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Abstract
To accurately predict grain boundary (GB) atomic structures and their energetics in CdTe, the 
present study constructs an artificial-neural-network (ANN) interatomic potential. To cover a 
wide range of atomic environments, large amounts of density-functional-theory (DFT) data are 
used as a training dataset including point defects, surfaces and GBs. Structural relaxation 
combined with the trained ANN potential is applied to symmetric tilt and twist GBs, many of 
which are not included in the training dataset. The relative stability of the relaxed structures and 
their GB energies are then evaluated with the DFT level. The ANN potential is found to accurately 
predict low-energy structures and their energetics with reasonable accuracy with respect to DFT 
results, while conventional empirical potentials critically fail to find low-energy structures. The 
present study also provides a way to further improve the transferability of the ANN potential to 
more complicated GBs, using only low-Σ GBs as training datasets. Such improvement will offer 
a way to accurately predict atomic structures of general GBs within practical computational cost.

1. Introduction
Polycrystalline semiconductors are actively investigated as clean-energy and low-cost materials 
in the photovoltaic and thermoelectric research areas. For CdTe, with the zincblende structure, its 
polycrystal has already drawn much attention as a p-type absorber material in thin-film solar cells, 
due to its high absorption coefficient and low processing cost. However, it exhibits lower 
efficiency than the single-crystal counterpart, mainly because of the presence of grain boundaries 
(GBs). They are considered to act as nonradiative recombination centers by creating deep gap 
states inside the band gap, as indicated by electron beam induced current (EBIC) mapping and 
cathodoluminescence (CL) measurements.1,2 Recent CL measurements combined with electron 
backscattered diffraction (EBSD) mapping indicated that carrier recombination velocity does not 
simply depend on grain misorientations but varies with GB planes.3 With the goal of uncovering 
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the exact role of GBs in carrier recombination, a better understanding of what type of GB creates 
detrimental gap states is a critical step in the research field of polycrystalline CdTe.

To reveal the relationship between GB structures and electronic properties, theoretical 
calculations have been widely used,4-8 sometimes combined with electron microscopy 
observations.4,5 Previous density-functional-theory (DFT) calculations indicated that specific 
symmetric tilt GBs (STGBs) have close Te-Te and Cd-Cd pairs whose antibonding and bonding 
states create deep gap states, respectively.4,5,7 On other hand, DFT calculations on other STGBs 
indicated that those GBs do not create deep gap states, although there are shallow gap states 
arising from GB atoms with dangling bonds.5,7 Park recently indicated that even for 
crystallographically the same GB, different atomic structures behave differently with respect to 
electronic structure: the lowest-energy structure with non-mirror symmetry does not have deep 
gap states, while a commonly adopted structure with mirror symmetry exhibits a significant gap 
state in the band gap.8 These studies indicate that whether a GB acts as a recombination center 
strongly depends on its atomic structure. The accurate determination of stable atomic structures 
for GBs is thus essential, in order to reveal their exact electronic structures as well as other 
physical properties.

In most cases, however, stable atomic structures of GBs are difficult to determine using 
DFT calculations alone due to their huge computational cost. To explore low-energy GB 
structures, γ-surface methods are most commonly used.9-11 In those approaches, many structures 
are initially generated by incrementally shifting one grain relative to the other, in order that they 
have different relative positions of two grains. Even for low-Σ STGBs, dozens of structures are 
often needed to sufficiently sample the γ surface at GBs. All initial structures must then be fully 
relaxed. More efficient methods have been also used to search for a wider range of candidate 
structures, including simulated annealing12,13 and evolutionary algorithm.14,15 Those methods need 
long-time molecular dynamics (MD) simulations and larger numbers of total-energy calculations. 
Thus those search methods are typically combined with empirical interatomic potentials rather 
than DFT calculations. However, the accuracy of empirical potentials significantly depends on 
substances and also GB structures.16,17 For CdTe GBs, the predictive ability of commonly used 
empirical potentials is severely impaired in prediction of relative GB energies between different 
atomic structures, as is discussed later.

