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16 ABSTRACT

17 Dry extended detention basins are static stormwater infrastructure, unable to adapt to shifts in water quality caused 

18 by urbanization in their source watersheds or long-term changes in rainfall patterns. As a potential solution to these 

19 problems, this research investigated the impact and use of real-time water quality data on a dry extended detention 

20 basin retrofitted with a controllable valve and a turbidity sensor with the goal of more consistently meeting water 

21 quality objectives. When rainfall was detected, the basin’s valve would close and detain all water until either a 

22 maximum allowable detention time was reached, or turbidity values fell below a predetermined threshold. This 

23 method was shown to produce highly variable detention times after rainfall events which highlights the advantages 

24 an adaptive system has over a traditional static system or one which uses predetermined detention times to meet 
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25 water quality objectives. To investigate if turbidity-based controls could operate effectively in the future if the 

26 turbidity sensor were to be removed, an advantage for economical resource allocation, several modeling 

27 approaches were evaluated to estimate the detention time of the system based on observed basin stage and 

28 precipitation data. Two of these models, a logistic regression model and a Long Short-Term Memory (LSTM) model, 

29 proved accurate in estimating the necessary detention time of the system. With this system’s ability to meet water 

30 quality objectives more consistently when real-time water quality data were integrated into the decision framework, 

31 this study lays the groundwork for other applications where improved water quality is the goal.

32

33 WATER IMPACT STATEMENT

34 This study explores the design, application, and analysis of a dry extended detention 

35 basin equipped with real-time control (RTC) which integrates real-time water quality data to 

36 achieve objectives more consistently. The results highlight how existing technology combined 

37 with innovative methodologies can be deployed to improve the quality of effluent from 

38 stormwater infrastructure and contribute to the ecological health of receiving waterbodies.

39

40 INTRODUCTION

41 The majority of stormwater infrastructure is static, unable to adapt to land use conversion 

42 and a changing climate. This includes stormwater control measures such as dry extended 

43 detention basins. Dry extended detention basins are storage facilities which are installed within 

44 drainage networks to temporarily store stormwater runoff.1,2 Their primary purpose is to provide 

45 channel and flood protection for the receiving stream or river by attenuating flows to match pre-

46 development conditions.1,2

47

48 Real-Time Control. Recent studies have begun to investigate the impact of retrofitting such 

49 systems with real-time control (RTC) by installing a controllable valve on the outlet to increase 
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50 or change detention times during rainfall events.3-9 Typically, these detention times are 

51 predetermined, and thus don’t account for changing conditions between and during rainfall 

52 events such as shifts in water quality. Thus, they are still treated as a “static solution to a 

53 dynamic problem”.10 Although there is evidence that utilizing real-time water quality data in the 

54 control decisions of stormwater infrastructure is beneficial for meeting water quality objectives, 

55 there are limited case studies in literature.11 Of those studies that have been performed, the 

56 primary focus was using this technology to prevent combined sewer overflows or to redirect 

57 water to wastewater treatment plants.12 Additional studies are needed to investigate the impact 

58 and efficiency of adaptable stormwater systems which integrate real-time water quality data into 

59 the decision framework for stormwater controls.

60

61 Impact and Measurement of Turbidity. Turbidity, which can cause water bodies to appear 

62 murky or cloudy, is an optical quality of water and a measurement of the scattering and 

63 absorption of light. It is elevated primarily by the presence of suspended sediment but also by 

64 organic matter and microscopic organisms.13 Turbidity is considered an indicator of the 

65 ecological health of a water body.13 For example, elevated turbidity levels can result in negative 

66 impacts to aquatic life and stream ecology by reducing photosynthetic activity, reducing food 

67 availability to fish and aquatic life, degrading aquatic habitats, and directly harming organisms 

68 by impairing respiration and digestive processes.14 

69 There are numerous standards and techniques for measuring turbidity, but most use a 

70 light source and detector to measure the optical scatter of a water sample. This diversity of 

71 instrumentation and measurement techniques have resulted in numerous designations for the 

72 units of a turbidity measurement. For the purposes of this study, turbidity measurements were 
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73 reported in Formazin Nephelometric Units (FNU) which corresponds to an instrument that 

74 measures turbidity by analyzing the sidescatter (90° to incident beam) from a single illumination 

75 beam light source using near infrared wavelengths.13 Another common turbidity unit is 

76 Nephelometric Turbidity Units (NTU) which replaces the near infrared light source of the FNU 

77 measurement technique with a white light source.13 Some instrumentation manufacturers have 

78 continued to report turbidity measurements in NTU as a generic turbidity unit though it may not 

79 be the correct designation.13 While frequent calibration of modern instruments is not generally 

80 required (unlike sensors for other water quality parameters), maintenance and installation of 

81 these sensors can be quite time consuming. Maintenance issues generally arise when sediment or 

82 biologic fouling occurs and obscures the sensor. To alleviate this issue, many sensors come 

83 equipped with cleaning protocols that physically wipe/remove any obscurities from the sensor’s 

84 lens, though the addition of this feature makes the sensor considerably more expensive. 

85 However, these cleaning protocols are not equipped to handle the sensor being obscured by 

86 larger debris (such as vegetation) blocking the sensor’s view of the water column; alleviation of 

87 these issues would require physical removal of the object(s) from in front of the sensor. Thus, 

88 long term deployment of such sensors can require a substantial investment to maintain system 

89 function. 

