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High-Throughput Oxygen Chemical Potential Engineering of 
Perovskite Oxides for Chemical Looping Applications
Xijun Wang,‡ a Yunfei Gao,‡ a Emily Krzystowczyk,‡ a Sherafghan Iftikhar,a Jian Dou,a Runxia Cai,a 
Haiying Wang,a,b Chongyan Ruan,a Sheng Ye,c Fanxing Li,*a

Chemical looping (CL) represents a versatile, emerging strategy for sustainable chemical and energy 
conversion. Designing metal oxide oxygen carriers with suitable redox properties remains one of the most 
critical challenges to CL due to the considerably different thermodynamic property requirements for different 
applications. Taking SrFeO3-δ as a base-structure, this study seeks to rationally substitute its A- and/or B-site 
cations to tailor the equilibrium oxygen partial pressure over 20 orders of magnitude. 2,401 SrxA1-xFeyB1-yO3-δ 
perovskite-phase structures were investigated using high-throughput density functional theory (DFT) and 
227,273 high-entropy perovskites were screened via machine learning (ML). This significantly expands the 
materials design space. While most of the compositions predicted are new and nonobvious, 19 previously 
reported oxygen carriers, with excellent redox properties, were correctly identified by the algorithm. 
Moreover, we experimentally demonstrated 15 new oxygen carriers with superior redox performance. These 
results support the effectiveness of the high-throughput approaches for accelerated materials discovery.

Broader context
Due to their unique redox properties, perovskite oxides containing first-row transition metals have drawn substantial attention in 
the areas of chemical looping, catalysis, electrochemistry, energy storage, solar-thermal water and CO2 splitting, and beyond. In 
these applications, designing mixed oxides with tailored redox properties is of critical importance. Despite the tremendous recent 
progress, development of mixed oxides still primarily relies on heuristic-based approaches. Building upon recent advances in 
computations, this study aims at significantly expanding the design space of perovskite oxides with tailored redox properties via 
high throughput DFT calculations supplemented with machine learning and verified with extensive experimental data. The 
effectiveness of this approach is highlighted by many of the predicted perovskites outperforming the previous benchmark by a 
factor of >2. Although two chemical looping applications are used as examples, this approach can be generalized for various energy, 
chemical, and environmental related applications, thus opening new avenues for rational design of high-performance oxides.

1. Introduction
As an emerging strategy toward clean, efficient, and cost-
effective energy and chemical conversion, chemical looping (CL) 
has drawn substantial attention in various important 
applications such as air separation,1-4 indirect combustion for 
CO2 capture,5-7 solar thermal water or CO2 splitting,8-10 and 
selective oxidation for chemical production.11-16 The CL concept 

involves decoupling an overall reaction into multiple reduction 
and oxidization sub-reactions, whereby an intermediate, also 
known as an oxygen carrier or a redox catalyst, facilitates such 
sub-reactions by releasing or replenishing oxygen under 
temperature and/or oxygen partial pressure (PO2) swings (Fig. 
1a).13,17-19 Therefore, the properties of the oxygen carriers, 
often composed of transition metal oxides, play a critical role 
towards the overall performances of a CL process. Despite of 
the tremendous efforts in oxygen carrier development, which 
has resulted in more than 2,000 journal articles, development 
and optimization of oxygen carriers still rely primarily on 
heuristics and trial-and-error. Meanwhile, the design space for 
oxygen carriers have significantly expanded from supported 
monometallic transition metal oxide20-22 to various families of 
mixed oxides.12,23-26 Since possible compositions of mixed 
oxides are practically infinite, effective computational tools that 
can narrow down the material design space for oxygen carrier 
development and optimization are highly desirable.
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Fig. 1 Chemical looping strategy. (a) Schematic illustration and potential applications. (b) Ellingham diagram depicting the 
correspondence between oxygen carrier redox properties and applications.

Oxygen carrier optimization requires comprehensive 
consideration of redox kinetics,13,27-30 oxygen capacity,31 redox 
cycling stability,32 cost, environmental impact, and surface 
catalytic properties13,33,34 when applied towards chemical 
production. The complexity of these intertwined factors makes 
it impractical for a comprehensive investigation from a 
computational standpoint, especially considering the dynamic 
nature of chemical looping reactions.16,35 However, we note 
that the redox thermodynamic properties of the oxygen 
carriers, quantified as equilibrium oxygen chemical potential 
(µO2) or partial pressure (PO2),33,36,37 represent the utmost 
important parameter and a prerequisite for oxygen carrier 
selection. Depending on the applications, the required PO2 may 
vary by up to 20 orders of magnitudes (Fig. 1b).33 As one would 
anticipate, high PO2 would promote oxygen donation while low 
PO2 would favor oxygen storage or replenishment,13,38 making 
the equilibrium oxygen chemical potential a promising 
descriptor to down-select oxide candidates for oxygen carrier 
design.

First-principles density function theory (DFT) calculations 
have shown advantages in computing redox thermodynamics 
for oxygen carriers.17,38-41 Recent studies have demonstrated 
the correspondence between the computed oxygen vacancy 
formation energies and the experimental PO2 swings.2,38,39,42 To 
this end, a number of DFT-driven high-throughput studies have 
been performed:2,44,45 Lau et al. reported an in-silico study 
calculating the theoretical redox equilibria for thousands of 

oxides and simulated their performance for chemical looping 
combustion (CLC);2 Vieten et al. calculated the enthalpies for 
the reduction of 240 perovskites to their brownmillerite phases 
and proposed an empirical model to pre-select materials for 
thermochemical water and CO2-splitting;42 Singstock et al. 
applied a DFT-computed descriptor to identify over 1,300 
promising active materials for CLC and chemical looping sulfur 
oxidation (CLSO).44 These studies have demonstrate excellent 
effectiveness for material screening. However, they are still 
subject to one or more of the following limitations: 1) The oxide 
model structures were generally simulated with small unit cells, 
making it difficult to determine the effects of oxygen vacancy 
concentration, which dynamically changes over the course of 
the redox reactions; 2) Thermodynamic properties were 
generally calculated using a defect-free model as the starting 
point, but the actual oxygen carriers rarely stay near a pristine 
state; 3) The various possible vacancy and substitution site 
combinations were not comprehensively considered. The 
accuracy of the DFT calculation results can be affected by the 
functional/basis-sets and some parameters settings like the Ueff 
values. These limitations can impact the accuracy and 
applicability of the models especially for applications with small 
target PO2 ranges such as CL air separation (CLAS) (Fig. 1b). 
Therefore, a more comprehensive simulation scheme closer to 
real world conditions is highly desired. In addition, advanced 
data-driven techniques such as ML, which have been 
successfully applied to assist materials design,46-51 have rarely 
been used for CL applications, with the exception of one study 
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investigating Mn based oxygen carriers based on experimental 
performance and characterization of 19 Mn-containing ores.52

Perovskite structured strontium ferrite (SrFeO3-δ) has been 
widely investigated for CLAS2,19,38,53 and CL with oxygen 
uncoupling (CLOU)54,55 due to its outstanding oxygen release 
and uptake capabilities.56-62 However, unless reduced well 
below SrFeO2.5, SrFeO3-δ cannot be applied for reactions that 
require much lower PO2 such as CO2/H2O splitting.63 Substitution 
of the A- and/or B-site of SrFeO3 was shown to be effective 
toward fine-tuning its redox properties.38,39,64-67 For instance, A-
site doping with La64 or Ca65, B-site doping with Cu66 or Mn67, 
and A/B-site co-doping with La/Co68,69 or Ca/Co53,70 have 
improved the performance of SrFeO3 based oxygen carriers for 
CLAS. These studies confirm that cation substitution can tailor 
the partial molar enthalpy (∆H) and the entropy (∆S) for redox 
reactions. However, finding the optimal doping elements and 
concentrations for specific applications still rely heavily on trial-
and-error. Moreover, further expanding the redox property 
range of doped SrFeO3-δ towards ultra-low PO2 applications such 
as CO2 splitting is highly desirable.