To construct interatomic potentials with DFT accuracy, machine-learning potentials 
have become a mainstream.18,19 In this approach, machine-learning models are fitted to large 
amounts of DFT data (e.g., total energy, atomic force and stress tensor), so that they can 
approximate the DFT potential energy surface without numerically solving the Kahn-Sham 
equation. They have been focused on not only perfect crystal but also lattice defects, including 
point defects,20,22 surfaces,23,24 dislocations,25,26 and have demonstrated excellent transferability to 
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such complicated systems. Among such studies, their application to GBs is still very limited to 
simple systems such as Si27,28 and fcc metals.29 Although Mińkowski et al. recently reported 
artificial-neural-network (ANN) potentials for CdTe, they were aimed at predicting diffusion 
properties in the bulk.30 So far it remains unclear whether machine-learning potentials can be used 
for accurately predicting GB structures in CdTe. In addition, there is still no report on an efficient 
way of improving their transferability to general GBs, which obviously cannot be contained in 
the training dataset due to the need for very large computational cells.

In this work, an ANN potential is constructed with the goal of accurately predicting 
stable atomic structures of GBs and their physical properties in CdTe. The ANN potential is 
trained with large numbers of total energies and atomic forces obtained from DFT calculations. 
The training dataset contains point defects, surfaces and tilt and twist GBs, in order to sample a 
wide range of atomic environments of lattice defects including GBs. The trained ANN potential 
is combined with a γ-surface method with structural relaxation and then applied to ten different 
GBs. Their GB energies are again calculated with the DFT level, in order to evaluate whether the 
ANN potential can accurately distinguish between low- and high-energy structures and also to 
predict their GB energies. Furthermore, the present study provides an efficient way to generate 
training datasets, in order to improve the transferability of the ANN potential to 
crystallographically complex GBs that are not included in the training dataset. 

2. Computational method
2.1 DFT calculation
To generate training and test datasets, DFT calculations based on the projector augmented wave 
(PAW) method31,32 were performed using the Vienna Ab initio Simulation Package (VASP).33,34 
A plane-wave basis set was used to expand wave functions, and its energy cutoff was chosen to 
be 500 eV. The electrons in the 4d and 5s orbitals for Cd and in the 5s and 5p orbitals for Te were 
explicitly treated as valence electrons. The revised generalized gradient approximation 
parameterized by Perdew, Burke and Ernzerhof (GGA-PBEsol)35 was employed to calculate the 
exchange-correlation energy. The convergence criterion of total energy was set to 10-6 eV. 
Training datasets based on DFT-MD simulations were also obtained using the Parrinello-Rahman 
dynamics with the Langevin thermostat.36,37 Both the NVT and NPT conditions were used with a 
time step of 2 fs.

2.2 Construction of ANN potential
To construct an ANN potential, a feed-forward network with two hidden layers was implemented 
in our in-house code, which is based on that reported by Behler.38 Two- and three-body symmetry 
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functions,38 denoted by  and  for atom i, were employed. Their functional forms are 𝐺2
𝑖 𝐺3
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where , , , , and  are the hyperparameters, and  is the number of atoms in the 𝜂2 𝑅𝑠 𝜁 𝜃 𝜂3 𝑁𝑐
𝑖

cutoff radius for atom i. ,  and  represent the distance between atoms ij, ik, and jk, 𝑅𝑖𝑗 𝑅𝑖𝑘 𝑅𝑗𝑘

respectively.  represents the angle between bonds ij and ik. Their hyperparameters are listed 𝜃𝑖𝑗𝑘

in Tables S1 and S2 in the Supporting Information. A cutoff function  is defined by𝑓c(𝑅𝑖𝑗)

. (3)𝑓c(𝑅𝑖𝑗) = {1
2[cos (𝜋𝑅𝑖𝑗

𝑅𝑐 ) + 1] (𝑅𝑖𝑗 ≤ 𝑅c)

0               (𝑅𝑖𝑗 > 𝑅c)

The cutoff distance  was chosen to be 7 Å. This value was found to give the minimum residual 𝑅c

among 6, 7, 8, 9 and 10 Å. The number of symmetry functions was chosen to be 66 (18 for  𝐺2
𝑖

and 48 for ), corresponding to the number of nodes in the input layer. The test calculations for 𝐺3
𝑖

determining the ANN hyperparameters are described Tables S3 and S4 in the Supporting 
Information.

