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Graphical Gaussian Process Regression Model for Aque-
ous Solvation Free Energy Prediction of Organic
Molecules in Redox Flow Battery†

Peiyuan Gao,a Xiu Yang,∗b Yu-Hang Tang,c Muqing Zhengb Amity Andersona, Vijayakumar
Murugesan,∗a Aaron Hollas,a Wei Wang∗a

The solvation free energy of organic molecules is a critical parameter in determining emergent proper-
ties such as solubility, liquid-phase equilibrium constants, and pKa and redox potentials in an organic
redox flow battery. In this work, we present a machine learning (ML) model that can learn and
predict the aqueous solvation free energy of an organic molecule using Gaussian process regression
method based on a new molecular graph kernel. To investigate the performance of the ML model
on electrostatic interaction, the nonpolar interaction contribution of solvent and the conformational
entropy of solute in solvation free energy, three data sets with implicit or explicit water solvent
models, and contribution of conformational entropy of solute are tested. We demonstrate that our
ML model can predict the solvation free energy of molecules at chemical accuracy with a mean
absolute error of less than 1 kcal/mol for subsets of the QM9 dataset and the Freesolv database.
To solve the general data scarcity problem for a graph-based ML model, we propose a dimension
reduction algorithm based on the distance between molecular graphs, which can be used to examine
the diversity of the molecular data set. It provides a promising way to build a minimum training set
to improve prediction for certain test sets where the space of molecular structures is predetermined.

1 Introduction
Redox flow batteries (RFBs), particularly the aqueous organic
RFBs (ORFBs), have gained significant interest for grid scale en-
ergy storage due to their inherent safety, flexible design, mod-
ular scale-up, and potential low cost. Critical functionalities of
ORFBs such as energy density, cycling stability, and rate capa-
bility are largely impacted by the properties of the active or-
ganic species.1,2 For example, the solubility of the active organic
molecule dictates the energy density of an organic RFB. There-
fore, the search for highly soluble (>1M) and chemically stable
redox active organic materials has recently become a critical re-
search endeavor.3 The solubility, as well as the reactivity, viscosity,
and redox potential of the active organic molecules depend on
intricate interactions between the solute and solvent molecules,
for which the free energy of solvation is often a critical parame-
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ter.4,5 Evidently, solvation free energy has often been identified
as a critical descriptor in quantitative structure-property/activity
relationships (QSPR/QSAR) analysis. Yet there have been com-
paratively few experimental values (<2000) reported despite the
millions of organic molecules synthesized to date. Density func-
tional theory (DFT) and molecular dynamics (MD) simulation
methods have been widely utilized for determining this promi-
nent chemical descriptor.6–12 With recent advancements in im-
plicit solvation models13–16 and operating functionals, the DFT
and MD methodologies17–20 provide a reliable estimate of sol-
vation free energy with the mean-absolute-error approaching the
chemical accuracy level of 1 kcal/mol. However, approximations
are often used to lower computational time at the cost of accu-
racy.21,22 Furthermore, large-scale calculation of solvation free
energy with high precision method through DFT and MD is com-
putationally intractable. In view of this challenge, an artificial in-
telligence (AI) based prediction is needed because their computa-
tional strategies automatically improve through experience.21,22

Machine learning (ML) methods are capable to predict a very
broad range of properties. Recently, neural network model (NN)
has received new attention for predicting solvation free energy
prediction.23–26 Some of these architectures operate over fixed
molecular fingerprints common akin to traditional QSPR mod-
els.27–29 However, due to the incomplete physical understanding

