous TiO₂ retains its mesoporous nature. We detected no anatase TiO₂ phase from both SEAD and XRD. The HRTEM image is shown on Figure S8c. We mostly observe lattices from the (110) and (001) facets, which are commonly exposed in $SrTiO_3$ nanomaterials. Given that amorphous materials do not display sharp diffraction peaks, it is possible that some residual amorphous TiO₂ remains in final mesoporous SrTiO₃. To verify there is no amorphous TiO₂ left in the product, we calcined both mesoporous amorphous TiO_2 and our mesoporous $SrTiO_3$ in air. After calcination in air at 450 °C for 4 h, XRD (Figure S9b) shows that the amorphous TiO_2 crystalized to the anatase phase. However, for the mesoporous SrTiO₃ product, no other crystalline phase appeared even after 8h of calcination at 650°C in air (Figure S10). Therefore, TiO₂ fully converted to SrTiO₃ after hydrothermal treatment. We note that the surface area and refined crystal grain size (Figure S10) of the mesoporous SrTiO₃ remained nearly identical after the calcination step.

Our final strategy of using a carbon support and starting with amorphous TiO₂ was successful but still involved multiple reaction steps. We therefore considered ways to simplify the syntheses. It has been reported that carbon-filled TiO_2 composites can be directly synthesized by adding a carbon source during the EISA process²². Using a similar strategy (adding a certain amount of sugar in the EISA process), we directly synthesized amorphous TiO₂/C composites and treated them hydrothermally with Sr(OH)₂. This simplified procedure worked well enough to produce mesoporous SrTiO₃ with relatively high surface areas. However, TEM and nitrogen adsorption (Figure S11) measurements indicate that the TiO_2/C composites were still porous, though much less than the mesoporous TiO₂. By reintroducing the step of filling with a carbon support during the whole process, we observed a larger surface area (74 vs 54 m^2/g) and a more confined pore size distribution (Figure S12). Thus, filling carbon into mesoporous TiO_2 worked better than preparing and using TiO_2/C as the precursor to SrTiO₃.

Interestingly, the pore sizes of $SrTiO_3$ from the TiO_2/C composites are much larger than the ones from carbon-filled TiO_2 (12 vs. 4 nm), as presented in **Figure S15**. Such observation indicates one can control the pore size distribution of

mesoporous SrTiO₃ using the TiO₂/C composite as a precursor. Based on this hypothesis, we synthesized several TiO₂/C composites by varying the ratios of the carbon source (sugar) to Ti-precursor during the EISA. We also filled the composites with an extra carbon support to maximize confinement during the hydrothermal conversion. As presented in **Figure 2b**, the pore size of SrTiO₃ can be effectively adjusted from 4 nm to 12 nm by adding a different amount of carbon source during the EISA step. By increasing the carbon ratio in the TiO₂/C composites, the gaps between TiO₂ grains grow, which leaves larger pore after removing the carbon. Besides pore size enlargement, we also found the pore size distribution becomes wider as the carbon ratio is increased, which is possible because adding sugar disrupts the EISA process.

Small Angle X-ray Scattering (SAXS) (**Figure 2c**) on all samples is free of Bragg peaks, indicating that the mesopores are disordered. The small signature around $q = 10^{-3}$ Å correlate to the mesopores, and moves linearly towards lower q (i.e., to larger size in real space) as the carbon(sugar) ratio was increased during synthesis. This observation in the SAXS data is consistent with the pore size distribution from nitrogen adsorption measurements. In the Porod region (high q-range) of the SAXS data, all scattering curves show log I independence of log q^4 , implying the stacking grains are nearly spherical²³. The scattering data is therefore consistent with the observed shapes of particle grains in the TEM images (Figure S4 and S14). The surface areas of mesoporous SrTiO₃ are listed in Table S3, and those of some representative SrTiO₃ materials are listed in Table S5 for comparison. The largest surface areas among our

Figure 2. a) Nitrogen adsorption/desorption isotherm, b) Pore size distribution and c) Small Angle X-ray Scattering characterization of mesoporous $SrTiO_3$ from hydrothermal conversion of TiO_2/C composite with different carbon (sucrose) ratio.

1

2

3

4

5

7

8

9

COMMUNICATION

Page 4 of 4 Journal Name

samples reach up to 127m²/g, which is among one of the highest reported on mesoporous SrTiO₃. While the surface area of mesoporous $SrTiO_3$ is lower than that of the original TiO_2 $(\sim 200 \text{m}^2/\text{g})$, SrTiO₃ is much heavier than TiO₂. If we convert the unit of surface area from m^2/g to $m^2/mol,$ the surface area of as-synthesized $SrTiO_3$ (23446 m²/mol) is higher than that of mesoporous TiO₂ (16008 m²/mol), as shown in **Table S3**. Up to now, we have demonstrated that we can convert mesoporous TiO_2 to mesoporous $SrTiO_3$ with tunable pore size distributions. We wanted to know, however, whether our synthesis is more general than that of preparing SrTiO₃. We therefore applied it towards the preparation of other ternary titanates. BaTiO₃ and CaTiO₃ are also perovskite oxides with wide applications. By simply switching $Ba(OH)_2$ from $Sr(OH)_2$ in the hydrothermal treatment, mesoporous BaTiO₃ with tunable pores can be synthesized (Figure S16 and S17). The surface area of our mesoporous BaTiO₃ is already one of the highest among the reported BaTiO₃ materials. However, we could not prepare mesoporous CaTiO₃ with our method, likely because of the low solubility of Ca(OH)₂. Mesoporous Li₂TiO₃ with narrow pore size distribution can be also synthesized by switching to LiOH from Sr(OH)₂ (Figure **S18**). Li₂TiO₃ is an anode material in the fastcharging lithium battery systems, so the utilization of mesoporous Li_2TiO_3 could maximize the contact between electrode and electrolyte to further promote the kinetics of