Table 1 summarizes the training dataset generated. To account for various atomic 
environments, not only perfect-crystal cells but also simulation cells containing vacancies, anti-
site defects and surfaces were also contained. Additionally, symmetric tilt, twist and mixed GBs 

were considered. For STGBs, the ,  and  GBs Σ5(210)/[001] Σ5(310)/[001] Σ3(112)/[110]
were constructed. For the  STGB, crystallographically two different structures Σ3(112)/[110]
can exist, so-called the Cd- and Te-core, depending on the Cd-Te bond direction with respect to 
the normal to the GB plane. Thus both structures were constructed. For a twist GB, the 

 GB with a twist angle of 180° was constructed. To further consider various GB Σ3(112)/[112]
atomic environments for the training dataset, mixed GBs were also constructed by rotating one 

grain of the  STGB by 180° about the  axis. As a result, this mixed GB Σ3(112)/[110] [112]
has the (112) GB plane and the misorientation angles of 109.47° and 180° for tilt and twist 
components, respectively. The mixed GB also has the Cd- and Te-core, and both structures were 
thus included in the training dataset. To obtain reference structures of each GB, initial structures 
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were created by shifting one grain relative to the other along the GB plane and then fully relaxed. 
The relaxed structures were then used to generate the training dataset as described below.

To obtain various atomic environments from one reference structure, two approaches 
were used. One is to randomly displace atoms and to randomly change the cell shape. The 
maximum atomic displacement was set to 0.4 Å along each direction in the Cartesian coordinate. 
The computational cell was also subjected to contraction, expansion and shear deformation, by 
varying axis lengths and angles between axes with the maximum of ±20%, respectively. Total 
energies and atomic forces were then calculated by performing DFT single-point calculation and 
structural relaxation for a few iterations, and they were added to the training dataset. The other is 
to perform DFT-MD simulations for several hundreds of steps in the temperature range between 
200 and 1600 K. For single-crystal and GB cells, the NVT and NPT conditions were used, 
whereas only the NVT condition was used for surface cells. Snapshots extracted from those DFT-
MD simulations were then included in the training dataset. Totally 118050 total energies and 
6214545 atomic forces were used to train the ANN potential. The ANN potential was trained 
using the extended Kalman filter with weighted least squares.39 

2.3 Structural optimization with ANN potential
The ANN potential trained was used to predict the GB-structure-energy relationship. For this 
purpose, it was combined with the quasi-Newton method with the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm to perform structural relaxation, for which the atomic positions are 
updated using the atomic forces based on the ANN potential. In this calculation, a simulation cell 
with one GB plane and two surfaces was initially constructed as illustrated in Fig. 1(a). Here, the 
x-axis is aligned perpendicular to the GB plane, and the y- and z-axes are parallel to the GB plane. 
For all GBs examined, the x-axis length of a grain was chosen to be more than 40 Å to ensure that 
there is no interaction between the surfaces and GB. The width of a vacuum layer along the x-
axis was set to 10 Å, so that two surface do not interact. To obtain various pairs of GB structures 
and energies, one grain was stepwise shifted along the y- and z-axes with an increment of 0.5 Å, 
so that initial structures with different atomic positions at the GB were generated. All structures 
were then fully relaxed using the ANN potential until the atomic forces were less than 10-3 eV/Å. 
In structural relaxation, all atoms were allowed to move whereas the cell dimensions were fixed. 
From a relaxed structure (Fig. 1(b)), a simulation cell with two identical GB structures was 
reconstructed with three-dimensional (3D) periodic boundary conditions so as to eliminate the 
surface region, as illustrated in Fig. 1(c). The reconstructed cell was finally used to calculate the 
GB energies for the ANN and DFT calculation. Similar calculations were also performed using 
conventional empirical potentials implemented in the LAMMPS code,40 in order to examine their 
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transferability to GBs. For this purpose, Stillinger-Weber (SW)41 and bond-order (BO) 
potentials42 were selected.

The abovementioned procedure was applied to two classes of GB structures. One is GBs 

contained in the training dataset, the ,  STGBs and Σ5(210)/[001] Σ5(310)/[001] Σ3(112)/[
 twist GB. The other is GBs not included in the training dataset. The latter is more important 110]

in the sense that ultimately the ANN potential must sustain its transferability even to general GBs, 
which are naturally difficult to contain in the training dataset due to the need for very large 

computational cells. Here, the latter class contained STGBs (  and Σ13(320)/[001]
) and five twist GBs with the twist angle of 180° ( , Σ13(510)/[001] Σ3(111)/[111]

, ,  and ).Σ9(114)/[114] Σ9(221)/[221] Σ11(113)/[113] Σ11(332)/[332]