90

91 Turbidity and Stormwater Controls. To reduce the turbidity of stormwater entering a stream 

92 or river, thereby improving the ecological health of the system, stormwater controls such as dry 

93 extended detention basins are used. Dry extended detention basins are able to reduce the impact 

94 of turbidity primarily through gravitational settling and trapping of suspended particles found in 

95 stormwater.1-5,9,13 By attenuating flows and increasing the hydraulic residence time, these settling 
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96 and trapping processes have more time to occur which results in removal rates of 40-70% for 

97 suspended sediment.1-5,9 RTC has been able to enhance these processes and substantially 

98 improve the removal efficiency of suspended sediment to 70-90% by increasing the hydraulic 

99 residence time.3-5,7,9 However, none of these studies incorporated real-time water quality data to 

100 control this hydraulic residence time. This may prove to be a more versatile alternative for 

101 targeting specific water quality objectives by adjusting the hydraulic residence time as shifts in 

102 water quality occur.

103

104 Objectives. Although RTC is increasingly being viewed as a way to bolster the performance of 

105 stormwater infrastructure, there are numerous applications yet to be explored. To the authors’ 

106 knowledge there are no case studies utilizing real-time water quality data in the decision 

107 framework of dry extended detention basins, or other stormwater control measures, retrofitted 

108 with active controls. Based on the understanding that effluent turbidity levels may improve when 

109 detention times within stormwater facilities are increased, RTC may offer an avenue to achieve 

110 better outcomes than static systems. Furthermore, integration of real-time turbidity data is a 

111 starting point for showing how water quality informed RTC can be leveraged to achieve water 

112 quality objectives more consistently. Thus, the results of this study should encourage novel 

113 research into other applications of RTC integrated with real-time water quality data. The 

114 objectives of this study were to: (1) investigate the impact and use of real-time water quality data 

115 on a dry extended detention basin retrofitted with a controllable valve and a turbidity sensor as a 

116 novel methodology for more consistently meeting water quality objectives, and (2) leverage 

117 predictive models to alleviate the need for long term deployment of the turbidity sensor, an 
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118 advantage for economical resource allocation during widespread adoption by reducing the 

119 number of necessary sensors and required maintenance.

120

121 MATERIALS AND METHODS

122 Site Description

123 A dry extended detention basin in the Conner Creek watershed of Eastern Tennessee was 

124 chosen for this study (Fig. 1). The dry extended detention basin collects runoff from the 

125 impervious areas (such as roofs and parking lots) and practice fields of a local high school and 

126 elementary school. The contributing drainage area is 19.7 ha and the landcover is 86% 

127 impervious. The basin can detain approximately 14,760 m3 of water at a maximum stage of 3.05 

128 m before water overtops the outlet riser of the basin. 

129
130 Fig. 1. Study location in the Conner Creek watershed of Eastern Tennessee with the 
131 subcatchment of the dry extended detention basin outlined in red and the footprint of the 
132 basin outlined in blue.
133
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134 To convert this static stormwater infrastructure into an adaptable system, the outlet 

135 structure (Fig. 2) was retrofitted with a 150 mm (6”) diameter butterfly valve (Valworx 564548) 

136 and matching electric actuator (Valworx 561877A), an ultrasonic depth sensor installed above 

137 the basin (Grove Ultrasonic Ranger), and a dual sidescatter/backscatter turbidity sensor.15 A 

138 custom control circuit was developed and powered by a Particle Boron LTE development board 

139 to which the actuator and sensors were connected. To ensure that all turbidity measurements 

140 were reflective of the basin’s effluent conditions, the turbidity sensor was installed directly next 

141 to the basin’s outlet. Additionally, a tipping bucket rain gauge was integrated into the system to 

142 record rainfall and assist in the control decisions made by the system. While this system allowed 

143 for variable control of the valve (could be set anywhere between 100% fully open and 0% fully 

144 closed), binary control (fully closed or fully open) was used in this study. To utilize the full 

145 capacity of the basin, the bypass orifice (used to attenuate flows not able to be conveyed by the 

146 150 mm low flow orifice) on the outlet riser was sealed with a circular metal plate and gasket to 

147 prohibit it from discharging (as seen in the center of the left figure in Fig. 2).

148
149 Fig. 2. Dry extended detention basin outlet riser (left) outfitted with controllable valve, 
150 water depth sensor, and turbidity sensor and (right) the basin following a rainfall event.
151

152 Water Quality Informed RTC Strategy
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153 Turbidity was selected for this study as it is an important parameter for judging stream 

154 health, can act as a surrogate for other pollutants, and can be measured reliably with 

155 commercially available sensors (unlike other water quality parameters such as Total Suspended 

156 Sediment (TSS), bacteria, or nitrate). To investigate how real-time turbidity data may allow 

157 improved system performance for water quality, a set of control rules for the system were 

158 established. When rainfall was detected, the basin’s valve would close and detain all water (Fig. 