Journal Name, [year], [vol.], 1–14 | 1

Page 1 of 14 Physical Chemistry Chemical Physics



of the structure of molecule and emergent properties, the features
provided by domain experts may not include all critical design
parameters in the material design. The graph approach is a pow-
erful tool to complement the domain experts knowledge because
many features selected by domain experts are based on the com-
putations which use the molecular structures.30–35 Moreover, as
molecules have arbitrary chemical composition and highly vari-
able connectivity, useful information is difficult to be extracted
from a molecule into a fixed dimensional representation. Thus,
incorporating the graph approach can add important features that
could be inadvertedly neglected by domain experts when design-
ing an ML model. Naturally, a molecular structure can be repre-
sented by an undirected labeled graph that encodes both struc-
tural and functional information. The graph contains an initial
feature vector and a neighbor list for each atom. The feature vec-
tor summarizes the atom’s local chemical environment, including
atom-types, hybridization types, and valence structures. Neigh-
bor lists represent connectivity of the whole molecule. Another
key question for molecular properties prediction using ML meth-
ods is lack of data, namely the data sparsity. Molecular properties
data sets are different from the data sets in other applications as
image recognition or natural language processing. Usually, the
size of molecular properties data set that can be found is much
smaller than those available for the aforementioned conventional
machine learning tasks, as accurate results for molecular proper-
ties typically requires specialized instruments and measurements.
Therefore, the measurement cost of a small data set is rather ex-
pensive and time-consuming. Even for some molecular properties
which can be obtained by computer simulation, e.g., solvation
free energy in explicit solvent, the calculations are also not cost-
effective. So the amount of training data remains a challenge in
the property prediction of molecules.

Gaussian process (GP) is one of the most well studied stochas-
tic processes in probability and statistics. Given the flexible form
of data representation, GP is a powerful tool for classification and
regression, and it is widely used in probabilistic scientific comput-
ing, engineering design, geostatistics, data assimilation, machine
learning, etc.36–38 In particular, given a data set comprising in-
put/output pairs of locations and quantity of interest (QoI), GP
regression (GPR), also known as Kriging, can provide a predic-
tion along with a mean squared error (MSE) estimate of the QoI
at any location. Alternatively, from the Bayesian perspective, GPR
identifies a Gaussian random variable at any location with poste-
rior mean (corresponding to the prediction) and variance (cor-
responding to the MSE). In other words, a GP model not only
provides point predictions in the form of posterior means but also
estimates the uncertainty of the prediction using posterior vari-
ances. Generally speaking, the larger the given data set size is,
the closer the GPR’s posterior mean is to the ground truth and
the smaller the posterior variance is. While for small data set,
the performance of GPR model is also good compared with deep
neural network which typically requires a large training set.39

Therefore, GP method is a good candidate for the machine lean-
ing works when large data sets are difficult to be obtained.

In this work, we propose a machine learning model to predict
the solvation free energy of organic molecules in water. We imple-

ment a graph-kernel-based GP method40,41 to construct surrogate
models for solvation free energy prediction. In contrast to pre-
vious studies30–35, a labeled undirected graph with features on
nodes and edges in this work is used to give a more accurate rep-
resentation for the inner structure of a molecule. Furthermore,
to investigate the capability of our machine learning model on
different components of solvation free energy in thermodynamics
as electrostatic interaction energy, the nonpolar interaction con-
tribution of solvent and the contribution of conformational en-
tropy of solute, we build and test three solvation (free) energy
data sets, namely our own Pacific Northewest National Labora-
tory (PNNL) organic molecule data set, the QM9 data set, and
the Freesolv data set. The solvation energy data in the three data
sets include either the conformational entropy contribution or the
effect of explicit solvent, or both of them. Our results are bench-
marked against the three data sets. We demonstrate that our ML
model can predict the solvation free energy of molecules at chem-
ical accuracy (<1 kcal/mol) and 1000-10000 times faster than
DFT/MD methods. Additionally, we try to elucidate the relation-
ship between the molecular graph and molecular property using
the model reduction method and provide a possible way on how
to build a minimum training set to better predict the correspond-
ing molecular property with ML model.

2 Method

2.1 GPR method with graph kernel

In this work, we use a graph to represent each molecule in the
dataset, and then use the marginalized graph kernel to implement
the GP method. The practice of using labeled graphs, with the
exemplary ball-and-stick model, to represent molecules gained
popularity well before the era of machine learning.42,43 Here, we
represent a molecule of n atoms as an undirected, unweighted
graph G = {V = {vi},E = {ei j}, i, j ∈ {1, · · · ,n}. Each atom i is rep-
resented by a vertex vi that is labeled by a feature vector φφφ(vi)

that encodes chemical elements, charge, aromaticity, and hydro-
gen count.44 An edge ei j exists between vertices i and j if there
is a chemical bond between atoms i and j and is labeled by the
bond order. Thus, the adjacency matrix A of a molecular graph is

given as Ai j =

{
1, if i, j bonded

0, otherwise
. Note that molecular confor-

mation is not considered nor required for training and inferencing
in the current work, since topology and chemical identity alone
have been proven to be sufficient for the prediction of many ther-
modynamical properties of small molecules45.