3. Results and discussion
3.1 Errors of ANN potential for training and test datasets
Figures 2 shows the correlation between the ANN and DFT values. For the training dataset (red 
point), including perfect-crystal structures, point defects, surfaces and GBs, all data points are 
distributed near the diagonal line, without large deviation. This indicates that the present ANN 
potential have sufficiently learned all types of structures without significant errors. The mean 
absolute error (MAE) values over all data points are calculated to be 3.21 meV/atom and 40.1 
meV/Å for the total energies and atomic forces, respectively. These values are the same level as 
those of previous studies on machine-learning potentials,28,29,43 although a quantitative 
comparison is often difficult since MAE values strongly depend on training datasets. Table 1 
summarizes the MAE value for each training dataset. Although the MAE values vary depending 
on the individual structures, they are comparable to each other. It is thus expected that even for 
GBs, standard molecular simulations with the ANN potential are possible with acceptable 
accuracy.

It is noted that the energy MAE of the single-crystal-based structures is evaluated to be 
5.90 meV/atom, slightly larger than the other datasets. This is because this dataset includes 
simulation cells that are substantially contracted or compressed by the maximum of ±20% from 
the original cell dimension. We empirically find that it is difficult for ANN potentials to learn 
such structures with small errors when other various structures are also included in the training 
dataset at the same time. Nevertheless, the ANN potential well reproduces the volume dependence 
of the potential energy obtained from DFT calculations, as shown in Fig. 3(a). For the zincblende 
structure of CdTe, the ANN potential predicts the lattice constant to be 6.51 Å, which is in 
quantitative agreement with the DFT value (6.50 Å). Figure 3(b) also shows the phonon 
dispersion curve and density of states (DOS) predicted by the ANN potential. They reasonably 
agree with the DFT results, although there is a small difference in the low-frequency mode. These 
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results indicate that the present ANN potential reproduces basic properties of bulk CdTe with 
sufficient accuracy.

For the test dataset constructed from the Σ3(112), Σ5(210), Σ5(310) GBs, the blue points 
are also distributed along the diagonal line. The MAE value of each GB is comparable to those 
for the training dataset, as listed in Table 2. This indicates that the trained ANN potential can 
sustain the reasonable accuracy for atomic environments of GBs included in the training dataset. 
It is thus expected that if a training dataset captures a wide range of atomic environments at GBs, 
ANN potentials trained with the dataset can be applied to GBs with reasonable accuracy.

3.2 GB structures and energetics predicted by ANN potential
This section shows predictive accuracy of the trained ANN potential to GBs, comparing the SW 
and BO potentials. For this purpose, structural relaxations with the ANN and empirical potentials 
are performed to obtain the GB-structure-energy relationship of each potential. Figure 4 shows 

GB energies of the ,  and  GBs, all of Σ9(114)/[114] Σ13(320)/[001] Σ13(510)/[001]
which are not included in the training dataset. On the left side of each panel, the individual data 
points correspond to the GB energies of different GB structures obtained from structural 
relaxation. These structures are then used to calculate GB energies by performing DFT single-
point calculations. The DFT values correspond to the data points on the right side of each panel. 
Two data points connected with the line are obtained from the same GB structure. The dashed 
lines indicate the lowest DFT values obtained from the ANN GB structures.

It is found that the lowest-energy structures predicted by the ANN potential are also the 
energetically lowest ones for DFT calculations. For these structures, the energy differences 
between the ANN and DFT values are less than 0.09 J/m2, indicating that their energetics is also 
accurately predicted by the ANN potential. Furthermore, the ANN potential correctly 
distinguishes between low- and high-energy states as their order in GB energy is maintained for 
DFT calculations in most cases. Similar trends are also observed for the other GBs, as shown in 

Fig. S1 in the Supporting Information. It is noted that for the ,  Σ3(112)/[112] Σ5(310)/[001]
and  GBs, the lowest energy structures are very close in GB energy to their Σ11(332)/[332]
metastable structures. In these cases, the ANN potential fails to distinguish the lowest-energy and 
metastable structures. Nevertheless, it successfully distinguishes between low-and high-energy 
states for all GBs examined (see Fig. S1). These results demonstrates that even for GBs absent in 
the training dataset, the present ANN potential enables screening candidate structures without 
DFT calculations, which will greatly reduce computational cost to explore low-energy GB 
structures.