Herein, we demonstrate that the oxygen chemical 
potentials of A- and/or B-site substituted SrFeO3-δ perovskites 
can be rationally engineered for a wide range of CL applications. 
Specifically, DFT based high throughput calculations, with 
procedures depicted in Fig. 2a, were applied to investigate 
SrxA1-xFeyB1-yO3-δ perovskites with 2401 distinct cation 
compositions. DFT calculated ∆Gs at various oxygen non-

stoichiometries (δs) and temperatures were used to screen out 
promising oxygen carrier materials for CLAS and CL based CO2 
splitting. The effectiveness of the DFT based high throughput 
screening is supported by 21 literature reported oxygen carriers 
and 15 new carrier compositions prepared and tested in the 
current study. Furthermore, the DFT results were used to 
develop a machine learning model to predict the ∆Gs of 227,273 
Srx(A/A’)1-xFey(B/B’)1-yO3-δ high-entropy perovskites containing 5 
cation elements.71 The machine learning protocol, as illustrated 
in Fig. 2b, contains the following steps:72 (1) Data preparation, 
which includes data collection, normalization, and splitting the 
data into training and test datasets, as well as defining the input 
features; (2) Model selection, which involves selecting ML 
algorithms for the studied datasets based on the trade-off 
between time-consumption and accuracy; (3) Training model, 
referring to training the hyperparameters within the framework 
of the selected algorithm using the training sets to improve the 
prediction of the ML model; (4) Model evaluation, which entails 
testing the ML model against an unused dataset (test set) to 
evaluate its performances; (5) Predict the values of the new 
targets (∆Gs) for new perovskite compositions, followed by 
additional DFT and/or experimental verifications. The accuracy 
of the ML model was validated by additional DFT calculations 
and experiments. These findings not only significantly expand 
the materials design space for CL applications but also provide 
new insights and theoretical guidance for oxygen carrier 
optimization.

Fig. 2 Flowcharts for high throughput materials screening. (a) DFT model construction, high-throughput calculations, and materials screening. 
(b) ML steps for the training, evaluation, and prediction of perovskite datasets.

2. Results and Discussion

2.1 Preliminary screening based on structural stability
The SrxA1-xFeyB1-yO3 perovskite models were constructed by 
substituting A- and/or B-site cations in SrFeO3, where A-site 
cations are typically consisted of alkaline earth, alkali or rare 
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earth metals and B-site cations are usually transition metals. 
Table 1 summarizes the dopant types and concentrations 
investigated in this study. By exhausting all possible 
combinations of A- and/or B-site dopants in the selected cation 
network, 2401 perovskite models were constructed. Since some 
of these compositions may not form a stable perovskite phase, 
pre-screening steps were performed. Firstly, 168 compositions 
whose total valence cannot be zero were excluded (see Section 
2 in Supplemental Information), most of them contain large 
proportions (> 50%) of Mg on the B-site.
Table 1 A- and B-site dopant elements, x, y, and δ in SrxA1-

xFeyB1-yO3-δ investigated
A-site dopants Ca, K, Y, Ba, La, Sm
B-site dopants Co, Cu, Mn, Mg, Ni, Ti

x
0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 

0.875, 1

y
0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 

0.875, 1
δ 0, 0.125, 0.25, 0.375, 0.5,

Besides charge neutrality, the Goldschmidt tolerance 

factor ( ) is a frequently used empirical parameter 𝒕 =
𝒓𝑨 + 𝒓𝑶

𝟐(𝒓𝑩 + 𝒓𝑶)

to estimate the stabilities of perovskites.40 In a recent study, 

Bartel et al. proposed a modified tolerance factor 𝝉 =
𝒓𝑶

𝒓𝑩
― 𝒏𝑨

,73 where , ,  represent the radii of (𝒏𝑨 ―
𝒓𝑨 𝒓𝑩

𝐥𝐧 (𝒓𝑨 𝒓𝑩)) 𝒓𝑶 𝒓𝑨 𝒓𝑩

oxygen anion, and A- and B-site cations (Table S2).  and  𝒏𝑨  𝒏𝑩

are the oxidation states of A- and B-site cations, respectively. 
The modified tolerance factor (τ) carries more chemical 
information and exhibits better predictive ability than the 
classical Goldschmidt tolerance factor. Therefore, the modified 
tolerance factor, τ, was applied to estimate the stabilities of the 
perovskite structures (Fig. 3a). Direct estimation of τ in SrxA1-

xFeyB1-yO3-δ is challenging since the oxidation states and the 
ionic radii of Fe and other multi-valent B site cations are difficult 
to specify. This can be exemplified by 
Sr0.5

2+Y0.5
3+Fe0.5

a+Co0.5
b+O3

2-, where we can easily determine a + 
b=7, but the exact values of a and b are unknown. This can affect 
the calculations of the average radius of B site cations. To 
accommodate the SrxA1-xFeyB1-yO3-δ system, τ is expressed as a 
function of  (see Supplemental Information 𝝉(𝒏𝑨,𝒏𝑩,𝒙,𝒚,𝜹)
Section 3 for detailed derivation). For a given composition with 
a B-site element that has multiple oxidation states, all the 
parameters are fixed except for , which should be between 𝒏𝑩

its lowest and highest oxidation states (Table S2). Therefore, 𝝉
 should also be within a corresponding range. (𝒏𝑨,𝒏𝑩,𝒙,𝒚,𝜹)

Since tolerance factor is used only as a preliminary screening 
step, a less stringent standard was adopted: a composition is 
considered to be feasible as long as its minimum  𝝉(𝒏𝑨,𝒏𝑩,𝒙,𝒚,𝜹)
value is lower than a threshold value of 4.3, instead of 4.18 
originally proposed by Bartel et al.73 This is value is used 
because there are stable perovskites whose τs are slightly 
higher than 4.18, as suggested by the same authors.73
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Fig. 3 Tolerance factor-based material screening. (a) Formula of the modified tolerance factor (τ) for ABO3 perovskites. (b) 
Comparison of Goldschmidt’s and the Bartel et al.’s modified tolerance factor for the 2401 SrxA1-xFeyB1-yO3 samples considered. 
Candidates in panels III and IV are considered as stable perovskites according to Goldschmidt’s rule and candidates in panels I, III 
and V are suitable candidates according to the modified tolerance factor τ. (c) Heatmap and (d) Frequency counts of the modified 
tolerance factors of the 2401 SrxA1-xFeyB1-yO3 compositions considered. The grey areas refer to the 168 excluded compositions 
whose total valence cannot be balanced to zero.

Fig. 3b illustrates the correlation between the 
Goldschmidt’s tolerance factor (t) and the modified tolerance 
factor (τ). Candidates in panels III and IV are considered as 
stable perovskites according to Goldschmidt’s rule and 
candidates in panels I, III and V are suitable candidates 
according to the modified tolerance factor τ. Although the 
predictions largely overlap with each other, a main 
disagreement is seen on panel IV, where the classical criterion 
indicates that these samples would be stable perovskites. We 
note that most candidates in panel IV contain > 50% potassium 

at the A-sites, which tend to be unstable based on our 
experiences. This indicates that the modified tolerance factor is 
likely to be more accurate in predicting the stabilities of 
perovskites. Therefore, we relied on the modified tolerance 
factor for this pre-screening step. The candidates excluded 
either contain a large proportion of potassium at A-site (> 50%) 
or a large proportion of Ni at B-site with A being Ca or Ba (Fig. 
3c). Of all the candidates considered, 230 were screened out, 
leaving 2,003 candidates for high-throughput calculations (Fig. 
3d).
2.2 High throughput calculations of ∆G
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The redox properties of oxygen carriers play a key role in CL 
processes. However, it is challenging to precisely describe the 
redox properties of oxygen carriers with simple yet accurate 
theoretical indicators. Although there are some successful case-
studies using the initial vacancy formation energy (∆EV) of a 
perfect perovskite structure as a descriptor,17,74,75 the initial ∆EV 
alone, in most cases, does not correlate well with the 
experimental observations due to the following reasons: i) the 
oxygen carriers rarely start from a defect-free state under 
practical experimental conditions; ii) both vacancy 
concentration and ∆EV change with oxygen partial pressure or 
temperature swings; iii) ∆EV does not account for entropy 
changes, which can be very important especially at high 
temperatures. To address these limitations, Gibbs free energy 
changes (∆Gs) within specified δ ranges were used as the 
descriptor for the redox properties. The ∆G(δ) can be directly 
compared to the experimental PO2 and its effectiveness has 
been demonstrated in our previous theoretical and 
experimental works.38,39 As illustrated in Fig. 4a, the SrxA1-

xFeyB1-yO3-δoxygen carriers’ redox thermodynamics can be 
described by their incremental Gibbs free energy as denoted by 