To implement the graph in a GP, we use the marginalized graph
kernel K(G,G′)40, which defines an inner product between two
graphs, i.e., two molecules in our case. The main idea is to per-
form random walks simultaneously on two given graphs and then
calculate the expectation of the “similarity” between all pairs of
the paths in such random walks. Specifically, each path, denoted
as hhh, on a graph is the route from one atom to another via chemi-
cal bonds in a molecule, and an inner product between the paths
can be defined recursively using an element-wise inner products
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formula. Each hhh is a sequence consisting of vertices and edges:

vh1 eh1h2 vh2 eh2h3 vh3 · · · ,

where vhk is the kth atom traversed by this path, and ehk−1hk is
the chemical bond connection between the (k− 1)th and the kth
atoms in this path. Figure 1 shows an example of path between
two nodes.

The expectation of the path similarity in the simultaneous ran-
dom walk is given by where ` is the length of the path, hhh and hhh′

are paths on the graphs represented by length-l vectors of vertex
labels, s(·) is the starting probability of the random walk on each
vertex, pq(·) is the stopping probability of the random walk on
each vertex at any given step, pt(·|·) is the transition probability
between a pair of vertices, Kv(·, ·) is an microkernel that computes
the similarity between two vertices (i.e., atoms), and Ke(·, ·) is an-
other microkernel that computes the similarity between pairs of
edges (i.e., bonds).

In lieu of a brute-force enumeration or Monte Carlo sampling
of the random walk paths, we compute the graph kernel by solv-
ing an equivalent linear system that is created from the matrix
representations of two graphs41,46. In a nut shell, Eq. (1) can
be reformulated as a linear system with a generalized Kronecker
product structure:

r∞ = q⊗q′+
[(

P⊗P′
)
�
(

E
Ke
⊗E′

)]
·diag

(
v

κv
⊗v′

)
· r∞, (2)

where

v is the vertex label vector of G with vi = vi;

p is the starting probability vector of G with pi = ps(vi);

q is the stopping probability vector of G with qi = pq(vi);

P is the transition probability matrix of G defined as D−1A;

E is the edge label matrix of G with Ei j = ei j;

v′, p′, q′, P′, E′ are the corresponding vectors and matrices for G′;
Kv
⊗ is the generalized Kronecker product between v and v′ with

respect to microkernel Kv;
Ke
⊗ is the generalized Kronecker product between E and E′ with

respect to microkernel Ke.

The vertex microkernel is a tensor product of multiple elemen-
tary kernels, each of which acts on a single node feature:

Kv(v,v′) =
|φφφ |

∏
j

κ j
(
φφφ(v) j,φφφ(v′) j

)
. (3)

In practice, we take each of the κ j to be an elevated Kronecker
delta function

κ j( f , f ′) =

{
1, if f = f ′,

ν j ∈ (0,1), otherwise,
(4)

where ν j, j = 1, . . . , |φφφ | are the hyperparameters that will be
learned using the training data set. The edge microkernel is also
an elevated Kronecker delta function between pairs of bond or-
ders.

Given a training set D of m molecules, or equvalently their
graph representations {(G1, · · · ,Gm)} in our model, and their as-
sociated quantity of interest (QoI), e.g., solvation free energy
{(E1, · · · ,Em)}, as well as a marginalized graph kernel K(·, ·), the
GPR prediction for the QoI {E∗1 , · · · ,E∗n} of a test set of n unknown
molecules {G∗1, · · · ,G∗n} can be derived analytically as

EEE∗ := [E∗1 , · · · ,E∗n ]> = KKKD∗KKK−1
DDyyyD, (5)

Here yyyD = (E1, · · · ,Em) is a column vector containing the QoI
of all molecules in the training set. and the uncertainty in the
prediction is given as:

ΣΣΣ
∗ := KKK∗∗−KKK>D∗KKK

−1
DDKKKD∗ . (6)

Here, KDD is a m×m matrix with KDD(i, j) = K(Gi,G j), KKKD∗ is an
n×m matrix with KKKD∗(i, j) = K(Gi,G∗j) and KKK∗∗ is a n× n matrix
with KKK∗∗(i, j) =K(G∗i ,G

∗
j). We note that Equations (5) and (6) are

based on the standard GPR formulations, which are shown in the
support material. Moreover, in practice, matrix KKKDD is typically
replaced with KKKDD + δ 2III to guarantee stability of the algorithm
or to account for the noise in the data. Here δ is a small positive
real number (see the electronic supplementary information for
the description of the standard GPR method.)