Comparing the DFT GB energies of the lowest-energy structures obtained from the 
ANN, SW and BO potentials, the ANN values are found to be the lowest for the three GBs, as 
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indicated by the dashed lines in Fig. 4. The lowest-energy structures predicted by the ANN 
potential have lower GB energies than those within the empirical potentials. Importantly, the 
lowest-energy structures predicted by the empirical potentials are not the lowest-energy ones for 

the DFT level. Rather, they have clearly high GB energies for the  GB. Table Σ13(320)/[001]
3 summarizes the DFT values for all GB examined. These values are obtained from the lowest-

energy structures that are predicted by each potential. In all cases except for the  Σ3(111)/[111]
GB, the GB energies calculated from the ANN GB structures are lower than those for the SW 
potential. This clearly demonstrates that at atomic environments at GBs, the PES of the SW 
potential greatly deviates from that of DFT and cannot be used to explore low-energy GB 
structures with reliable accuracy.

It should be noted that structural relaxation algorithms also potentially affect the results 
in Fig. 4. To examine this possibility and to confirm that the ANN potential is exactly superior to 
the SW and BO potentials, GB energies based on these empirical potentials were calculated for 
the lowest-energy structures obtained from the ANN potential. The calculated values for the three 
GBs in Fig. 4 are listed in Table. 4. The values of single-point calculations with the empirical 
potentials were entirely higher than those of the energy-minimum structures obtained from the 
empirical potentials. In addition, structural relaxation with the empirical potentials was performed 
by using the ANN structures, and GB energies of the relaxed structures were calculated. The 
obtained GB energies were found to be lower than those of single-point calculations, because the 
ANN structures were not local minima for the empirical potentials, and consequently, they 
changed to other local minimum structures during the structural relaxation. As a result, the ANN 
structures changed to the same structures (having the same GB energies) with the SW and BO 
lowest-energy ones for the Σ9(114) GB. Nevertheless, the GB energies were still higher than those 
of the energy-minimum structures obtained from the empirical potentials for the Σ13(320) and 
Σ13(510) GBs. These results demonstrate that the SW and BO potentials incorrectly predict the 
low-energy ANN structures.

Figure 5 compares the lowest-energy structures obtained from the ANN and empirical 

potentials. There are some critical differences between them: for the  GBs (Fig. Σ9(114)/[114]
5(a)), the ANN potential exhibits asymmetric atomic arrangements in terms of the GB planes, 

whereas the SW and BO potentials predict the symmetric ones. For  (Fig. 5(b)), Σ13(320)/[001]
the ANN potential predicts an asymmetric structure while the empirical potentials predict 

different symmetric structures. For  (Fig. 5(c)), the three potentials predict Σ13(510)/[001]
asymmetric structures, but the structural units of the empirical potentials are less distorted. These 
trends of the empirical potentials probably reflect the fact that they are typically fitted to reproduce 
reference bulk structures, which usually have higher symmetry, simpler atomic arrangements than 
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GBs. Such a fitting procedure is most likely to result in their limited transferability to GBs in 
CdTe.

Figures 6(a)-6(c) show the correlation in GB energy of DFT single-point calculations to 
the ANN, SW and BO potentials, respectively, for all GBs examined. For low GB energies, the 
ANN and DFT values are well correlated with small deviations from the diagonal line. Although 
the errors of ANN predictions become large for high GB energies, most of the data points are still 
distributed along the diagonal line. This clearly demonstrates that the ANN potential can entirely 
distinguish between low- and high-energy structures, even for GBs that are not included in the 
training dataset. The average MAE value over all GBs is calculated to be 0.07 J/m2, suggesting 
that reasonable estimation of GB energies is possible by means of the ANN potential. It is thus 
expected that further improvement in predictive ability of the ANN potential enables us to predict 
more complicated GB structures and their GB energies, which typically need large-scale 
simulation cells, with practical computational cost. An improvement strategy is discussed in the 
next section.

Unlike the ANN potential, Fig. 6(b) shows that most of the GB energies predicted by 
the SW potential greatly deviate from the DFT values, and their order is often inconsistent with 

the DFT result. This trend is observed for all GBs examined except for the  GB, Σ3(111)/[111]
which has a low GB energy of 0.01 J/m2. Although the BO potential shows a smaller error than 
the SW potential, the data points still significantly deviate from the diagonal line, with a MAE 
value of 0.19 J/m2. Thus the SW and BO potentials are difficult to use for determination of low-
energy GB structures with sufficient accuracy.