, where  𝚫𝑮𝜹𝟏→𝜹𝟐 = 𝚫𝑮𝜹𝟐 ― 𝚫𝑮𝜹𝟏 + (𝜹𝟐 ― 𝜹𝟏

𝟐 )𝝁𝑶𝟐 𝜹𝟏→𝜹𝟐

represent the change of δ value from δ1 to δ2. The slope of the 

δ vs. G curve ( ) thus describe the μO2 (or PO2) 
𝚫𝑮𝜹𝟏→𝜹𝟐

𝜹𝟐 ― 𝜹𝟏
∝ 𝚫𝑮𝜹𝟏→𝜹𝟐

within a vacancy concentration range at a given temperature. 
They can in turn be used to determine the feasibility and 
capacity of oxygen uptake and release within a given PO2 and/or 
temperature swings. As one can anticipate, too large or too 
small  will lead to less or over stable configurations. 𝚫𝑮𝜹𝟏→𝜹𝟐

Therefore, a suitable  within an optimal range over a 𝚫𝑮𝜹𝟏→𝜹𝟐

large δ span would lead to a larger oxygen capacity. Previous 
experiments indicate that δ usually varies in the range of 0.25 ~ 
0.5 in CL processes. It is also noted that every 0.125 change in δ 
correspond to roughly 1 wt% oxygen capacity. Therefore, we 
focused our study on the ∆G within a δ range of 0.25 and 0.5 
with 0.125 increment, i.e.  and . as well 𝚫𝑮𝟎.𝟐𝟓→𝟎.𝟑𝟕𝟓 𝚫𝑮𝟎.𝟑𝟕𝟓→𝟎.𝟓

as their linear interpolation .𝚫𝑮𝟎.𝟑𝟏𝟐𝟓→𝟎.𝟒𝟑𝟕𝟓

Fig. 4 ∆Gs for oxygen vacancy formation. (a) Schematic of the slope of ∆G in different δ ranges, where ∆G can be directly correlated 

with PO2 by . (b) ∆G of each doped species as δ changes from 0.3125 to 0.4375 at 400 and 950 °C. The grey areas ∆𝑮 = ―
𝟏
𝟐𝑹𝑻𝐥𝐧

𝑷𝑶𝟐

𝑷𝟎

refer to the 398 excluded unstable compositions.

Using ∆Gs as the descriptor, high-throughput DFT 
calculations were carried out on the 2,003 SrxA1-xFeyB1-yO3-δ 
candidates. It is noted that many perovskite structures undergo 
a disorder-order transition of lattice oxygen during the process 
of oxygen release, forming a brownmillerite structure at large 
δs (a perovskite phase tends to be maintained at very high 
operating temperatures). Such phase transition will have 
different effects on the calculations of ∆G for different 
materials. To account for this, both the energies of perovskite 
and brownmillerite structures were calculated for all the 
candidates with δ =0.5 and we used the lower value to calculate 
the corresponding ΔGs at 400 — 700 °C. For higher 

temperatures (800 — 950 °C), such transition was not 
considered since most of the materials should have disordered 
vacancies. Fig. S2 summarizes all the ΔG results at low (e.g. 400 
°C) and high (e.g. 950 °C) temperatures. As will be demonstrated 
in Section 3.4, these results are very useful to guide the 
development of high-performance oxygen carriers for a variety 
of CL applications.

The computation results indicate that substitution of A- 
and/or B-site cation in SrFeO3-δ can tune the redox ∆Gs over 
very broad ranges (-6.15 eV ~ 6.70 eV at 400 °C and -6.69 eV ~ 
6.14 eV at 950 °C). From the ∆G heatmap patterns, some 
general correlations between the dopant types, proportions 
and ∆Gs can be captured. For instance, as exemplified by the 𝚫
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 in Fig. 4b, the horizontal axis in each panel is the 𝑮𝟎.𝟑𝟏𝟐𝟓→𝟎.𝟒𝟑𝟕𝟓

composition parameter x of Sr in SrxA1-xFeyB1-yO3-δ and the 
vertical axis is the composition parameter y of Fe. It is clear that 
specific doping elements or combinations of co-doping 
elements can significantly affect the ∆G values. For instance, Ti-
doping tends to increase the ∆Gs, in some cases greater than 6 
eV, while Cu-doping, especially Cu-K co-doping, significantly 
decreases the ∆Gs. These findings can reduce the experimental 
trail-and-error for accelerated material discovery.
2.3 ML training and prediction of catalytic performances
The large datasets from high-throughput DFT allows us to 
perform further data analyses with ML to explore the 
correlations between the composition of perovskites and their 
∆Gs within the studied δ ranges. To select the appropriate ML 
model for our datasets, some test fittings were performed using 
a series of supervised learning algorithms. The studied 
algorithms include the family of linear models (linear fitting, and 
its regularized version Ridge76 and Lasso77), support vector 
machines (SVM) with different kernel functions,78 nearest 
neighbors,79 Gaussian process,80 and the decision trees81 etc. 
Here, the proportion of each cation element of the 2003 
perovskites are used as the input features (Fig. S3) and their 
corresponding  at 400 °C as the target property. 𝚫𝑮𝟎.𝟑𝟏𝟐𝟓→𝟎.𝟒𝟑𝟕𝟓

The performance of each learning algorithm with respect to the 
time-consumption, mean-absolute-error (MAE) and Pearson 
correlation coefficient (PCC) between the predicted and DFT 
computed values were presented in Fig. 5a. Results show that 
the time-consumption in the training step of all the considered 
algorithms are negligible, with the slowest one (gaussian 
process) takes only ~1 s to complete. The accuracies of the 
linear and polynomial regression algorithms are much lower 
than other algorithms, indicating that the underlying 
relationships between compositions and ΔGs, like many other 
quantum chemical problems, are non-linear and cannot be 

accurately described with linear or polynomial functions. The 
advantage of most no-linear algorithms is that they mainly 
contain multiple hyperparameters, i.e. internal model 
parameters, which can be optimized to adapt to different 
systems. This allows them to perform well in the current 
datasets. Especially the random forest (RF),82 an ensemble 
learning algorithm based on a multitude of trainable decision 
trees, has shown superior prediction performances than many 
other non-linear algorithms like kernel-based ones in handling 
complex chemical and material problems.83-86 As can be seen in 
Fig. 5a, RF exhibits the best predictive performance (highest PCC 
and lowest MAE) for the test datasets. It was therefore selected 
for subsequent training and predictions.

Fig. 5b summarizes the performance of RF on the test 
datasets in the model evaluation step. As can be seen, RF 
provides reasonable prediction accuracy for all the ∆Gs 
considered with high PCC (0.813 – 0.952) and low MAE (0.284 – 
0.657 eV). This is especially the case for  at both 𝚫𝑮𝟎.𝟑𝟏𝟐𝟓→𝟎.𝟒𝟑𝟕𝟓

low (400 °C) and high (950 °C) temperatures, with high PCCs 
(0.952 and 0.943) and low MAEs (0.284 and 0.324 eV). Such 
errors, although higher than those for well-defined 
monometallic oxides, are comparable with typical DFT errors for 
mixed oxides containing 4 or more cations,42 showing the RF 
model’s potential. In addition, we also attempted to improve 
the RF model using additional µO2-related properties, such as 
the average charge (Δe) and p-band center (εp) of oxygen 
anions, as the input features in the model training step. 
However, Fig. S4 shows that the introduction of these electronic 
descriptors did not result in notable improvement of the 
predictive performances of the RF model. Considering the 
substantial CPU-time required for the calculations of these 
descriptors, we elected to not use them in the subsequent 
predictions.
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Fig. 5 Machine learning results. (a) PCC and MAE of different supervised ML algorithms. (b) Comparison of ∆G values computed by 
DFT with those predicted by RF within studied δ ranges at 400 and 950 °C. (c) DFT Verification of RF predicted ∆Gs for 60 randomly 
selected datasets containing 5 cation elements. Here the RF model trained from the 2003 samples containing 2 – 4 cation elements 
were used to predict the ∆Gs of the samples containing 5 cation elements.