2.2 Machine learning model

Figure 2 presents a scheme of the predictive machine learning
model framework by Gaussian process regression with graph ker-
nel. First, the SMILES string of molecules in the data set are con-
verted to graphs, where the atoms are the nodes and the bonds
are the edges. The graph kernel is then applied to average over
the similarities of all paths generated from simultaneous random
walks on each pair of graphs. A predictive model with Gaussian
process regression can be built by the pairwise similarity matrix
among the training molecules and the cross-similarity matrix be-
tween the new molecule and the training molecules. Note that
each of the element of the matrix in the middle corresponds to a
pair of molecules.

2.3 Metrics

In order to compare with the results, in this paper, mean abso-
lute error (MAE) and root mean square error (RMSE) are applied
to evaluate the performance of the ML model on the regression
tasks.

MAE =
1
n

n

∑
n=1
|ŷi− yi|. (7)

RMSE =

√
1
n

Σn
i=1

(
ŷi− yi

)2
. (8)

where n is the number of molecules, yi is the solvation free energy
value in database, ŷi is the prediction solvation free energy by the
ML model.

2.4 Cross-Validation and Hyperparameter Optimization

We use the standard cross-validation approach to help identify
the hyperparameters in the ML model, i.e., to perform model se-
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Fig. 1 Demo of random walk on 1,4-benzoquinone molecule

K(G,G′) =
∞

∑
`=1

∑
hhh

∑
hhh′

(
ps(h1)

`

∏
i=2

pt(hi|hi−1)pq(h`)

)
×

(
p′s(h

′
1)

`

∏
i=2

p′t(h
′
j|h′j−1)p′q(h

′
l)

)

×Kv(vh1 ,v
′
h′1
)

`

∏
k=2

Kv(vhk ,v
′
h′k
)Ke(ehk−1hk ,e

′
h′k−1h′k

).

(1)

lection. For consistency, we maintain the same approach for all
of our data sets. Specifically, for each data set, we split the data
into training-validation and testing parts as described in the fol-
lowing section. We employ 10-fold cross-validation (CV) for se-
cure representation of the test data because the data set has a
limited number of measurements. The molecules in the training-
validation set of each data set is split into 10 subsets following the
sequence (InChIKey) of molecules. We choose one of the subsets
as a validation set iteratively. The training set is the sum of the
remaining 9 subsets. Consequentially, a 10-fold CV task performs
10 independent training and validation runs, and relative sizes of
the training and validation sets are 9 to 1. We use Scikit-Learn
library to implement the CV task and perform an extensive grid
search for tuning hyperparameters. The hyperparameter set is
determined by the result which has the minimum averaged MAE
in the 10-fold CV. All the training is performed using our GPU-
accelerated graph-kernel GPR tool41.

3 Result and discussion

3.1 Database

In order to test the performance of the model on the prediction
of solvation free energy, three data sets are built. Data set A1
is the solvation energy data obtained from DFT calculation with
implicit water model. The molecules are selected from our own
database. This solvation energy data set has 3626 molecules.
All the molecules in the data set are neutral organic molecules.
These molecules in the data set include ten types of elements,
i.e., C, H, O, N, P, S, F, Cl, Br and I. All the solvation energy data
in the data set are obtained from DFT calculation by PBE0 func-
tional47 at 6-31G** level48 at 298.15K with NWChem code49.
An effect of implicit water solvent with a dielectric constant of
78.4 is included via the COnductor like Screening MOdel for Real
Solvents (COSMO) model.16 Note that this is only the electro-