159 2) for a minimum of 24 hours following the end of a rainfall event. The valve would remain 

160 closed until either a maximum detention time of 72 hours was reached, or turbidity values fell 

161 below a predetermined threshold of 25 FNU determined via the turbidity sensor’s sidescatter 

162 measurements (justification for these thresholds is provided below). A simplified logic diagram 

163 (represented using AND and OR logic gate notation) of these control rules can be found below in 

164 Fig. 3.

165

166 Fig. 3. Simplified logic diagram of control rules in which the valve will be opened if no 
167 rainfall has occurred for 24 hours (minimum detention time) and turbidity is below the 
168 threshold (25 FNU) or no rainfall has occurred for 72 hours (maximum detention time). 
169 Otherwise, the valve is closed.  
170
171 The sidescatter turbidity measurements from the turbidity sensor were chosen for this 

172 study as they have the advantage of being more accurate in clean water compared to backscatter 

173 measurements which are useful for measuring higher levels of turbidity (≤4000 TU).15 The 

174 minimum and maximum detention times were adopted from regional design and operation 

175 guidance on dry extended detention basins.1-2 Additionally, since Tennessee does not have any 
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176 explicit regulations regarding turbidity in surface waters, guidance for the turbidity threshold 

177 came from regulations for ponds, reservoirs, and streams from 8 states’ water quality standards: 

178 Arizona, Hawaii, Iowa, Louisiana, Minnesota, North Carolina, Oklahoma, and Vermont (Table  

179 1).14 Some states may also regulate TSS in surface waters as an additional way to improve the 

180 clarity and quantity of suspended material present in water. However, it is much more difficult to 

181 measure TSS continuously than turbidity. 

182 Table  1. State turbidity regulations used as guidance for determining the turbidity 
183 threshold used in this study (adapted from 14).

State
Applicable Numeric Turbidity Criteria

Arizona 25 NTU in lakes for human contact and warm water fisheries

50 NTU in rivers for human contact and warm water fisheries

Hawaii 2-25 NTU for streams

Iowa 25 NTU

Louisiana 25 NTU for freshwater lakes, reservoirs, and oxbows; designated scenic 

streams and outstanding natural resource waters

Minnesota 25 NTU for fisheries and recreational waters with a Class B or C designation

North Carolina 25 NTU in lakes and reservoirs

50 NTU in streams

Oklahoma 25 NTU in lakes

50 NTU for other surface waters

Vermont 25 NTU for class B warm water fish habitats

184

185 To ensure that a series of insignificant rainfall events did not detain water within the 

186 basin indefinitely, additional advanced control rules were added. These rules would require that 

187 the initial rainfall or any additional rainfall (≥6 hours post the end of initial rainfall) must meet a 

188 minimum threshold (2.54 mm) equal to the initial abstraction of the watershed within a 6-hour 

189 duration for the rainfall to be included in control decisions. For example, if 12 hours after the end 

190 of initial rainfall a secondary storm passed through the watershed and rained 5 mm within 3 

191 hours, the system would recognize this as the new end of rainfall, thus resetting the countdown 

192 for the 24-hour minimum detention time. If that rainfall threshold was not met, or was not met 
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193 within the time limit (6 hours), the countdown to the minimum detention time would remain 

194 unchanged. Safety precautions were also included in these additional control rules to prevent 

195 overtopping of the outlet riser. If the water depth of the basin exceeded 2.51 m (~80% of 

196 maximum water depth; ~75% of maximum volume) the valve would open and release water until 

197 the water depth fell below 2.44 m. This control rule was designed to override all others and was 

198 only enacted by the system once during the study when cumulative rainfall exceeded 130 mm.

199 With the dry extended detention basin properly retrofitted with real-time turbidity 

200 measurements and controllable infrastructure, the data collection period of this study was 

201 allowed to commence. The system autonomously reacted to changing hydrologic and water 

202 quality conditions over a 5-month period (October 19th, 2019 – March 18th, 2020) during which 

203 the system was continuously online excluding a 39-day period (December 5th, 2019 - January 

204 13th, 2020) when the turbidity sensor was uninstalled (for reasons explained in subsequent 

205 sections). Routine maintenance occurred weekly to check the turbidity sensor for large debris 

206 (such as vegetation that cannot be removed by the sensor’s cleaning protocols which would 

207 result in obscured measurements) to ensure that basin control decisions were informed by 

208 accurate turbidity measurements. Additional maintenance activities included confirming that the 

209 valve was free of debris and that the stage sensor was reporting accurate measurements. If this 

210 system were to be installed by a municipality, maintenance frequency could likely be reduced to 

211 once every 2-3 weeks dependent on site-specific conditions. 

212
213 Simulating an Uncontrolled System

214 While performance metrics and water quality data for an uncontrolled baseline were not 

215 collected in this study, a comparison in performance between this adaptive RTC strategy and an 

216 uncontrolled basin can be inferred by comparing their hydraulic residence times. Multiple studies 
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217 have observed a positive relationship between water quality and hydraulic residence time in 

218 which an increase in the latter leads to an improvement in the former.3-5,7,9,16 This observed 

219 relationship occurs because sediment settling and nutrient uptake mechanisms have more time to 

220 process. For example, Gaborit et al. and Muschalla et al., during their simulations of a dry 

221 extended detention basin, observed substantial improvements in TSS removal efficiency (60%-

222 90%) when RTC was utilized as compared to an uncontrolled baseline (~40%).3-4,9 However, the 

223 baseline uncontrolled in these studies may have been underperforming as these systems generally 

224 remove approximately 66% of TSS.17 Field studies by Gilpin and Barrett, Jacopin et al., and 

225 Middleton and Barrett validate these observations with RTC strategies which extend hydraulic 

226 residence times being shown to achieve TSS removal efficiencies of 70-90%.5-7 

227 Simulations using the Personal Computer Stormwater Management Model (PCSWMM)  

228 and collected rainfall data were used to determine the hydraulic residence times (total time that 

229 water was detained within the basin) for each event in an uncontrolled scenario (both the bypass 

230 orifice and valve of the basin are left open).18 This PCSWMM model of the study site was 