Since the DFT calculation has already exhausted all the 
perovskites containing 2, 3, and 4 cation elements, we further 
extended the RF based ML model to predict the properties of 
perovskites containing 5 or more cation elements. These 
perovskites with five or more cations, also known as high-
entropy perovskites (HEPs),71 are an emerging class of new 
materials with unique redox properties and stability for various 
thermochemical applications.87 Herein, 227,273 high-entropy 
perovskite compositions, prescreened out of 264,110 
compositions based on the Goldschmidt’s tolerance factor, 
were calculated. We elected not to use the modified tolerance 
factor for the preliminary screening due to the high complexity 
of the 5 cation elements perovskites, especially for those 
containing 4 B-site cations (SrFe1-y1-y2-y3B1y1B2y2B3y3O3-δ), which 
greatly increase the degree of uncertainties. In comparison, the 
applicability of the Goldschmidt’s tolerance factor in high-
entropy oxides with 5+ cations has been extensively 
examined.88,89 To examine the reliability and accuracy of these 
predictions, we randomly selected 60 samples for further DFT 

calculations and compared the results with the predicted values 
as shown in Fig. 5c. The results confirm satisfactory correlations 
especially for the predictions of  with PCC = 𝚫𝑮𝟎.𝟑𝟏𝟐𝟓→𝟎.𝟒𝟑𝟕𝟓

0.887 and 0.868, and MAE = 0.526 and 0.429 eV at 400 °C and 
950 °C respectively. Such prediction accuracy is acceptable 
especially when applied to screen CL materials with large 
chemical potential spans such as CL CO2 splitting. Combined 
with its efficiency (6 orders of magnitude faster than DFT 
calculations to produce a set of target ∆Gs as shown in Fig. S5), 
ML can be a powerful tool for accelerated material discovery 
and design. However, further extension of the RF model to 
predict the property of more complex perovskites, such as the 
ones containing 6 or more cation elements, becomes unreliable 
(Fig. S6). This is probably because the chemical information 
contained in the current RF model is insufficient to predict the 
very complicated couplings of spin and electronic states in 
systems containing 6 or more cation elements. Although the 
current ML models are less than perfect due largely to the 
complexity of the mixed oxide system, it does provide an 
effective toolkit to greatly reduce experimental trial and error.
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2.4 Applications for Chemical Looping Air Separation and CO2 
splitting
The applicability and effectiveness of DFT and ML based high 
throughput screening are experimentally investigated in the 
context of chemical looping air separation (CLAS) and CL based 
CO2 splitting. These two specific applications were selected 
since they represent two extreme chemical looping cases in 

terms of PO2 and operating temperature, as illustrated in Fig. 1b 
and Table 2 below. Covering the two extreme cases, with a 550 
°C temperature span and 20 orders of magnitudes for PO2, 
would help to demonstrate the general applicability of the 
computational results.

Table 2 Experimental parameters and screening criteria of CLAS and CL CO2 splitting.
Application CLAS CL CO2 Splitting

Reduction Rxn. Air ⇆ N2

SrxA1-xFeyB1-yO3-δ1 ⇆ (δ2-δ1)/2 O2 + SrxA1-xFeyB1-

yO3-δ2

SrxA1-xFeyB1-yO3-δ1 ⇆ (δ2-δ1)/2 O2 + SrxA1-xFeyB1-

yO3-δ2

CO2 ⇆ CO + 1/2 O2

Oxidation Rxn. (δ2-δ1)/2 O2 + SrxA1-xFeyB1-yO3-δ2 ⇆ SrxA1-xFeyB1-

yO3-δ1

CH4 + 1/2 O2 ⇆ CO + 2H2

(δ2-δ1)/2 O2 + SrxA1-xFeyB1-yO3-δ2 ⇆ SrxA1-xFeyB1-

yO3-δ1

PO2 range ~0.01 – 0.2 atm ~10-21 – 10-17 atm
Temp. range 400 – 900 ℃ (preferably <600 ℃) 750 – 1,000 ℃

Ideal ∆G ranges 0.05 – 0.13 eV at 400 ℃
0.07 – 0.19 eV at 700 ℃

2.23 – 2.24 eV at 400 ℃
2.13 – 2.41 eV at 700 ℃

∆G screening 
criteria

-0.25 – 0.63 eV at 400 ℃
-0.23 – 0.69 eV at 700 ℃

1.93 – 2.74 eV at 400 ℃
1,83 – 2.91 eV at 700 ℃

CLAS operates within very narrow PO2 swings since the 
thermodynamic driving force for separating O2 from air is 
intrinsically limited. The target range of ∆G per O atom can be 
calculated from the PO2 (or μO2) swing:33,38

∆𝑮𝒆𝒙𝒑 = ―
𝟏
𝟐𝑹𝑻𝐥𝐧

𝑷𝑶𝟐

𝑷𝟎

where R is the ideal gas constant and P0 is the standard 
atmospheric pressure. A PO2 swing between 0.01 and 0.2 atm is 
typical when considering both the oxygen release and 
regeneration requirements. This corresponds to very small ∆G 
ranges of 0.05 – 0.13 eV at 400 °C, and 0.07 – 0.19 eV at 700 °C. 
The narrow ranges are challenging for DFT due to its relatively 
large errors when calculating redox thermodynamics of 
perovskites (up to 0.98 eV) according to previous reports,42 let 
alone the ML predictions which would have even larger errors. 
The errors from the DFT calculations in the current study are 
relatively small (0.05 ~ 0.70 eV) based on a comparison between 
the calculated results of 9 samples with those reported in 
experimental literatures (Table S3). The higher accuracy 
compared to previous DFT studies may have resulted from (1) 
the δ ranges investigated are closer to the experimental ranges; 
(2) the model created was based on an advanced sampling 
method (MCSQS), allowing the model to better represent a 

randomly distributed solid solution; (3) more accurate 
thermodynamic analyses were applied to estimate the enthalpy 
and entropy contributions.

Given that the goal of the high throughput calculation is to 
screen out promising materials, target ∆G ranges are relaxed to 
account for the uncertainty in DFT results. We note that DFT 
tends to overestimate the ∆G (Table S3), the upper limit of ∆

 were modified empirically by adding 0.5 eV while 𝑮𝒆𝒙𝒑

extending the lower limit by 0.3 eV. As such, the target ∆G 
ranges are modified to ∆𝑮𝑻𝒂𝒓𝒈𝒆𝒕

. Using these target ranges, the { ∈ [ ―𝟎.𝟐𝟓,𝟎.𝟔𝟑] 𝒆𝑽 𝒂𝒕 𝟒𝟎𝟎℃
∈ [ ―𝟎.𝟐𝟑,𝟎.𝟔𝟗] 𝒆𝑽 𝒂𝒕 𝟕𝟎𝟎℃

promising materials were screened as shown in Fig. 6a and Fig. 
S7, in which the blue and red colors represent the samples 
whose ∆Gs are higher or lower than the target region, 
respectively. Table S4 lists 1,270 candidates whose ΔGs are 
within the target range at either temperature. These materials 
have the potential for CLAS either at 400 or 700 °C. When 
applying a tighter criterion requiring satisfactory ΔGs at both 
400 and 700 °C covering the entire δ range of 0.25 – 0.5, 113 
promising CLAS candidates were further screened out, as listed 
in Table S5. Using the same target ∆G ranges, 17047 samples 
with 5 cation elements were predicted by ML as attached in our 
GitHub repositories.90
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Fig. 6 High throughput screening results and experimental validations. (a) A heatmap of the screened candidates for CLAS at 700 
°C within the δ range of 0.3125 ~ 0.4375 (heatmaps for the other temperature and δ ranges are shown in the supplemental 
document). (b) Experimental oxygen capacity, recovery, and usable capacity of the samples tested for CLAS. Squares and circles 
represent DFT and ML predicted samples, respectively. (c) A heatmap of the screened promising candidates for CL CO2/H2O 
splitting at 950 °C within the δ range of 0.3125 ~ 0.4375. (d) Experimental syngas yield and CO2 conversion of the samples tested 
for CL CO2 splitting. Squares and circles represent the DFT and ML predicted samples, respectively. In (a) and (c), the candidates 
whose ΔGs are within target ΔG regions ([-0.23,0.69] eV for CLAS and [-1.83,2.91] eV for CO2 splitting) are plotted with the colors 
from cyan to orange as illustrated with the color bars. The species whose ΔGs above or below the target regions are plotted using 
red and blue, respectively. The grey areas refer to the 398 excluded unstable compositions.