static contribution to the solvation free energy. Therefore, all the
solvation energy values are positive. This is consistent with pre-
vious calculation50. These molecules are split into two sets as
the training-validation set and test set following the sequence of
their International Chemical Identifier key (InChIkey). Finally,
3200 molecules are selected in the training-validation set and
426 molecules are in the test set. Data set B1 is the solvation
free energy data calculated by MD simulation in implicit water
model. These data are obtained from a recently published ma-
chine learning paper.51 The molecules are chosen from the QM9
database. The original QM9 consists of 134k molecules with up
to nine heavy atoms, including chemical elements C, H, O, N,
and F. In the J. Chem. Phys. paper, molecules containing fluo-
rine were removed when building the dataset. They randomly
selected 4000 compounds from the QM9 database and calculated
their solvation free energy by MD simulation with implicit wa-
ter model. However, after carefully examining the InChikey of
these molecules, we find 24 duplicates in the database. There-
fore, we only select data from 3976 molecules from this database.
Finally, 3600 molecules are used in the training-validation set
and 376 molecules are in the test set. Data set C1 is obtained
from the Freesolv database, which includes the solvation free en-
ergy both in experiment and MD simulation with explicit water
model as solvent.8 The experimental solvation free energy data
are selected as our target in this work. To keep consistent with
the other two databases, we do not use the solvation free energy
data of chiral molecules in the Freesolv database. After exclud-
ing the chiral molecules, we select 588 molecules. The molecules
in this database also include ten elements, i.e., C, H, O, N, P,
S, F, Cl, Br and I. The 588 molecules are divided into two sets.
The training-validation set includes 550 molecules and the test
set has 38 molecules. Figure 3 shows the probability distribution
function (PDF) of the training-validation set and test set for the
three data sets. We can see that the train-validation set and test

4 | 1–14Journal Name, [year], [vol.],

Page 4 of 14Physical Chemistry Chemical Physics



Fig. 2 Schematic diagram of the machine learning model pipeline

set in each data set have similar PDFs of solvation free energy.
As the size of data set C1 is smaller, the fluctuation in the PDF
is stronger than the other two databases. Overall, Figure 3 indi-
cates that it is reasonable using the identifier InChIkey for random
splitting data, especially when the data set is not very small, e.g.,
larger than one hundred molecules. In the ML model building,
We use a Simplified Molecular Input Line Entry System (SMILES)
string as initial input identifier in this work. The SMILES strings
of molecules are converted to a graph with our graphic kernel
when building ML models.

3.2 Solvation free energy prediction

Solvation energies prediction results of the three data sets are
displayed in Figure 4. With the help of optimized hyperparam-
eters, the results of the three data sets show good performance
for our ML model in general. The Pearson correlation coefficients
R2 between the truth and the prediction for the training set in
the three data sets are 0.92, 0.98 and 0.95, respectively. The R2

of the test set in these three cases are 0.83, 0.95 and 0.94, re-
spectively. We can see the Pearson correlation coefficients are in
good agreement for training data and test data in each data set,
implying our ML model is not overfitted. The results in Figure 4
show that the predication accuracy for data sets B1 and C1 are
better than for A1. The results are interesting, since in fact the
measurement uncertainties of solvation free energy for the three
data sets are increasing from A1 to C1. For DFT calculation, the
measurement uncertainty for fixed functional and basis should
be very small, as during the calculation the molecular conforma-
tion is fixed, and there is no thermal fluctuation. Therefore, the
uncertainty should be <0.01 kcal/mol. In MD simulation with
implicit solvent model, due to the conformational change in MD
simulation, the fluctuation of calculated solvation free energy is
larger than the DFT calculation, which increases measurement
uncertainty. In experiments, the uncertainty can be even larger
than the MD simulation, which has been demonstrated in the
Freesolv database. In the Freesolv database, the average error
is about 0.06 kcal/mol for MD simulation data of solvation free
energy, but for the experiment data it is 0.3 kcal/mol. However,
by adding appropriate strength of white noise in the training pro-
cess, we find that the uncertainty does not affect the accuracy of

our ML models. Note that in general, it is necessary to include an
appropriate level of measurement error, i.e., noise, to avoid over-
fitting when training ML models. In the GPR model, the noise is
included in the covariance matrix. If the noise level included in
the ML model is too small, the model is prone to overfitting. If it
is too large, the error in prediction would be also large. So noise
is an important hyperparameter in the model parameterization.