3.3 Improvement in Predictive Ability of ANN Potential
The previous section demonstrates that the ANN potential outperforms the SW and BO potentials 
in the prediction of GB energies and low-energy structures. However, it is found that there exist 
two problems of applying the ANN potential to general GBs, which are most likely to have a 
wider range of GB-energy values than low-Σ GBs. One is that the predictive power of the ANN 
potential tends to become low for high-energy structures, as indicated by Fig. 6(a). The other is 
that if a GB structure predicted by the ANN potential has a large error in GB energy from the 
corresponding DFT single-point calculation, its relaxed structure with the DFT level is often 
significantly different from that predicted by the ANN potential. For example, Fig. 7(a) shows 
that the GBs pointed by the black arrows differ in GB energy by 0.15 J/m2. As displayed in Fig. 
8, their GB structures also have different atomic arrangements, with different relative positions 
of two grains along the GB plane. In this case, the GB structure relaxed by DFT calculation is 
slightly lower in GB energy than the lowest-energy one predicted by the ANN potential, as 
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indicated by the black dashed line. This problem would be critical when one uses the ANN 
potential prior to DFT calculations, in order to distinguish between low- and high-energy GBs.

Whether the above problems occur depends on individual GBs and it is difficult to know 
beforehand what types of GB structures involve such large errors. For example, the 

 twist GB are not included in the training dataset, but the error in GB energy is Σ9(221)/[221]
found to be relatively small as shown in Fig. 7(b). Only with the information of GB type, it is thus 
difficult to find GB atomic environments that are not covered by the current training dataset.

In order to efficiently explore GB atomic environments that are not sufficiently covered 
by the training dataset, the ANN potential trained once was utilized in the follow manner. From 
now this ANN potential is referred to as ANN-1. If a GB structure obtained from ANN-1 has an 
error in GB energy larger than 0.05 J/m2 from the DFT single-point calculation, it was used as a 

reference structure to generate an additional training dataset. For the  and Σ5(310)/[001]
 GBs (Fig. 7), the corresponding structures are indicated by the red arrows. The Σ9(221)/[221]

GBs other than the  GB were used to obtain their reference structures in the same Σ3(111)/[111]
way. The ,  and  GBs were used for additional Σ5(310)/[001] Σ5(210)/[001] Σ3(112)/[112]
training datasets, whereas the remaining six GBs were used for test datasets.

The training and test datasets were generated by randomly displacing atoms and 
randomly changing the cell shape of the reference structures, with the same condition described 
in the section of Computational method. Single-point calculation and structural relaxation for a 
few iterations were then performed using the generated structures. Finally, 3290 energies and 
177105 atomic forces were added to the first training dataset, and ANN-1 was trained again. Here 
this second ANN potential is referred to as ANN-2.

Figure 9 shows the MAE values of ANN-1 and ANN-2 for the additional training and 
test datasets. For the training dataset, the ANN-2 values are lower than the ANN-1 values for the 

three GBs, particularly for  GB. This trend is reasonable since ANN-2 has Σ5(210)/[001]
learned these structures. More importantly, ANN-2 also exhibits lower MAEs than ANN-1 for 
the GBs in the test dataset, although these GBs were not added to the additional training dataset.

ANN-2 was also used to perform the γ-surface method with structural relaxation to 
predict various GB-structure-energy relationships and to compare them with the corresponding 
DFT single-point calculations, in the same manner as the case of ANN-1 (Fig. 6(a)). Table 5 
compares the MAE values of the two ANN potentials. The ANN-2 values are found to be smaller 
than the ANN-1 values, not only for the three GBs in the additional training dataset but also the 
other GBs that are not included in the training dataset. This may indicate that inclusion of high-Σ 
GBs into the training dataset is not necessarily need to improve predictive ability of ANN 
structural relaxation. Rather, searching for low-Σ GB structures with large errors by means of an 
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ANN potential trained once is probably an efficient way to reduce computational cost for ANN 
training.

Figure 10 shows the GB-structure-energy relationship predicted by ANN-2. The two 
points indicated by the black arrows correspond to the same GB structure and thereby the same 
GB energy, which is the lowest-energy relaxed structure with the DFT level. Recall that ANN-1 
fails to find the lowest-energy relaxed structure with the DFT level, as shown in Fig. 7(a). This 
means that ANN-1 does not work well in screening of candidate relaxed structures for the 

 STGB. This problem is remedied by ANN-2: Fig. 10 indicates that its second Σ5(310)/[001]
lowest-energy structure corresponds to the lowest-energy one obtained from DFT structural 
relaxation. This allows us to apply DFT calculation to only low-energy structures predicted by 
ANN-2, in order to find the exact lowest-energy structure with the DFT level.