Of the 113 CLAS materials predicted by DFT, 11 with very 
similar compositions have been confirmed by previous 
experimental systems and showed excellent results.68,91-99 Of 
the 77 DFT predicted materials that have not been reported 
previously, we selected 12 materials for experimental 
validation. We also experimentally investigated 3 ML predicted 
materials. These experimental findings, both from literature 
and the current experimental study, are summarized in Table 3. 

Given that experimental procedures in literatures tend to vary, 
Fig. 6b only summarized the performance of the 15 samples 
tested in the present study using an identical testing procedure, 
where recovery is the percentage of the post cycle sample 
weight relative to the pre cycle weight, and usable capacity is 
defined as the recoverable oxygen capacity within each cycle. 
Table 3 summarized the performance details of the 11 literature 
reported materials as well as the 15 samples tested in this study. 
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As can be seen, a large fraction of the DFT predicted materials 
demonstrated satisfactory CLAS performance: 13 out of the 15 
samples experimentally tested in this work exhibited better 
performance than the baseline SrFeO3 oxygen carrier in at least 
one of the performance metrics; 10 samples are far superior 
(>50% increase in capacity vs. SrFeO3). In addition, 5 of the 15 
materials we tested demonstrated better performance than 
most, if not all, the previously reported materials. Interestingly, 
some of the compositions, such as Sr0.875Ca0.125Fe0.625Mg0.375O3-

δ and Sr0.875K0.125Fe0.75Co0.125Ni0.125O3-δ, are quite atypical when 
compared to the compositions reported in literature. 
Investigation of these unique compositions would have been 
extremely unlikely if heuristic-based or trial and error 
approaches are adopted. This clearly demonstrates the 
effectiveness of the high throughput approach in this study. 
While it is not within the scope of this study to extensively test 
the ML predicted materials, our experimental results do 
indicate that ML can also provide valuable guidance on the 
design of complex mixed oxides. A few other high-entropy 
perovskite compositions predicted in this study were also 
examined as listed in Table S6, further confirming the 
effectiveness of the ML model. Experimental XRD patterns of 
the 15 samples are shown in Fig. S8, showing that their main 
phases are perovskites with some samples contain minor phase 
impurities. We also note that the poor-performance by 
Sr0.875Ba0.125Fe0.375Mn0.625O3-δ is probably caused by phase 
segregation, with notable SrO and BaO phases (Fig. S8). This is 
likely to be due the hygroscopic nature of the Mn nitrate 
precursor, leading to lower amounts of Mn being incorporated 
into the perovskite. This issue occurred for all materials with Mn 
on the B site, including SrFe0.5Co0.125Mn0.125Mg0.25O3-δ and 
Sr0.75Ca0.25Fe0.75Mn0.25O3-δ. The Ti containing phase suffered 
from a similar issue, as the Ti butoxide precursor, a viscous 
liquid, tends to aggregate along the walls of the transfer vessel. 
Sr0.625Ca0.375Fe0.75Cu0.25O3- δ also suffers from phase segregation, 
with CuO and CaO both presenting in the XRD spectra. 
Segregation of CuO from perovskite was commonly 
encountered in previous literature.92 It is also noted that many 
of these compositions, although appear to be complex, can be 
prepared by relatively simple methods such as solid-state 
reaction due to their thermodynamic stability. The capacity, 
recovery, and initial temperature of weight loss were also 
collected using a thermogravimetric analyzer (TGA) for six 
representative samples (Fig. S9), showing the process of oxygen 
release and uptake in a reaction cycle.

A similar screening method was adopted for CL CO2-
splitting. From a thermodynamic perspective, a high equilibrium 
PO2 leads to low CO2 conversion in the splitting step and over 
oxidation of the syngas product in the methane POx step. In 
contrast, a low PO2 can lead to low methane conversion. An 
optimal range of PO2, illustrated in Fig. 1b, can be calculated via 
Gibbs free energy minimization.63 This corresponds to a target 

range of  (Fig. S10). To ∆𝑮𝒆𝒙𝒑{ ∈ [𝟐.𝟐𝟑, 𝟐.𝟐𝟒] 𝒆𝑽 𝒂𝒕 𝟖𝟎𝟎℃
∈ [𝟐.𝟏𝟑, 𝟐.𝟒𝟏] 𝒆𝑽 𝒂𝒕 𝟗𝟓𝟎℃

account for DFT calculation errors, the target ∆G ranges are 

relaxed to . Promising ∆𝑮𝒕𝒂𝒓𝒈𝒆𝒕{ ∈ [𝟏.𝟗𝟑, 𝟐.𝟕𝟒] 𝒆𝑽 𝒂𝒕 𝟖𝟎𝟎℃
∈ [𝟏.𝟖𝟑, 𝟐.𝟗𝟏] 𝒆𝑽 𝒂𝒕 𝟗𝟓𝟎℃

candidates that fall within this target ΔG range are shown in Fig. 
6c and Fig. S11. Table S7 lists 482 candidates with ΔGs within 
the target range at least under one of the temperatures. Under 
a tighter criterion of satisfactory ΔGs at both 800 and 950 °C for 
δ between 0.25 and 0.5, 30 promising candidates were 
identified (Table S8). For some samples with larger  𝚫𝑮𝟎.𝟐𝟓→𝟎.𝟑𝟕𝟓

(> 3 eV), their δs are not likely to reach above 0.25. Therefore, 
δ ranges of 0– 0.125, 0.125 – 0.25, and 0.0625 – 0.1875 were 
also taken into account as listed in Table S9, leading to 55 
additional samples that are promising. Using the same criteria, 
4267 samples with 5 cation elements were predicted by ML.90

Of the 85 materials predicted by DFT, 4 with very similar 
compositions have been reported in experimental literature 
and showed excellent results.100-102 4 additional previously 
reported compositions were covered by the loose criteria (Table 
S7).103-107 The lack of literature reports compared to CLAS 
materials is largely due to relatively few studies on this subject. 
Of the 81 DFT predicted materials that have not been reported 
previously, we synthesized 7 for experimental validation. 3 ML 
predicted materials were also investigated experimentally. 
These experimental findings are summarized in Table 4. Fig. 6d 
illustrates the performances of the 10 samples tested in the 
present study. As can be seen, all 7 DFT-predicted samples 
exhibited >80% syngas yield and >85% CO2 conversion, where 
Ru and Rh impregnations are used for two samples to promote 
the reaction rates without affecting the redox 
thermodynamics.13,108,109 And all 3 ML-predicted samples 
exhibited >70% syngas yield and >80% CO2 conversion. Nearly 
all these samples are in line with or superior to previously 
reported materials. It is noted that we successfully predicted 
and experimentally verified a family of perovskite materials 
with substantial amount of Ti doping in the B-site, such as 
Sr0.5Y0.5Fe0.125Ti0.875O3-δ and Sr0.375Sm0.625Fe0.375Ti0.625O3-δ, and 
they showed outstanding CL CO2-splitting performances. These 
materials would unlikely to be investigated without the high 
throughput study. The main phases of the 10 samples are all 
perovskites with some of them contains minor impurities, as 
verified by XRD (Fig. S12). The performance of the methane POx 
and CO2 splitting steps are determined with mass spectrometry 
for three representative samples as shown in Fig. S13, again 
showing the excellent redox properties of our predicted oxygen 
carriers.