Figure 4, parts d-f present the MAE and RMSE in training set
and test set for the three data sets. For MAE results in both train-
ing set and test set in each data set, the results are very close,
indicating our ML model is not overfitted. The RMSE results also
show the same trend as MAE in each data set, which verifies our
conclusion. For the training set in data set A1, the MAE is 0.78
kcal/mol and the RMSE is 1.28 kcal/mol. With regard to the test
set in data set A1, the MAE and RMSE are close to the training set
results but a little higher. The results are 1.58 kcal/mol and 2.37
kcal/mol, respectively. For the data set B1, the MAE and RMSE
are 0.47 kcal/mol and 0.66 kcal/mol for training set. The test set
follows the same trend. The MAE and RMSE are 0.69 kcal/mol
and 0.98 kcal/mol. For data set C1, the MAE and RMSE result are
close to the result obtained in data set B1. The MAE and RMSE in
the training set are only a little higher than in B1. They are 0.62
kcal/mol and 0.83 kcal/mol. The test set results are similar, 0.72
kcal/mol and 1.03 kcal/mol, respectively.

It is a bit difficult to directly compare our results with other ML
models because we either have different data sets or use a differ-
ent split method for the data set. While we know that the error of
energy in a DFT calculation with different functional/basis would
be several kilocalories, from the above results, we can see that
our ML model has yielded chemical accuracy (1 kcal/mol) for
the QM9 database subset and Freesolv database. Therefore, the
mean absolute error in our ML model is actually close or even
better than the DFT calculation. For the QM9 database subset,
the authors previously obtained MAE = 0.7 kcal/mol with 2500
molecules in the training set,51 while the MAE of our training set
is 0.47 kcal/mol with 3600 training data. For Freesolv database,
Wu et al. provided a benchmark study of 642 molecules with
different QSPR/ML models.52 The range of RMSE obtained with
different ML methods is from 1.15 to 2.05 kcal/mol. In Lim and
Jung’s paper they obtained RMSE = 1.19 kcal/mol.53 Our RMSE
result is 1.03 kcal/mol with the same but even smaller training
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Fig. 3 Probability distribution function of solvation free energy in training data set and test data set of the three data sets.(a) A1. (b) B1. (c) C1.
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set. These results suggest that our graph GPR model can obtain
good performance with small data set.

The data set A1 has a large training set (3200 molecules), and
theoretically the uncertainty of the data set A1 should be small.
However, the performance of our model on data set A1 is not
the best among the three data sets. For example, its R2 is not
the highest one of the data sets. One possible reason is that the
complexity of this data set is higher. In data set A1 it involves ten
types of elements. That means the converted molecular graph in
data set A1 may have more types of nodes. In the view of graph
theory, more types of nodes do not affect the topology, but they
do increase the complexity of the molecular graph. Here, we use
the Bertz complexity index to further characterize the complexity
of the data set. The Bertz complexity index (BCI)54 is defined as
following

BCI = 2n log2 n−∑
l

ni log2 ni, (9)

where n is the number of pairs of adjacent edges in a graph G
and ni is the number of pairs of adjacent edges in the i-th class
by symmetry. The term n log2 n is used to prevent BCI = 0 when
all pairs of adjacent edges in G are equivalent. We can see that
the first part takes into account structural characteristics of G,
such as size, branching, and cyclicity, and the second part deals
with the symmetry of G in terms of equivalent pairs of adjacent
edges. In other words, one represents the complexity of the bond-
ing, the other represents the complexity of the distribution of het-
eroatoms. BCI has been used in analysis of synthetic strategies
in organic chemistry55, but it has not been connected to physical
properties with the ML model. Figure 5a shows the average BCI
values of the three data sets. It is found that the average BCI of
the training set and the average BCI of test set in each data sets
are very similar. The average BCIs obtained from training set and
test set in data set A1 are 207.0 and 220.5, respectively. For the
other two data sets the BCI values are 157.9 and 158.9 in data set
B1, and 145.9 and 168.1 in data set C1 for training set and test
set, respectively. The data set A1 has the largest BCI. It implies
that on average, the converted molecular graph in data set A1
is the most complicated. Therefore, more training data may be
needed in order to reduce the MAE of the ML model on data set
A1. The BCIs in data set B1 and C1 are close, although the type
of elements in the two databases are not the same. It seems like
the topological complexity in data set B1 and diversity of nodes
in data set C1 have a complementary effect on BCI.