231 created using available data for the basin’s drainage network (provided by construction/planning 

232 documents and Knoxville GIS) and soil infiltration properties (provided by the Natural 

233 Resources Conservation Service’s Web Soil Survey).19 PCSWMM’s Sensitivity-based Radio 

234 Tuning Calibration (SRTC) tool was then used to calibrate this model using a one-month period 

235 of observed basin stage and rainfall (7 rainfall events for a cumulative total of 227.33 mm) 

236 during which no manipulation of the basin’s valve occurred.20 This model achieved a Nash-

237 Sutcliffe Efficiency of 0.82 for the calibration period. The model’s performance was then 

238 validated with an additional five rainfall events (including a mix of those which utilized RTC 

239 and those which did not) and achieved Nash-Sutcliffe Efficiencies as high as 0.82 for 
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240 uncontrolled scenarios and 0.98 for scenarios which utilized RTC (controlled by preset RTC 

241 rules) ensuring that the model would produce accurate results.

242

243 Modeling Analysis

244 Following the data collection period of this study, several modeling approaches were 

245 examined to determine if they could accurately estimate the detention time of the system 

246 necessary to meet the turbidity threshold (within the minimum and maximum detention times of 

247 this study). The purpose of this modeling investigation was to determine if the system could 

248 operate effectively in the future if the turbidity sensor were to be removed. This would allow 

249 organizations implementing this system to save on maintenance and overhead costs associated 

250 with keeping the turbidity sensor clean and functional while also reducing the quantity of 

251 turbidity sensors required for the operation of multiple systems. The models evaluated consisted 

252 of a diverse selection of traditional statistical models and machine learning techniques. Available 

253 predictors for these models consisted of data that could be derived without the need of a turbidity 

254 sensor and included: initial water depth (m), maximum water depth during the initial 24 hours 

255 after a rainfall event (m), cumulative rainfall (mm), rainfall duration (h), maximum 5-minute 

256 rainfall intensity (mm/h), antecedent dry time (h), and time between storms (h). Each of the 

257 developed models predicted the detention time (h) required to meet the turbidity threshold within 

258 the minimum and maximum detention time constraints outlined previously. The mean absolute 

259 error (MAE) of each unique model’s predictions were used to compare model performance.

260 The traditional statistical models ranged from simple to complex and included logistic, 

261 linear, multiple, and polynomial regression models and were chosen to represent a diverse 

262 selection of regression models. The logistic regression model was created by analyzing 
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263 predictors iteratively for potential sigmoidal relationships. Once predictors displaying sigmoidal 

264 relationships were identified, each was analyzed using a diverse set of starting functions. The 

265 model with the lowest RMSE (root mean square error) value was selected as the optimal logistic 

266 regression model. The linear regression model was created by testing all possible subsets of 

267 predictors and selecting the model with the lowest RMSE. Similarly, the multiple regression 

268 model was created by testing all possible subsets of predictors and selecting a model with the 

269 lowest RMSE while also ensuring that the chosen model was free of multicollinearity. The 

270 polynomial regression model was derived using the same process as that of the multiple 

271 regression model with the addition of squared predictors. Each of these models were then 

272 validated using 10-fold cross-validation in which data were segmented into 10 equal parts and in 

273 each iteration, nine segments (90% of the data) were used for training and the remaining segment 

274 (respectively, 10%) was used for validation. The MAE of this validation procedure for each 

275 model was then used for model comparison.
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276 A random forest model was the first machine learning technique that was explored as a 

277 viable option for predicting the detention time of the system. Random forest models consist of a 

278 number of randomly generated decision trees, grouped together as a “forest”, which ask binary 

279 questions of predictors in order to arrive at a conclusion.21 The random forest model developed 

280 in this study consisted of 500 trees in its “forest” using a variety of predictors as the model’s 

281 independent variables. The number of trees used in the creation of this random forest model was 

282 fixed at 500 due to restrictions with the software package. Despite the number of trees being 

283 fixed, this package was selected as it exposed additional tuning parameters absent in other 

284 packages (that were observed to be more beneficial during the model’s creation). These 

285 additional tuning parameters included the number of randomly selected parameters at each node, 

286 target node size, and enacted splitting rule. The optimal random forest model was chosen by 

287 assessing the importance of each available predictor, altering the tuning parameters (number of 

288 randomly selected parameters, target node size, and splitting rule) using a tuning grid to assess 

289 all available combinations, and assessing model performance. The combination which resulted in 

290 the lowest RMSE for 10-fold cross-validation was chosen. The final random forest model’s 

291 MAE value was then used for model comparison and discussion.

292 Finally, a more advanced machine learning model was created and analyzed to determine 

293 if additional complexity would result in improved model performance. This model consisted of a 

294 long short-term memory (LSTM) network, which is a type of recurrent neural network (RNN) 

295 used primarily for time series prediction that has the ability to learn from short-term and long-

296 term trends in data to predict an output.22 This ability to learn from both long and short-term data 

297 trends makes it an ideal candidate for modeling scenarios that may be temporally dependent, 

298 such as this study. Since LSTM models use time series data (as opposed to tabular data) as their 
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299 input to predict an output at each modeled time step, the LSTM model developed for this study 

300 used observed basin stage (m) and rainfall (mm) time series data at 15-minute time steps to 

301 predict turbidity as a binary output (1 for turbidity < 25 FNU, 0 for turbidity ≥ 25 FNU). To 

302 simulate real world conditions, the output data (turbidity) was shifted 12 hours so that any 

303 prediction made by the LSTM model was always 12 hours in the future (i.e. basin stage and 

304 rainfall at any time t would predict turbidity at time t + 12 hours). In a production setting, this 

305 would allow enough time for the model to iterate every few hours (as the computational time for 

306 this model is significantly higher than others developed within this study) with updated time 

307 series data and form a prediction before a control decision would actually need to be made. This 

308 time shift would not be necessary for other models within this study as they are able to form a 

309 decision with data collected during and immediately following rainfall. 