It is worth noting that there are groups of materials that 
require higher degree of reduction in the presence of CH4, some 
of which can even reduce part of the perovskite parent 
structure to metals, like La0.6Sr0.4Cr0.8Co0.2O3-δ

110 and the 
composite material LaNi0.35Fe0.65O3-Ce0.85Gd0.1Cu0.05O2−δ.111. 
However, we note that while the search for active metal ex-
solution criterion from a DFT standpoint is an interesting topic, 
it is beyond the scope of this study. The present study focuses 
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exclusively on the tunability of PO2s for perovskite materials 
without phase transitions beyond brownmillerite.
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Table 3 Experimental performance of the DFT/ML predicted materials for CLAS
Sr1-

xAxFe1-

yByO3

Reference 
Data 

Source
Experimental Composition DFT/ML Predicted Composition

Experimental
Temperature

Experimental
Environment

Key 
Experimental 

Results*

SrFeO3 This study Base Material N/A 100 - 1000 oC 50% O2

1.38 wt%
R = 99.9%

TR = 297 °C

A= Ca Ref. 91 Sr0.76Ca0.24FeO3-δ Sr0.875Ca0.125FeO3-δ (DFT) 600 oC 5%-20% O2 1.2 wt%

A= K Ref. 93 Sr0.9K0.1FeO3-δ Sr0.875K0.125FeO3-δ, Sr0.625K0.375FeO3-δ (DFT) 700 oC 1%-20% O2 1.35 wt%

B= Cu Ref. 92,97 SrFe0.85Cu0.15O3-δ SrFe0.75Cu0.25O3-δ (DFT) 350 - 1000 oC
90%-0.01% 

O2
~2.9 wt%

B= Mn Ref. 93,94 SrFe0.9Mn0.1O3-δ SrFe0.625Mn0.375O3-δ (DFT) 700 oC 1%-20% O2 1.33 wt%

A=Ba; 
B=Co

Ref. 96
Sr0.9Ba0.1Fe0.8Co0.2O3-δ, 
Sr0.7Ba0.3Fe0.8Co0.2O3-δ, 
Sr0.5Ba0.5Fe0.8Co0.2O3-δ

Sr0.75Ba0.25Fe0.75Co0.25O3-δ (DFT)
Sr0.75Ba0.25Fe0.5Co0.5O3-δ (DFT)
Sr0.5Ba0.5Fe0.5Co0.5O3-δ (DFT)

500 - 1300 K N2 ~1.7 wt%

A=Ca; 
B=Co

Ref. 53,70 Sr0.8Ca0.2Fe0.4Co0.6O3-δ Sr0.75Ca0.25Fe0.375Co0625O3-δ (DFT) 400 oC 5%-20% O2 1.2 wt%

A=Ca; 
B=Mn

Ref. 97 Sr0.2Ca0.8MnO3-δ Sr0.625Ca0.375Fe0.25Mn0.75O3-δ (DFT) 1200 - 400 oC Ar 2.25 wt%

A=La; 
B=Co

Ref. 
68,98,99

Sr0.9La0.1Fe0.1Co0.9O3-δ, 
Sr0.9La0.1Fe0.5Co0.5O3-δ

Sr0.875La0.125Fe0.125Co0.875O3-δ (DFT)
Sr0.875La0.125Fe0.5Co0.5O3-δ (DFT)

25 - 800 oC He 2.5 wt%
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A=Ba; 
B=Co

This Study Sr0.875Ba0.125Fe0.5Co0.5O3-δ Sr0.875Ba0.125Fe0.5Co0.5O3-δ (DFT) 100 - 1000 oC 50% O2

4.86 wt%
R = 96.7%

TR = 250 °C

A=Ca; 
B=Mn

This Study Sr0.75Ca0.25Fe0.75Mn0.25O3-δ Sr0.75Ca0.25Fe0.75Mn0.25O3-δ (DFT) 100 - 1000 oC 50% O2

4.66 wt%
R = 97%

TR = 230 °C

A=Ca; 
B=Mg

This Study Sr0.875Ca0.125Fe0.625Mg0.375O3-δ Sr0.875Ca0.125Fe0.625Mg0.375O3-δ (DFT) 100 - 1000 oC 50% O2

3.18 wt%
R = 98.9%

TR = 262 °C

A=Ca; 
B=Co

This Study Sr0.75Ca0.25CoO3-δ Sr0.75Ca0.25CoO3-δ (DFT) 100 - 1000 oC 50% O2

2.4 wt%
R = 99.6%

TR = 222 °C

A=K; 
B=Co

This Study Sr0.875K0.125CoO3-δ Sr0.875K0.125CoO3-δ (DFT) 100 - 1000 oC 50% O2

2.38 wt%
R = 99%

TR = 262 °C

A=La; 
B=Cu

This Study Sr0.875La0.125Fe0.75Cu0.25O3-δ Sr0.875La0.125Fe0.75Cu0.25O3-δ (DFT) 100 - 1000 oC 50% O2

2.3 wt%
R = 97.8%

TR = 328 °C

A=La; 
B=Co

This Study Sr0.875La0.125Fe0.125Co0.875O3-δ Sr0.875La0.125Fe0.125Co0.875O3-δ (DFT) 100 - 1000oC 50% O2

2.26 wt%
R = 99.9%

TR = 287 °C

A=Sm; 
B=Co

This Study Sr0.75Sm0.25Fe0.125Co0.875O3-δ Sr0.75Sm0.25Fe0.125Co0.875O3-δ (DFT) 100 - 1000 oC 50% O2

2.26 wt%
R = 99.6%

TR = 236 °C

A=Y; 
B=Ni

This Study Sr0.875Y0.125Fe0.75Ni0.25O3-δ Sr0.875Y0.125Fe0.75Ni0.25O3-δ (DFT) 100 - 1000 oC 50% O2

1.96 wt%
R = 100%

TR = 282 °C

A=Ca; 
B=Cu

This Study Sr0.625Ca0.375Fe0.75Cu0.25O3-δ Sr0.625Ca0.375Fe0.75Cu0.25O3-δ (DFT) 100 - 1000 oC 50% O2

1.36 wt%
R = 100%

TR = 333 °C

A=Ba; 
B=Mn

This Study Sr0.875Ba0.125Fe0.375Mn0.625O3-δ Sr0.875Ba0.125Fe0.375Mn0.625O3-δ (DFT) 100 - 1000 oC 50% O2

1.29 wt%
R = 99.6

TR = 258 °C
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A=Y; 
B=Co

This Study Sr0.75Y0.25Fe0.125Co0.875O3-δ Sr0.75Y0.25Fe0.125Co0.875O3-δ (DFT) 100 - 1000 oC 50% O2

0.80 wt%
R = 99.8%

TR = 222 °C
A=K; 

B1=Co, 
B2=Ni

This Study Sr0.875K0.125Fe0.75Co0.125Ni0.125O3-δ Sr0.875K0.125Fe0.75Co0.125Ni0.125O3-δ (ML) 100 - 1000 oC 50% O2

4.56 wt%
R = 97.5%

TR = 279 °C
A=Ba; 

B1=Mg, 
B2=Ti

This Study Sr0.5Ba0.5Fe0.625Mg0.25Ti0.125O3-δ Sr0.5Ba0.5Fe0.625Mg0.25Ti0.125O3-δ (ML) 100 - 1000 oC 50% O2

2.83 wt%
R = 99%

TR = 215 °C
B1=Cu, 
B2=Mn, 
B3=Mg

This Study SrFe0.5Cu0.125Mn0.125Mg0.25O3-δ SrFe0.5Cu0.125Mn0.125Mg0.25O3-δ (ML) 100 - 1000 oC 50% O2

1.67 wt%
R = 99.8%

TR = 285 °C
* The first number refers to weight-based oxygen capacity, R refers to percent of recoverable oxygen capacity, TR refers to the initial reduction temperature.