To further investigate the effect of BCI on performance of the
ML model, we calculated the PDFs of BCI for each data set. Fig-
ure 5 parts b to d present the PDFs of BCIs in each data set. It
reveals more details of the data sets. In all three data sets, the
PDFs of BCI for training set and test set are very close, which is
similar to the PDFs of solvation free energy. That validates the
split method of data set with InChikey is effective again. In addi-
tion, we identify that the shape of the PDFs for data set A1 and
C1 are similar. They are both long-tailed distributions, like a Pois-
son distribution. That may be because more types of elements are
included in these two data sets, as they both have ten elements.
The peaks of these two PDFs are both between 0 to 50, which
means the small molecules are main components in BCI, but the

contribution of large molecules to the average BCI cannot be ne-
glected. In data set A1, the contribution of large or complicated
molecules in the tail part is higher than data set C1. That makes
the final BCI larger in data set A1 than data set C1. For data set
B1, its distribution is close to a Gaussian distribution. It does not
include more molecules with high BCI as in the other two data
sets. Thus, eventually, the data sets B1 and C1 have similar av-
eraged BCIs. Also, as shown above, the predictions of our ML
model on these two data sets are consistent with their complex-
ity. Based on these results, we can infer that for a complicated
data set like the molecular data set, the performance of a graphic
ML model is not only related to the absolute amount of training
data, but also the data complexity. As the dimension of molecular
data may be quite high, that infers the data sparsity problem in
high dimensional space for training data.

For this reason, We do some tests with lower-dimensional sub-
sets. We further evaluate the performance of our ML model with
subsets in the test sets, which only include certain types of ele-
ments, e.g., C and H elements or C, H, and O elements. As shown
in Figure 6, we see that all three data sets have the same trend.
The MAE values increases with the element type complexity in
these data sets. In these subsets, the simplest subset, which only
includes the C and H elements, has the smallest MAE value. The
MAE values are 0.24 kcal/mol, 0.14 kcal/mol, and 0.44 kcal/mol
in data set A1, B1, and C1, respectively. These MAE values are
much smaller than the MAE for the whole test set in these data
sets. This is consistent with group contribution theory of solvation
free energy, although the "groups" here are in high dimensional
space. On the other hand, it indicates the ML model has relatively
learned "more" information for compounds which only contain C
and H elements from the training data. Additionally, we notice
that the MAE value of the test group with C, H, O, and N ele-
ments in data set C1 is already higher than average in data set
C1 test set (0.83 kcal/mol vs 0.72 kcal/mol), which implies the
training data set is lacking molecules consisting of C, H, O, and
N elements. The RMSE for the small test (1.37 kcal/mol) is also
higher than the average value 1.24 kcal/mol.

Additionally, we provide a method to qualitatively estimate
performance of the ML model on predicting properties of new
molecules via comparing the distances between molecular graphs
in the test set and training set. Here we show an example of a sub-
set with 200 molecules in data set A1 and select two molecules as
the illustrative test set. We calculate average pairwise distances
between molecules in the training set, and between the training
set and each test molecule. The average distances in training set
and each test molecule are displayed in Figure 7(a). The PDFs
of the distances are shown in Figure 7(b), which provides more
details. We can find that the peak of PDF for molecule B is higher
than molecule A, indicating the distance between the training set
and B is farther than the distance between the training set and
A in general. More importantly, the distances between molecule
B and almost all training molecules are larger than 1.0, while
there are some training molecules within the distance range of
[0.6,0.8] from molecule A. Obviously, the distance for molecule
A is much smaller than molecule B. In Figure 7(c) we can also
see the solvation energy prediction of molecule A is much better
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than molecule B. An important reason is that there are a sufficient
number of training molecules that are close to molecule A, which
results in a prediction with greater accuracy.