310 The LSTM model used a 10-fold cross-validation process in which time series data were 

311 segmented into 10 equal parts and in each iteration, nine segments (90% of the time series data) 

312 were used for training and the remaining segment (respectively, 10%) was used for validation. 

313 As a reminder, for the other models explored within this study, the split between training and 

314 validation was based on the total number of events. The predicted turbidity at each 15-minute 

315 time step from each of these validation iterations were then combined and fed through the 

316 control rules outlined above to determine the valve position of the dry extended detention basin 

317 (1 for open, 0 for closed). From the predicted valve position and observed rainfall, predicted 

318 detention time for each event was established, and the model’s MAE was determined (necessary 

319 for model comparison and discussion).  

320
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321 RESULTS AND DISCUSSION

322 Observed Performance of System

323 A total of 21 events were collected from October 19th, 2019, through March 18th, 2020, 

324 with an event being defined as the time between when rainfall is initially detected at the site and 

325 when the system makes the control decision to release water from the dry extended detention 

326 basin. No events were recorded between December 5th, 2019, and January 13th, 2020, as the 

327 turbidity sensor was uninstalled due to ambient temperatures routinely falling below its operating 

328 temperature range.15 A summary of each of these events can be found below in Table 2. Events 3 

329 and 12 were removed from any further analysis in this study as they were deemed not 

330 representative. Specifically, event 3 was removed as debris covered the outlet and obscured the 

331 turbidity sensor’s measurements, while event 12 was removed due to the extremely high rainfall 

332 (134.87 mm) that occurred and flooded the basin/watershed. The control rules were limited in 

333 their ability to affect turbidity in a manner consistent with the other events under these extreme 

334 circumstances. 

335 Overall, 63% of events (12 of 19) met the 25 FNU turbidity threshold for water release 

336 before the maximum detention time, and the median turbidity value for all events in the study at 

337 release was 24.7 FNU. Although the turbidity threshold was not met for 37% (7 of 19) of events, 

338 events in this category still saw a median decrease of 7.9 FNU (22% reduction) during the 24 to 

339 72 hours following the end of the rainfall event with a median turbidity value of 35.0 FNU at 

340 release. The majority of events resulted in turbidity trends comparable to that of Fig. . 

341 Specifically, turbidity initially increases during and following rainfall before steadily decreasing 

342 over the next few days. Though similar trends in turbidity occurred, overall detention times were 

343 highly variable due to differences in initial turbidity magnitudes, the rate at which readings fell 
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344 (settling rate of suspended particles), or resuspension of sediment due to biologic activity. These 

345 observations highlight one of the many advantages an adaptive RTC strategy (that incorporates 

346 real-time water quality data) has over other control strategies as it is able to adapt to these 

347 diverse conditions.

348 Table 2. Summary of events collected in study.

Event
Start Time

Rainfall 
Duration 

(h)

Rainfall 
(mm)

Initial 
Water 

Depth (m)

Maximum* 
Water 

Depth (m)

Maximum* 
Turbidity 

(FNU)

Turbidity 
at Release 

(FNU)

Detention 
Time (h)

1 10/19/2019 17:35 9.4 7 0.51 0.62 40.5 24.8 24

2 10/21/2019 20:35 8.4 27 0.00 1.16 100.2 58.7 72

3 10/25/2019 16:40 33.0 46 0.81 1.71 74.5 495.1 72

4 10/30/2019 08:40 30.1 48 1.29 2.12 615.0 24.0 47

5 11/07/2019 10:30 10.0 10 0.82 0.96 28.0 9.7 24

6 11/22/2019 06:45 32.9 54 0.00 1.86 148.4 32.9 72

7 11/26/2019 22:55 9.7 21 1.06 1.52 324.7 24.7 31

8 11/30/2019 14:30 15.9 55 0.00 2.02 100.6 35.0 72

9 01/14/2020 01:10 112.9 42 0.00 1.52 148.6 28.5 72

10 01/23/2020 21:55 15.8 30 0.00 1.23 39.9 24.9 52

11 01/27/2020 04:05 6.5 3 0.84 0.92 82.4 24.1 24

12 02/04/2020 06:00 56.5 135 0.00 3.23 100.7 27.6 72

13 02/10/2020 03:55 30.3 50 1.09 2.17 25.1 20.8 24

14 02/12/2020 13:00 20.6 31 1.81 2.37 58.5 28.4 72

15 02/18/2020 05:30 17.3 23 0.00 1.12 412.1 24.5 34

16 02/20/2020 09:15 6.6 7 1.10 1.25 34.4 19.2 24

17 02/24/2020 06:50 58.3 23 0.00 1.12 71.0 35.4 72

18 03/02/2020 06:50 26.7 40 0.00 1.59 143.4 84.6 72

19 03/10/2020 05:35 14.9 11 0.00 0.63 187.3 22.3 24

20 03/13/2020 00:20 53.8 14 0.00 0.78 238.9 19.9 25

21 03/16/2020 23:40 12.4 11 0.70 1.09 32.2 19.8 24

Median for All Events 15.9 23 0.00 1.23 100.2 24.7 25

St. Dev for All Events 25.1 17 0.57 0.52 150.6 16.1 16

Note: Median and St. Dev do not include Events 3 and 12 as they were removed from any analysis.