Table 4 Experimental performance of the DFT/ML predicted materials for CL CO2-splitting.
Sr1-xAxFe1-

yByO3

Reference Data 
Source Experimental Composition DFT/ML Predicted Composition Temperature

Gas Flow 
(mL/min)

Results*

A= La Ref. 103, 100 LaFeO3-δ,
Sr0.3La0.7FeO3-δ

LaFeO3-δ
a (DFT)

Sr0.25La0.75FeO3-δ (DFT)
850 oC

CH4/N2=20/30
H2O/N2=578/50

XCH4 ~ 50-80%
SCO ~ 90%

A=La; B=Co Ref. 101
LaFe0.7Co0.3O3-δ,
LaFe0.5Co0.5O3-δ,
LaFe0.3Co0.7O3-δ

Sr0.125La0.875Fe0.5Co0.5O3-δ (DFT) 850 °C
CH4/N2=20/30

H2O/N2=578/50
XCH4 ~ 90%
SCO ~ 45%

A=La; B=Mn Ref. 102 LaFe0.7Mn0.3O3-δ,
LaFe0.5Mn0.5O3-δ

LaFe0.375Mn0.625O3-δ

LaFe0.625Mn0.375O3-δ (DFT)
850 oC

CH4/N2=20/30
H2O/N2=578/50

XCH4 ~ 90%
SCO ~ 95%

H2 generation capacity ~ 
4 mmol/g

A=La; B=Ni Ref. 104 LaFe0.9Ni0.1O3-δ LaFe0.75Ni0.25O3-δ
a (DFT) 850 oC

CH4/N2=20/30
H2O/N2=578/50

XCH4 ~ 90%

A=La; B=Ni Ref. 105 LaFe0.65Ni0.35O3-δ LaFe0.625Ni0.375O3-δ
a (DFT) 750 oC

CH4/N2=2.8/25
CO2/N2=1/25

XCH4 = 31%
SCO = 90%
XCO2 = 37%

A=La; B=Ni Ref. 106 LaFe0.5Ni0.5O3-δ LaFe0.5Ni0.5O3-δ
a (DFT) 700 oC

CH4/N2=2.8/25
CO2/Ar=1.4/25

XCH4 ~ 90%
SCO > 90%
XCO2 ~ 90%
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A=La; B1=Cr; 
B2=Co

Ref. 29 La0.6Sr0.4Cr0.8Co0.2O3-δ Cr is not considered in this study 900 oC
CH4/N2=0.75/14.25

CO2/N2=48/252
CO production rate ~ 

100 mL min-1 g-1

A=La; B=Cr Ref. 107 Sr0.3La0.7Fe0.9Cr0.1O3-δ Cr is not considered in this study 1000 oC
CH4/H2O

Pulse experiment
XCH4 ~ 70%

A=Y; B=Ti This Study Sr0.5Y0.5Fe0.125Ti0.875O3-δ Sr0.5Y0.5Fe0.125Ti0.875O3-δ (DFT) 950 oC
CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 ~ 100%
SCO = 98%
XCO2 = 99%

Ysyngas = 98%
Oxygen capacity = 0.70 

wt%

A=Y; B=Ti This Study Sr0.375Y0.625Fe0.5Ti0.5O3-δ Sr0.375Y0.625Fe0.5Ti0.5O3-δ (DFT) 950 oC
CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 ~ 100%
SCO = 96%
XCO2 = 96%

Ysyngas = 96%
Oxygen capacity = 0.69 

wt%

A=Y; B=Ti This Study Sr0.5Y0.5Fe0.375Ti0.625O3-δ Sr0.5Y0.5Fe0.375Ti0.625O3-δ (DFT) 950 oC
CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 ~ 100%
SCO = 96%
XCO2 = 96%

Ysyngas = 96%
Oxygen capacity = 0.69 

wt%

A=Sm; B=Ti This Study Sr0.375Sm0.625Fe0.375Ti0.625O3-δ Sr0.375Sm0.625Fe0.375Ti0.625O3-δ (DFT) 950 oC
CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 ~ 100%
SCO = 98%
XCO2 = 99%

Ysyngas = 97%
Oxygen capacity = 0.70 

wt%

A=La; B=Mn This Study LaFe0.35Mn0.65O3-δ 

(1 wt% Ru impregnated)
LaFe0.35Mn0.65O3-δ (DFT) 950 oC

CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 ~ 100%
SCO = 93%
XCO2 = 93%

Ysyngas = 93%
Oxygen capacity = 0.66 

wt%
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A=Y; B=Co This Study YFe0.875Co0.125O3-δ YFe0.875Co0.125O3-δ (DFT) 950 oC
CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 ~ 100%
SCO = 80%
XCO2 = 88%

Ysyngas = 80%
Oxygen capacity = 0.63 

wt%

A=Sm; B=Cu This Study Sr0.125Sm0.875Fe0.75Cu0.25O3-δ

(0.5 wt% Rh impregnated)
Sr0.125Sm0.875Fe0.75Cu0.25O3-δ (DFT) 950 oC

CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 = 98%
SCO = 89%
XCO2 = 88%

Ysyngas = 87%
Oxygen capacity = 0.63 

wt%

A1=La, 
A2=Sm; B=Ti

This Study Sr0.375La0.375Sm0.25Fe0.75Ti0.25O3-δ
Sr0.375La0.375Sm0.25Fe0.75Ti0.25O3-δ 

(ML)
950 oC

CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 = 77%
SCO = 93%
XCO2 = 83%

Ysyngas = 71%
Oxygen capacity = 0.59 

wt%

A1=La, 
A2=Sm; B=Ti

This Study Sr0.375La0.5Sm0.125Fe0.75Ti0.25O3-δ
Sr0.375La0.5Sm0.125Fe0.75Ti0.25O3-δ 

(ML)
950 oC

CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 = 71%
SCO = 93%
XCO2 = 80%

Ysyngas = 71%
Oxygen capacity = 0.57 

wt%

A1=La, 
A2=Sm; B=Ti

This Study Sr0.125La0.625Sm0.25Fe0.875Ti0.125O3-

δ

Sr0.125La0.625Sm0.25Fe0.875Ti0.125O3-δ 
(ML)

950 oC
CH4/N2=2.5/22.5
CO2/N2=2.5/22.5

XCH4 = 80%
SCO = 90%
XCO2 = 90%

Ysyngas = 72%
Oxygen capacity = 0.64 

wt%
a denotes that these materials are screened with a loose criteria (Table S7).
* XCH4, SCO, XCO2, Ysyngas represent methane conversion, CO selectivity, CO2 conversion, and Syngas yield, respectively.
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Conclusions

Using SrxA1-xFeyB1-yO3-δ as a model system, the present study 
developed and experimentally validated DFT and ML based 
high-throughput simulation approaches to rationally tailor the 
redox oxygen chemical potential of perovskite oxides. The DFT-
based high-throughput model is shown to be effective to 
identify cation dopant types and concentrations to flexibly 
adjust the equilibrium oxygen partial pressures of the mixed 
oxides over 20 orders of magnitude (10-21 atm – 0.1 atm) and 
across a large temperature range (400 – 900 °C). Overall, the 
oxygen chemical potentials for 2401 perovskite oxides 
containing up to 4 cation elements were simulated as a function 
of their oxygen vacancy concentrations (δ). Using these results, 
113 materials were predicted to be suitable for chemical 
looping air separation (CLAS) whereas 85 materials were 
projected to be ideal for CL based CO2-splitting. The validity of 
these predictions from DFT was verified experimentally, both in 
the current study and through previous experimental literature. 
In total, 43 of the compositions predicted were verified in 
previous publications, showing excellent performance. 
Additionally, we prepared and evaluated 25 additional model 
predicted materials. Out of these, 23 oxygen carriers exhibited 
satisfactory performances, and 15 showed superior 
performance compared to most, if not all, the previously 
reported oxygen carriers. The DFT based high-throughput 
simulation results were further applied to develop a machine 
learning (ML) model, which showed satisfactory accuracy. Using 
the ML model, redox thermodynamics of 227,273 perovskites 
containing 5 cation elements were investigated, leading to 
~20,000 promising oxygen carrier candidates. The prediction by 
the ML model was further validated by DFT calculations as well 
as experimental investigations of selected perovskite 
compositions. Interestingly, the DFT and ML based high-
throughput approaches have led to many nonobvious oxygen 
carrier compositions with superior chemical looping 
performance, e.g. tripling the oxygen capacity vs. the 
benchmark oxygen carrier for CLAS. Discovery of these unique 
compositions, such as Sr0.875K0.125Fe0.75Co0.125Ni0.125O3-δ and 
Sr0.375La0.5Sm0.125Fe0.75Ti0.25O3-δ, would be highly unlikely if one 
adopts conventional oxygen carrier design approaches. As such, 
the findings in the current study open up a new and effective 
strategy for rational design of high-performance oxygen 
carriers. It can also be generalized for tailoring the redox 
properties of complex oxides beyond chemical looping 
applications.