3.3 Dimension reduction

To address the molecular data sparsity issue in high dimensional
space and gain a deep understanding of the relationship between
the training set and the ML model prediction, we analyze the
training set with a model reduction approach. The covariance ma-
trix that is used in the GP method plays a key role in the GPR, and
it provides a possible way of exploring low-dimensional structures
of the training data set that are critical to predict solvation free
energy. In other words, it provides a possible way to identify crit-
ical functional groups (molecular fragments) that can be used as
fundamental building blocks of real molecules, and the solvation
free energy of a molecule can be predicted based on examining
which groups are included in this molecule. To achieve this goal,
we propose to associate molecules with points Q1,Q2, · · · ,Qm in
Euclidean space Rd , where d is the dimension to be identified.
We aim to use the distance matrix of the aforementioned points
in Rd to approximate the covariance matrix, as such to identify
an appropriate d. This d is potentially related to the number of
the critical functional groups (or molecular fragments). Given a
trained GPR model and training data set, we have a covariance
matrix CCC. For a given d, we generate points in Rd based on this CCC
as follows. We first define a matrix TTT as

Ti j =
C2

1 j +C2
i1−C2

i j

2
. (10)

Then we compute the eigenvalue decomposition of TTT :

TTT =UUUSSSUUU>. (11)

Finally, let XXX = UUU
√

SSS, and the first d columns of XXX are the de-
sired d-dimensional points in Rd . Of note, the distance matrix of
Qi, i = 1,2, · · · ,m generated in this way, denoted as C̃CC, is an ap-
proximation of the covariance matrix CCC when d < m. Although it
is possible that C̃CC = CCC, we can set a threshold for the difference
‖C̃CC−CCC‖F to examine the accuracy of the approximation. Here
‖ · ‖F is the Frobenius norm of a matrix.

Figure 8 illustrates the relative error ‖C̃CC−CCC‖F/‖CCC‖F of the
training data sets of A1, B1, and C1. In all cases, the relative error
is smaller than 10%. This indicates that we only need to identify 8
critical functional groups to characterize the data sets B1 and C1
when predicting solvation free energy, which implies that these
data sets have very good low dimension structure. We also notice
that for data set A1, we need d = 25. This is consistent with the
previous BCI analysis. As in data set A1, there are more types of
elements (nodes). When we try to identify the critical functional
groups/molecular fragments of the data set with model reduction
approach, the effect of nodes (elements) on the number of critical
groups is stronger than the topology of a molecule. Even though
we do not have a strategy to identify specific functional groups at
the moment, the data analysis above shows potential for achiev-
ing effective dimension reduction for molecules on solvation free
energy prediction. We also note that, because the distance ma-

trix of points in Rd is invariant under drift or rotation, identifying
the map between basis in Rd and the critical functional groups
requires comprehensive investigation and delicate design, which
will be a target of our future work. In this work, we only show this
potential via providing an abstract proof of concept in mathemat-
ics. This method is also valuable for predicting other properties.

4 Conclusion

In this work, we introduced a GPR model for solvation free energy
prediction. The proposed GPR model used a marginalized graph
kernel. A new similarity metric between molecules is defined in
the marginalized graph kernel by both molecular topology and
geometry. Therefore, the kernel can naturally adapt to molecules
containing topological diversity and various types of elements.
We benchmarked the performance of the GPR model on solvation
free energy prediction across three data sets. To investigate the
effect of different components in solvation free energy calculation
as the effect solvent and contribution of conformational entropy,
three solvation free energy data sets of our DFT calculations with
implicit water model, a subset of QM9 database of MD simula-
tion with implicit water model and a subset of experiment data
in Freesolv database were built. We demonstrated that by tun-
ing the hyperparameters, the uncertainty that was generated by
explicit solvent and/or conformation change does not affect the
accuracy of our GPR model. And we found that our GPR model
with the marginalized graph kernel can predict solvation free en-
ergy at chemical accuracy (<1 kcal/mol) for the subsets of QM9
database and Freesolv database while using significantly small
training data set (3% of QM9 database). Wu et al. have noticed
that generally, the performance of graph-based model is better
than other methods, but is not robust enough on complex tasks
under data scarcity. We also identified the same issue for our ML
model on the electrostatic part in solvation free energy data by
DFT calculation. The complexity of these data sets were further
analyzed by model reduction method. We also found that the
Bertz complexity index can be used to describe the data scarcity
in high dimensional space to some extent. Finally, we showed a
new method to evaluate the similarity between molecule in new
test set and training set as well as the property prediction, which
based on the distance between molecular graphs. This method
provides a possible way on which to build a minimum training
set to improve prediction for certain test sets. The current results
show good performance of our GPR model with graph kernel.
Next step we will combine the current ML model with more de-
scriptors to provide effective guidance for the inverse molecule
design of organic molecules in a redox flow battery.
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