*Maximum during time period between when rainfall begins and 24 hours following the end of rainfall.
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349

350

351 Fig. 4. Turbidity measurements (left) and dry extended detention basin hydrograph (right) 
352 for event 10.
353

354 Comparison to an Uncontrolled Basin

355 Table 3 (below) displays the results of the modeling investigation for the uncontrolled 

356 scenario with the maximum uncontrolled residence time (beginning of rainfall until the basin is 

357 drained), the minimum residence time of the system using RTC (beginning of rainfall until when 

358 the valve was opened), and the minimum increase in residence time between the uncontrolled 

359 and RTC equipped basin. Equipping the basin with water quality informed RTC led to a median 

360 minimum increase in the hydraulic residence time of 82%. From this notable increase in 

361 hydraulic residence time, it can be inferred that the water quality informed RTC strategy can 

362 provide substantial improvements in water quality when compared to existing/baseline 

363 conditions. 

364

365

366

367

368
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369 Table 3. Comparison of hydraulic residence times between water quality informed RTC 
370 and uncontrolled scenarios.

Event
Uncontrolled Residence 

Time (h)

RTC Residence 

Time (h)

Increase in Residence 

Time (%)

1 18.6 33.8 82

2 31.8 80.6 154

4 50.7 76.6 51

5 24.5 34.4 41

6 56.8* 105.1 85

7 29.4 40.2 37

8 43.8 88.1 100

9 73.5* 185.1 152

10 31.6 68.2 116

11 18.4 30.8 67

13 52.9 54.4 3

14 38.8 92.8 139

15 34.5 51.0 48

16 21.1 30.8 46

17 48.5* 130.5 169

18 47.3 98.9 109

19 26.4 39.1 48

20 42.0* 78.7 87

21 26.0 36.7 41

Median for All Events 34.5 68.2 82

St. Dev for All Events 14.4 39.2 46

Note: Uncontrolled residence times denoted by an * are the cumulative residence times for 

instances where the basin fully drained during an event and was refilled by later rainfall.

371
372 Comparison to Predetermined Detention Time RTC Strategy 

373 To determine if the turbidity threshold would have been met by a system using a    

374 predetermined detention time (simpler RTC strategy), the turbidity values of each event at a 

375 variety of pre-determined detention times (12, 24, 48, and 72 hours) were extracted from the 

376 observed data set. In instances where the predetermined detention time was longer than the water 

377 quality informed detention time, the turbidity value at release from the water quality informed 

378 system was used. This conservative assumption was allowed because the majority of events 

379 experienced declining trends in turbidity with increased detention time (as previously explored). 

Page 19 of 31 Environmental Science: Water Research & Technology



380 Analysis of the efficiency of using predetermined detention times and how this strategy 

381 compared to the water quality informed RTC strategy can be found below in Table 4. A 

382 substantially higher number of events were observed to meet the turbidity threshold for the water 

383 quality informed RTC (63%; 12 of 19 events) in comparison to predetermined detention times of 

384 12 (21%; 4 of 19 events), 24 (42%; 8 of 19 events), and 48 (58%; 11 of 19 events) hours. While 

385 no considerable increase in the number of events which would have met the turbidity threshold 

386 occurred between the 48 and 72 hour predetermined detention times, there was a substantial 

387 reduction in turbidity between these two detention times. Events that fell into this category 

388 (events 2, 6, 8, 9, 14, 17, and 18) experienced a median decrease of 5.48 FNU (~10%) during 

389 that additional 24 hours. In short, a system utilizing predetermined detention times would need to 

390 use the maximum detention time of 72 hours to match the efficiency of the water quality 

391 informed RTC strategy. While this is feasible to implement, a system utilizing a predetermined 

392 detention time strategy would not provide the added hydrologic benefits such as not detaining 

393 water longer than necessary and therefore ensuring capacity in the system for any subsequent 

394 rainfall. Hence, it can be concluded that the water quality informed RTC strategy shows greater 

395 potential and versatility as an alternative for meeting water quality objectives.

396
397
398
399
400
401
402
403
404
405
406
407
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408 Table 4. Analysis of results investigating if the turbidity threshold would be met using 
409 predetermined detention times (red indicates turbidity ≥25 FNU at release; green indicates 
410 turbidity <25 FNU at release).

Turbidity (FNU) at Release if Predetermined Detention Time Used *

Event

RTC Detention 

Time (h)

Turbidity at 

Release (FNU)

12 Hours 24 Hours 48 Hours 72 Hours

1 24 24.8 28.4 25.6 24.8** 24.8**

2 72 58.7 51.1 98.5 64.2 58.7

4 47 24.0 39.4 34.6 24.0 24.0**

5 24 9.7 15.6 9.9 9.7** 9.7**

6 72 32.9 44.9 66.3 49.9 32.9

7 31 24.7 35.9 34.5 24.7** 24.7**

8 72 35.0 55.3 38.6 34.3 35.0

9 72 28.5 39.7 36.4 31.6 28.5

10 52 24.9 29.1 29.2 26.2 24.9**

11 24 24.1 27.6 26.1 24.1** 24.1**

13 24 20.8 21.5 20.7 20.8** 20.8**

14 72 28.4 52.8 34.1 30.2 28.4

15 34 24.5 101.0 30.1 24.5** 24.5**

16 24 19.2 25.4 19.2 19.2** 19.2**

17 72 35.4 49.8 40.3 47.1 35.4

18 72 84.6 91.0 113.3 95.8 84.6

19 24 22.3 57.9 22.3 22.3** 22.3**

20 25 19.9 31.8 19.9 19.9** 19.9**

21 24 19.8 12.8 19.8 19.8** 19.8**

Efficiency of Predetermined Detention 

Time

21% 42% 58% 63%

* Turbidity threshold was initially met within ±2 hours of predetermined detention time. 