electrochemical processes. In summary, we successfully synthesized mesoporous \mbox{SrTiO}_3 via hydrothermal conversion of mesoporous TiO₂. We found two key steps for successful conversion: 1) utilization of a carbon support to retain porosity during the hydrothermal treatment, and 2) utilization of amorphous instead of crystalline TiO_2 to speed up reaction kinetics. The as-synthesized mesoporous SrTiO₃ displays a narrow pore size distribution. This method allows us to control pore size by a simple adjustment of the carbon source ratio during the EISA synthesis of TiO₂. The tunability of the pore size distributions might broaden the applications of mesoporous SrTiO₃. Our method can also be easily modified to synthesize mesoporous BaTiO₃ and Li₂TiO₃ with high surface areas. Our method does not require high precision of reaction parameters to control the synthesis and can be easily scaled up. Mesoporosity in perovskites can lead to improvement in their electro- or photocatalytic activities as larger surface areas allow for more efficient electron/photon collection and contact with reactants. Furthermore, with much higher surface areas, these oxides now can host active metal clusters or even single atoms at concentrations sufficiently high to boost catalytic activity²⁴. Compared with most mesoporous binary metal oxides, mesoporous perovskite SrTiO₃ and BaTiO₃ possess outstanding thermal and mechanical stability, implying their potential in high temperature settings.

This work supported by the Department of Defense (grant HDTRA11910001).

Conflicts of interest

The authors declare no competing financial interest.

References

- J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao and J. Li, *ACS Catal.*, 2014, **4**, 2917–2940.
- M. A. Peña and J. L. G. Fierro, *Chem. Rev.*, 2001, **101**, 1981– 2017.
- S. J. Skinner, Int. J. Inorg. Mater., 2001, **3**, 113–121.
- J. Vieten, B. Bulfin, F. Call, M. Lange, M. Schmücker, A. Francke, M. Roeb and C. Sattler, *J. Mater. Chem. A*, 2016, 4, 13652–13659.
- T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi and K. Domen, *Nature*, 2020, **581**, 411–414.
- 6 S. Ouyang, H. Tong, N. Umezawa, J. Cao, P. Li, Y. Bi, Y. Zhang and J. Ye, *J. Am. Chem. Soc.*, 2012, **134**, 1974–1977.
 - D. Gu and F. Schüth, Chem. Soc. Rev., 2014, 43, 313–344.
 - Y. Ren, Z. Ma and P. G. Bruce, *Chem. Soc. Rev.*, 2012, **41**, 4909–4927.
 - C. Li, Q. Li, Y. V. Kaneti, D. Hou, Y. Yamauchi and Y. Mai, *Chem. Soc. Rev.*, 2020, **49**, 4681–4736.
- 10 S. C. Laha and R. Ryoo, *Chem. Commun.*, 2003, **3**, 2138–2139.
- 11 X. Deng, K. Chen and H. Tüysüz, *Chem. Mater.*, 2017, **29**, 40– 52.
- 12 X. Lai, X. Li, W. Geng, J. Tu, J. Li and S. Qiu, *Angew. Chemie -Int. Ed.*, 2007, **46**, 738–741.
- 13 P. Mei, Y. V. Kaneti, M. Pramanik, T. Takei, Ö. Dag, Y. Sugahara and Y. Yamauchi, *Nano Energy*, 2018, **52**, 336–344.
- L. Liu, X. Yang, Y. Xie, H. Liu, X. Zhou, X. Xiao, Y. Ren, Z. Ma,
 X. Cheng, Y. Deng and D. Zhao, *Adv. Mater.*, 2020, **32**, 1906653.
- D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, *Science (80-.).*, 1998, **279**, 548– 552.
- 16 W. Li, Z. Wu, J. Wang, A. A. Elzatahry and D. Zhao, *Chem. Mater.*, 2014, **26**, 287–298.
- 17 Y. Liu, L. Xie, Y. Li, R. Yang, J. Qu, Y. Li and X. Li, J. Power Sources, 2008, 183, 701–707.
- W. Xuewen, Z. Zhiyong and Z. Shuixian, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2001, 86, 29–33.
- 19 F. A. Rabuffetti, H. S. Kim, J. A. Enterkin, Y. Wang, C. H. Lanier, L. D. Marks, K. R. Poeppelmeier and P. C. Stair, *Chem. Mater.*, 2008, **20**, 5628–5635.
- V. Kalyani, B. S. Vasile, A. Ianculescu, A. Testino, A. Carino, M. T. Buscaglia, V. Buscaglia and P. Nanni, *Cryst. Growth Des.*, 2015, 15, 5712–5725.
- L. Robben, A. A. Ismail, S. J. Lohmeier, A. Feldhoff, D. W. Bahnemann and J. C. Buhl, *Chem. Mater.*, 2012, 24, 1268– 1275.
- 22 R. Liu, Y. Ren, Y. Shi, F. Zhang, L. Zhang, B. Tu and D. Zhao, *Chem. Mater.*, 2008, **20**, 1140–1145.
- 23 S. Ciccariello, *Acta Crystallogr. Sect. A*, 1989, **45**, 86–99.
- S. Tanaka, J. Lin, Y. V. Kaneti, S. Yusa, Y. Jikihara, T. Nakayama, M. B. Zakaria, A. A. Alshehri, J. You, M. S. A. Hossain and Y. Yamauchi, *Nanoscale*, 2018, **10**, 4779–4785.