3. Computational and Experimental Methods

4.1 DFT Calculations
First-principles simulations were performed at the DFT level 
implemented by the Vienna ab initio Simulation package 
(VASP)112 with the frozen-core all-electron projector 
augmented wave (PAW) model113 and Perdew-Burke-Ernzerhof 
(PBE) functions.114 A kinetic energy cutoff of 450 eV was used 
for the plane-wave expansion of the electronic wave function, 
and the convergence criterions of force and energy were set as 
0.01 eV Å−1 and 10−5 eV respectively. A Gaussian smearing of 0.1 
eV was applied for optimizations. Gamma k-point was used for 
the 2 × 2 × 2 SrxA1-xFeyB1-yO3-δ perovskite supercells, which 
contain 40-8δ atoms, to reduce the computational intensity. 1 
× 2 × 2 Gamma-centered k-points were chosen for 
brownmillerite structures. The strong on-site coulomb 
interaction on the d-orbital electrons on the Fe, Co, Cu, Mn, Ni 
and Ti-sites were treated with the GGA+U approach115 with Ueff 
= 4, 3.4, 4, 3.9, 6 and 3 respectively, which gave reasonable 
predictions of geometric and electronic structures based on 
previous reports.116,117 To make the simulations tractable, only 
FM phase magnetic ordering was applied for all the doped 
structures given that magnetic ordering has relatively small 
effects on the oxygen vacancy formation and migration.118 The 
initial spin moment for Fe, Co, Mn, Ni were set to 4, 5, 5, 5, 
respectively.

To make the SrxA1-xFeyB1-yO3-δ models closer to randomly 
disordered solid solution phases, the Monte Carlo special 
quasirandom structures (MCSQS) method119 was applied to 
determine the position of all A- and B-site dopants and oxygen 
vacancies. The vibrational related properties such as the zero-
point energy (ZPE) and entropic contributions from phonons (

) were computed within the harmonic approximation using 𝑆𝑣𝑖𝑏
the Phonopy code120. For an optimized SrxA1-xFeyB1-yO3-δ crystal 
structure, a mixture of finite displacements and analytical 
gradients is used to construct a dynamical matrix of force 
constants, where forces were obtained from DFT calculations 
on a 2 × 2 × 2 supercell. The change in configurational entropy (

) were estimated by 𝑆𝑐𝑜𝑛𝑓 Δ𝑆𝑐𝑜𝑛𝑓 = 𝑎𝑅[2𝛿𝑙𝑛(2𝛿) +(1 ― 2𝛿)ln 
,121 where R is the ideal gas constant and a is the (1 ― 2𝛿)]

factor referring to the interaction of oxygen vacancies with a = 
2 describing an ideal solid solution with no defect interaction. 
For the solid-state perovskite and brownmillerite systems, since 
the contribution of PV term is negligible, the  was Δ𝐺
approximated by .122,123Δ𝐺 = Δ𝑈 ― 𝑇(Δ𝑆𝑣𝑖𝑏 + Δ𝑆𝑐𝑜𝑛𝑓)

To address the well-known overbinding issue of the O2 
molecule within DFT, enthalpy of O2 is computed using 𝐻𝑂2

, in which (𝑇) = 2𝐻𝑃𝐴𝑊/𝑃𝐵𝐸
𝑂 (𝑇) + 𝐻𝐶𝐵𝑆 ― 𝑄𝐵3

𝑏𝑖𝑛𝑑𝑖𝑛𝑔 (𝑇) 𝐻𝐶𝐵𝑆 ― 𝑄𝐵3
𝑏𝑖𝑛𝑑𝑖𝑛𝑔 (𝑇)

, where the CBS-QB3 = 𝐻𝐶𝐵𝑆 ― 𝑄𝐵3
𝑂2 (𝑇) ― 2𝐻𝐶𝐵𝑆 ― 𝑄𝐵3

𝑂 (𝑇)
method is implemented using Gaussian 16124 (see Fig. S1 and 
Table S1 in Supplemental Information).
4.2 The ML protocol
All ML algorithms were implemented by Scikit-learn.72 The 
random forest (RF) algorithm82 was applied to establish the 
relationship between the selected features (the proportion of 
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each A and B site element) and target (∆G within selected δ 
ranges) due to its robustness, noise tolerance, and ability to 
handle complex nonlinear relationships. The RF model is 
composed of 100 decision trees. Continue increasing the 
number of trees did not give improved prediction 
performances. The nodes are expanded until all leaves are pure 
or until all leaves contain less than 2 samples. A total number of 
10,015 datasets were randomly divided into two parts: 
randomly selected 8,012 datasets were used for training and 
the remaining 2003 were used for testing. Since the data of 
features (element ratio) are already from 0 to 1, normalization 
was unnecessary. The accuracy and robustness of the final 
machine learning results were verified by a cross-validation 
technique125: all the datasets were randomly and evenly 
distributed into 5 bins in this procedure with each bin used as a 
test set while the remaining 4 bins as training sets. Prediction 
accuracy and errors were evaluated by Pearson correlation 
coefficients (r) and mean-absolute-errors (MAE).
4.3 Sample synthesis and characterization
All the materials were synthesized using a modified Pechini 
method. In a typical synthesis of AxA’1-xBxB’1-xO3, stoichiometric 
amounts of the associated metal nitrates were dissolved in 
deionized water, roughly 15 mL. Then, citric acid was added to 
the solution at a molar ratio of 2.5 to 1 and stirred at room 
temperature for 30 min. In synthesis of Ti-containing materials 
in the B-site, stoichiometric amount of titanium (IV) butoxide 
was added into the solution. Then, ethanol was also added into 
the solution with a mass ratio of ethanol/titanium (IV) butoxide 
= 10/1. Next, ethylene glycol was added at a molar ratio of 1.5 
(ethylene glycol) to 1 (citric acid), and the solution was heated 
to 80 oC and held for 3 h while being stirred until a gel is formed. 
The resulting material was heated in an oven at 120 oC for 16 h. 
The dried sample was calcined in air at 1,000 oC for 8 h to 
remove the organic compounds and to form the perovskite 
phase. Finally, the resulting sample was sieved to desired 
particle size ranges (150 - 250 m for TGA testing and 250 – 450 μ

m for packed bed experiments). We note that Y doped samples μ
needed a slightly lower sintering temperature (900°C for 10 
hours). The crystalline phases of the materials synthesized were 
determined with powder X-ray diffraction (XRD) using a Rigaku 
SmartLab X-ray diffractometer with Cu Kα (λ=0.15418 nm). The 
radiation was operated at 40 kV and 44 mA. 2θ angle between 
15-60 or 15-80° were used to scan for XRD patterns. All 25 
samples prepared contain perovskite as the majority phase. 
Phase impurities were completely absent in 11 of them, 
negligibly small in 7, and notable in the remaining 7 samples 
(see Fig. S8 and S12).
4.4 Sample evaluation
CL Air Separation
The capacity, recovery, and initial temperature of weight loss 
were collected using a thermogravimetric analyzer (TGA Q650). 
Approximately 50 mg of material was added to an alumina 
sample cup and placed in the TGA. The flowrate was set to 200 
sccm, 100 sccm of oxygen and 100 sccm of Ar, the balance gas. 
The oxygen concentration was also monitored using a Setnag 
oxygen analyzer. Initially, the material was heated to 600 oC 
slowly to remove any water or carbonates present in the 

material. Then, the program was devised to ramp at 20 oC/min 
to 1000 oC under a 50% oxygen environment, hold at 1,000 oC 
for 10 minutes, and then cool back to 100 oC at a same ramp 
rate.
CL CO2 splitting
The reactivity performances of the synthesized materials were 
tested in a 1/8 in. ID packed-bed quartz U-tube reactor inside of 
a tubular furnace. Prior to testing, the materials were pelletized 
and sieved to 250-450μm diameter particle size. Then, 0.5 g of 
the sieved particles were placed into the U-tube. The furnace 
was then raised to 950°C under 25 mL/min of Ar flow. Then, an 
additional 2.8 mL/min CH4 flow was added for 2 min as the CH4 
partial oxidation step. Then, the CH4 flow was stopped, and the 
U-tube was purged with Ar for 5 mins. Subsequently, 1.4 
mL/min of CO2 was introduced for 4 mins as the CO2 splitting 
step. After the CO2 splitting step, the U-tube was purged with 
Ar again for 5 mins prior to the next cycle. The products were 
measured with a downstream quadruple mass spectroscopy 
(QMS, MKS Cirrus II). At least 10 cycles were conducted to 
assure that the reactive performances reach a steady state.
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