**Turbidity (FNU) at release used. Actual turbidity value at this predetermined detention time would likely be 

lower due to observed reduction in turbidity as detention time increased.

411
412

413 Modeling Results

414 Regression Models. As noted above, a variety of models were developed using predictors that 

415 could be derived independently of the turbidity sensor. The form of each of these models, 

416 including coefficients and independent variables, can be found below in Table 5. Variables of 

417 significant value for explaining the data and predicting DT (detention time in h) included 
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418 Rainfall (cumulative rainfall in mm), D0 (basin’s initial water depth in m), and DM (basin’s 

419 maximum water depth during the initial 24 hours following a rainfall event in m). Cumulative 

420 rainfall as an important predictor was expected as it is directly responsible for higher rates of 

421 runoff that carry sediment/pollutants and contribute to higher levels of turbidity.14,16,23 Maximum 

422 water depth as a predictor appears to represent hydrologic processes similar to rainfall, as 

423 determined by the high multicollinearity observed between this predictor and rainfall. Initial 

424 water depth also appears to play a vital role in how quickly the turbidity threshold is reached 

425 primarily through its impact on resuspension processes. Through investigation of the observed 

426 data it is hypothesized that when the basin still contains a portion of the previous event when a 

427 new event begins, the erosive energy of the incoming water is diminished, thus reducing 

428 resuspension of trapped particles in the basin. This would allow the dry extended detention basin 

429 to mimic the function of a wet pond (stormwater control measure which contains a permanent 

430 pool) which has been documented to have increased removal rates of suspended particles.1-2 

431

432 Table 5. Analyzed regression models and their form.

Model
Form

Logistic Regression 𝐷𝑇 = 25.038 + 37.851 (1 + 𝑒 ―17.704(𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙) ― 22.663))
Linear Regression 𝐷𝑇 = 22.497 + 0.859(𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙)
Multiple Regression 𝐷𝑇 = 12.335 ― 24.943(𝐷0) + 33.015(𝐷𝑀)
Polynomial Regression 𝐷𝑇 = 26.877 ― 62.695(𝐷0) + 30.378(𝐷0

2) + 23.425(𝐷𝑀)
433
434

435 Random Forest Model. The random forest model consisted of 500 trees in its “forest” (for 

436 reasons previously discussed) and used cumulative rainfall (mm) and initial water depth (m) of 

437 the basin as the model’s independent variables. The model also applied the following tuning 

438 parameters: using both parameters at each node, using a target node size of 1, and enacting an 

439 “extratrees” splitting rule. An example of a decision tree that may appear in this random forest 
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440 model can be found below in Fig. . Similar to the regression models, it appears that predictors 

441 which describe the resuspension (initial depth) and hydrologic (rainfall) processes of the basin 

442 are those which most substantially impact the required detention time to meet the turbidity 

443 threshold.

444

445 Fig. 5. Example decision tree that may appear in the random forest model.
446
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447 Long Short-Term Memory Model. Overall, the LSTM model performed well (Fig. ). The 

448 MAE for this model using 17 of the 19 available events and 10-fold cross-validation was 5.16 

449 hours with a median absolute error of less than half an hour. The model was unable to reach a 

450 prediction for the detention times for events 13 and 15 due to the short period of time between 

451 when the system actually made the decision to open and when a new rainfall event began (~2.5 

452 and ~0.75 hours, respectively). It should be noted that LSTM models are variable and dependent 

453 on layers added to the model. Thus, it is possible that a different, yet to be determined 

454 combination could outperform the current iteration. However, the LSTM model analyzed in this 

455 study was the optimal model derived from 50 iterations testing different layers/layer types and 

456 tuning parameters. 

457

458 Fig. 6. LSTM modeling results (1 represents fully open; 0 represents fully closed).
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459

460 Model Comparison. The fit statistics for the full models and the results of validation using 10-

461 fold cross-validation can be found below in Table 6. The LSTM model outperformed all other 

462 models with a significantly lower MAE using 10-fold cross validation. This MAE equates to the 

463 model predicting detention times with an error of ±5.16 hours (10-fold cross-validation). 

464 Therefore, if the model were implemented as the primary control of the system, one could 

465 possibly counteract performance error by instructing the system to increase the predicted 

466 detention time by the MAE to ensure that the turbidity threshold is always met (for detention 

467 times ≤72 hours) or that comparable performance to the water quality informed RTC is achieved 

468 (for detention times >72 hours). This conservative adjustment allows for more time for the 

469 turbidity of the basin to decline (as was observed in this study) and either meet or fall below the 

470 turbidity threshold.