It should be noted that similar to ANN-1, ANN-2 still has the same problem that some 
high-energy structures predicted by ANN-2 transform to lower-energy structures during DFT 
structural relaxation, as indicated by the red arrows in Fig. 10. This problem may be resolved by 
repeatedly applying the data generation scheme proposed above to the ANN potential. With this 
approach, the predictive power is expected to improve systematically and efficiently. Our future 
work will improve the ANN potential in this way and apply it to more complicated GBs such as 
asymmetric GBs and high-Σ GBs.

4. Conclusions
An ANN interatomic potential is constructed in order to accurately predict GB atomic structures 
and their energetics in CdTe, with practical computational cost. To construct the ANN potential 
transferable to various atomic environments including GBs, a training dataset is generated by 
considering not only perfect-crystal structures but also point defects, surfaces and GBs. Using the 
trained ANN potential, a γ-surface method with structural relaxation is applied to ten different 
GBs, in order to obtain GB atomic structures with various energy states. The relaxed structures 
obtained from the ANN potential are then used to calculate their GB energies with the DFT level. 
As a result, the ANN potential is found to correctly distinguish between low- and high-energy 
structures with respect to DFT results, even for GBs that are not included in the training dataset. 
In contrast, the SW and BO potentials fail to predict the energetics of GBs and low-energy 
structures, indicating that conventional empirical potentials are difficult to use to predict 
physically reasonable GB structures for CdTe. In order to improve the predictive ability of the 
ANN potential to GBs, this work also presents an approach in which the ANN potential trained 
once is utilized to explore GB structures that are not sufficiently covered by a given training 
dataset. It is indicated that the ANN potential constructed in this way exhibits a systematic 
improvement in the prediction of low-energy structures and GB energies. This approach will offer 
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a way to construct machine-learning potentials transferable to general GBs for not only CdTe but 
also other materials.
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Table 1 Training datasets of single-crystal, surface and GB structures.  and  are the 𝑁str 𝑁force

number of total energies and atomic forces for training the ANN potential, respectively.  𝑁atom

is the number of atoms contained in a simulation cell.

MAE

Dataset 𝑁str 𝑁atom 𝑁force
Energy

[meV/atom]
Force

[meV/Å]

Single crystal 33650 7-64 1790100 5.90 40.41

(100) 10680 16-64 544320 1.61 40.77
(110) 5700 12 102600 1.51 21.67
(111) 6700 12 120600 2.61 21.40
(112) 5690 24 204840 1.37 23.15
(310) 6700 20 201000 1.59 28.68

Surface

(510) 1200 52 93600 1.46 33.13

Σ3(112)/[112]
twist

10010 46-48 720720 2.17 42.32

Σ3(112)/[110]
STGB Cd-core

3830 46-48 273924 2.16 36.01

Σ3(112)/[110]
STGB Te-core

3850 46-48 275448 2.24 37.70

Σ3(112)
mix Cd-core

3780 46-48 270456 2.51 35.18

Σ3(112)
mix Te-core

3800 46-48 271884 2.67 35.63

Σ5(210)/[001]
STGB

10990 38-40 658149 2.02 42.61

GB

Σ5(310)/[001]
STGB

11470 38-40 686904 3.23 55.76

Page 16 of 28Physical Chemistry Chemical Physics



Table 2 Test dataset consisting the three GB structures. Note that these GBs are the same as those 
contained in the training dataset, but the simulation cells in this test dataset are not included in the 
training dataset.

MAE

Structure 𝑁str 𝑁atom 𝑁force Energy
[meV/atom]

Force
[meV/atom]

Σ3(112) twist 600 48 86400 3.12 41.32
Σ5(210) tilt 600 40 72000 2.50 39.53
Σ5(310) tilt 600 40 72000 4.02 55.79

Table 3 DFT GB energies of the lowest-energy structures obtained from the ANN, SW and BO 
potentials.