471

472 Table 6. Model fit statistics and validation using 10-fold cross-validation.
Full Model 10-Fold Cross-

Validation

Model MAE (h) R2 Adjusted R2 MAE (h)
Logistic Regression 7.56 0.72 0.70 8.49
Linear Regression 12.37 0.44 0.41 13.52
Multiple Regression 10.17 0.60 0.55 11.96
Polynomial Regression 8.77 0.71 0.66 12.44
Random Forest N/A 0.51 1 N/A 10.04
LSTM Network N/A N/A N/A 5.16 2
1 OOB Error
2 Time series data

473

474
475 Future Work and Limitations

476 While the water quality informed RTC strategy successfully improved the ability of a dry 

477 extended detention basin to meet water quality objectives, future work is necessary to investigate 
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478 the impact of this system more broadly beyond the scope of this study site. It is recommended 

479 that this RTC strategy be implemented on dry extended detention basins across a diverse 

480 selection of regions, designs, and watershed characteristics as site specific features may play a 

481 significant role in the hydrologic and settling processes that affect turbidity. For example, if the 

482 soil of a basin’s watershed consists of more fine particles than those herein, then it can be 

483 expected that initial turbidity magnitudes may increase while overall system performance 

484 decreases due to additional suspended particles. Conversely, soils with larger particles may lead 

485 to an improved ability of this system to meet turbidity objectives. Changes in the design of the 

486 basin (such as differences in orifice diameter or basin capacity) may also substantially affect the 

487 ability of the system to meet water quality objectives due to their influence on hydrologic 

488 processes. Finally, the chosen turbidity threshold for this study may not be what is required by 

489 local regulations. Assuming similar pond function as observed herein (initial turbidity 

490 magnitudes and rate at which turbidity readings fall), then systems which utilize a higher 

491 turbidity threshold (based on local guidance) will experience shorter detention times, while 

492 systems which use a lower turbidity threshold will experience much longer detention times.

493

494 CONCLUSIONS

495 The purpose of this study was to investigate the impact and use of real-time water quality 

496 data on a dry extended detention basin retrofitted with a controllable valve and a turbidity sensor. 

497 Such an assembly was theorized to be an advancement over static, uncontrolled systems by 

498 allowing additional detention time during which settling of particles could occur. The results 

499 showed highly variable detention times with 42% of storms reaching the turbidity threshold 

500 approximately 24 hours after the end of a rainfall event (minimum detention time) and 37% of 
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501 events reaching the maximum detention time of 72 hours without reaching the required turbidity 

502 threshold. These highly variable detention times were the direct result of differences in initial 

503 turbidity magnitudes and the rate at which levels fell based on rainfall amounts and initial basin 

504 water depth conditions (as indicated by which variables were identified as consistently important 

505 during the modeling investigation).  Overall, 63% of events met the 25 FNU turbidity threshold 

506 for water release before the maximum detention time, and the median turbidity value for all 

507 events in the study at release was 24.7 FNU. 

508 Comparing the water quality informed RTC strategy to other forms of basin operation, 

509 the results showed a median minimum increase of 82% in hydraulic residence time (which would 

510 result in improved sediment settling efficiencies) when compared with the uncontrolled scenario 

511 using static infrastructure. Further, it was concluded that a system utilizing predetermined 

512 detention times would need to use the maximum detention time of 72 hours to match the 

513 efficiency of the water quality informed RTC strategy. While this is feasible to implement, it 

514 does not provide the numerous hydrologic benefits or adaptability of the water quality informed 

515 RTC. These combined results support the conclusion that the adaptive system integrated with 

516 real-time water quality data was effective in meeting water quality objectives that may not have 

517 been met with traditional systems, or those that rely on a predetermined detention time. 

518 Several modeling approaches were investigated to determine if they could accurately 

519 estimate the detention time of the system (thereby negating the need for continued deployment of 

520 a turbidity sensor). The best performing models consisted of a logistic regression model using 

521 cumulative rainfall (mm) to predict detention time as well as a more advanced LSTM model 

522 which analyzed the time series data for rainfall and water depth of the basin to predict if turbidity 

523 was above or below the predetermined threshold (from which predicted detention time was 
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524 determined). While the LSTM model outperformed the logistic regression model (MAE of 5.16 

525 and 8.49 hours, respectively), the complexity and computational expense of generating a 

526 decision from the LSTM model may lead future users to abandon this for the simplicity of the 

527 logistic regression model. Overall, the results from this modeling investigation conclude that 

528 either the LSTM model or logistic regression model estimations for the detention time of the 

529 basin are comparable to those detention times determined using real-time water quality data. This 

530 indicates that after a period of data collection using a turbidity sensor, the sensor may be 

531 removed in favor of the basin being controlled by its site-specific model. This would assist 

532 municipalities in the widespread adoption of this technology as it would reduce the number of 

533 sensors necessary for multiple basins (economic resource allocation) as well as reduce the time 

534 and cost of sensor maintenance.

535 Future work is necessary to investigate this system on a diverse selection of dry extended 

536 detention basins (varying watershed and design characteristics) in order to corroborate the 

537 conclusions of this study and ensure that this system is broadly applicable. However, the results 

538 of this study, both field and modeling in origination, should assist future studies investigating the 

539 use of water quality data to make real-time control decisions for stormwater infrastructure. 

540 Numerous opportunities remain to implement similar strategies for different stormwater controls 

541 and across an array of pollutants of concern. 

542
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548

549 Notation. The following symbols are used in this paper:

550  = initial water depth (m) of the dry extended detention basin;𝐷0

551  = maximum water depth (m) of the dry extended detention basin during the first 24 𝐷𝑀

552 hours following the end of rainfall;

553  = Detention time (h);𝐷𝑇

554  = Cumulative rainfall of event (mm);𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙

555  = Turbidity units;𝑇𝑈
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