GB energy [J/m2]
GB

ANN SW BO

Σ3(111) 0.01 0.01 0.00
Σ3(112) 0.45 1.01 0.63
Σ5(210) 0.49 0.80 0.77
Σ5(310) 0.60 0.66 0.65
Σ9(114) 0.40 0.48 0.44
Σ9(221) 0.50 0.64 0.63
Σ11(113) 0.25 0.33 0.28
Σ11(332) 0.49 0.53 0.52
Σ13(320) 0.53 1.00 0.88
Σ13(510) 0.51 0.76 0.70
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Table 4 GB energies calculated from the SW and BO potentials by using the lowest-energy 
structures obtained from the ANN potential for the Σ9(114), Σ13(320) and Σ13(510) GBs.

GB energy [J/m2]

SW potential BO potential

ANN lowest-energy 

structure

ANN lowest-energy 

structureGB SW lowest-

energy 

structure Single-point 

calculation

Structural 

relaxation

BO lowest-

energy 

structure Single-point 

calculation

Structural 

relaxation

Σ9(114) 0.58 0.86 0.57 0.58 0.70 0.58

Σ13(320) 0.43 1.37 0.81 0.70 1.29 0.92

Σ13(510) 0.43 0.91 0.61 0.58 0.98 0.75

Table 5 MAE with respect to DFT single-point calculations. To obtain these values, various GB 
structures and their GB energies are obtained by performing the γ-surface method with ANN-1 
and ANN-2, and then their GB energies with the DFT level are calculated by performing DFT 
single-point calculations.

MAE [J/m2]
GB type

ANN-1 ANN-2

Σ3(112)/[112] 0.07 0.05
Σ5(210)/[001] 0.04 0.01
Σ5(310)/[001] 0.09 0.07
Σ9(114)/[114] 0.12 0.10
Σ9(221)/[221] 0.05 0.04
Σ11(113)/[113] 0.06 0.05
Σ11(332)/[332] 0.05 0.05
Σ13(320)/[001] 0.06 0.04
Σ13(510)/[001] 0.09 0.07

Average 0.075 0.060
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Fig. 1. Schematic simulation cell used in the γ-surface method with the ANN potential: (a) An initial cell 
containing one GB and two surfaces, (b) the corresponding relaxed structure, and (c) the final structure 

reconstructed from structure (b) with 3D periodic boundary conditions, where two same GB structures are 
present whereas the surface region is absent. 
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Fig. 2. Correlation between values obtained from the ANN potential and DFT calculations for (a) the total 
energy and (b) the atomic force in the training (red point) and test (blue point) datasets. 
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Fig. 3. (a) Potential-energy increase as a function of cell volume and (b) the phonon dispersion curve and 
density of states (DOS). The red and blue lines correspond to the values obtained from the ANN potential 

and DFT calculations, respectively. The lattice vibration properties were obtained by performing lattice 
dynamics calculations implemented in the PHONOPY code44. In this calculation, a 3 × 3 × 3 supercell of the 

zincblende structure were used. 
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Fig. 4. GB energies of the ANN, SW and BO potentials for (a) the Σ9(114)/[114] twist GB, (b) the 
Σ13(320)/[001] STGB and (c) the Σ13(510)/[001] STGB. Using relaxed structures obtained from each of the 

potentials, GB energies are calculated by performing DFT single-point calculations. 
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Fig. 5. Atomic arrangements of the lowest-energy GB structures obtained from the ANN, SW and BO 
potentials for (a) the Σ9(114)/[114] twist GB, (b) the Σ13(320)/[001] STGB, and (c) the Σ13(510)/[001] 

STGB. 
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Fig. 6. Correlation in GB energy of DFT single-point calculations to (a) the ANN potential and (b) the SW 
potential. 
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Fig. 7. GB-structure-energy relationship calculated from the ANN potential, DFT single-point calculation and 
DFT structural relaxation, corresponding to the red, blue and green points, respectively: (a) the 

Σ5(310)/[001] STGB and (b) the Σ9(221)/[221] twist GB. 
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Fig. 8 GB structures predicted by (a) the ANN potential and (b) obtained from DFT structural relaxation. 
Their GB energies are pointed by the black arrows in Fig. 7(a). 
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Fig. 9. Energy MAE of the training and test datasets. The red and blue bars corresponds to the results of 
ANN-1 and ANN-2, respectively. 
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Fig. 10. GB-structure-energy relationship obtained from ANN-2, DFT single-point calculation and DFT 
structural relaxation for the Σ5(310)/[001] STGB. 
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