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Abstract 

Adipic acid is a key organic diacid intermediate used in nylon manufacturing. It is primarily 

produced by an industrial process that can form nitrous oxide as a byproduct. Nitrous oxide has a 

300-fold higher global warming potential than carbon dioxide, and an estimated 10% of its annual 

global emissions are a result of adipic acid production. These concerns have led to significant 

efforts for the development of nitrous oxide mitigation technologies as well as more 

environmentally friendly routes for adipic acid production. New processes include both advanced 

chemical and biotechnological routes. In this review, we discuss key recent developments in 

mitigation as well as new technologies. We also provide a critical look at the potential of new 

technologies to compete with the incumbent process and highlight key remaining technical 

challenges to the development of greener (environmentally sustainable) and cost competitive 

(commercially sustainable) processes for adipic acid manufacture.
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Adipic acid (ADP), a six carbon diacid, is primarily used in the production of nylon 6,6 

(about 75%), it also serves as a starting material for polyurethanes and plasticizers that can be used 

to make polyvinyl chloride, the world's third-most widely produced synthetic plastic polymer. (1) 

The annual global production of ADP exceeds 3 million tonnes, growing at a rate of 3-5% annually, 

with a 10 year average price of $1.60 +/- 0.26/kg.(1–3)  The global market for ADP is expected to 

exceed $8 billion USD by 2025. (2,3) However, historically a major concern of ADP 

manufacturing is its negative environmental impact.  In  2016, U.S. petrochemical production 

released 37.3 million metric tonnes (MMT) of CO2 equivalents (CO2, CH4 and NO2). (4–6) The 

production of adipic acid alone, due to release of nitrous oxide (NOx), was responsible for nearly 

20% of these emissions.(4,6) In addition, the ADP manufacturing chain has been responsible for 

other environmentally hazardous wastes. (4–6) Benzene, the primary feedstock for ADP, is a non-

renewable petroleum based feedstock as well a volatile carcinogen.(7,8)

Given the growing demand for ADP and the desire to reduce its negative environmental 

impact, significant effort has been recruited for the development of a more sustainable process. (9) 

Work with petroleum-based feedstocks has focused on NOx mitigation strategies and alternative 

routes to ADP that do not produce NOx. Additionally, both the chemical and biological conversion 

of renewable feedstocks (such as glucose, glycerol or lignocellulosic sugars) have been extensively 

evaluated. Unfortunately, to date, current alternative routes to ADP are not competitive with the 

traditional chemistry.(10) Previous extensive reviews have been dedicated to new catalytic 

processes, 13 or biotechnology based approaches to manufacture ADP,  1, 10  (for more detailed 

summaries of technical approaches, we would point the reader to these reviews). Additionally, 

recent technoeconomic analyses have reported the potential of newer greener processes to reach 

competitive selling prices.(11,12) A key gap in the current literature in this space is direct critical 

Page 2 of 42Green Chemistry

https://paperpile.com/c/OQS5zb/YhBeV
https://paperpile.com/c/OQS5zb/B8HJW+ELKzb+YhBeV
https://paperpile.com/c/OQS5zb/B8HJW+ELKzb
https://paperpile.com/c/OQS5zb/Z4TFM+clPMA+iexVq
https://paperpile.com/c/OQS5zb/Z4TFM+iexVq
https://paperpile.com/c/OQS5zb/Z4TFM+clPMA+iexVq
https://paperpile.com/c/OQS5zb/gswsA+99bVq
https://paperpile.com/c/OQS5zb/2zD9Q
https://paperpile.com/c/OQS5zb/zUTe1
https://paperpile.com/c/OQS5zb/0qen+uxLq


3

comparison of the commercial potential of these new potential processes with each other as well 

as the incumbent and newer petrochemical alternatives. This review is focused on providing an 

overview and comparison of new competing routes to ADP from a technoeconomic review. 

Specifically, we discuss key performance metrics and constraints that any new process must 

overcome to compete with the incumbent technology, as well fundamental challenges for various 

routes, as well as more global challenges to biobased ADP that are independent of conversion 

technology. 

Current manufacturing processes

In order to evaluate the potential of new technologies, we first must discuss the incumbent 

process. ADP is primarily manufactured via the Nitric Oxidation (NO) process; a two-step 

oxidation of cyclohexanone and cyclohexanol mixture (KA) catalyzed by nitric acid. (1,13,14), 

(15,16) This reaction was developed in the late 1930’s and is illustrated in Figure 1b. ADP is typically 

produced in a one pot reaction starting with benzene as the initial feedstock.(3,17,18)  After 

reduction of benzene to cyclohexane, at high temperature and pressure, cobalt aerobically oxidizes 

this intermediate to form KA oil. (17,19) KA oil oxidizes more readily than cyclohexane, thus, 

limited oxidation is necessary to prevent undesired byproducts.(20,21) This results in the need to 

recycle 90% of unreacted cyclohexane, as illustrated in Figure 1c. Finally, KA oil is oxidized with 

excess HNO3  to produce ADP with a conversion yield of ~95%.(3)  

Several additional chemical routes have also been described for the manufacture of ADP 

(Fig. 1), but the initial cyclohexane-based oxidation route accounts for ~93% of the global ADP 

production (Fig. 1h), with cyclohexane being primarily produced as ADP’s precursor. (3) A variant 
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of the NO process, namely the two-step hydration/oxidation of cyclohexene via cyclohexanol is a 

second process currently used for ADP production (Fig. 1a). (21,22) The major downside of this 

route, like the NO process, remains the requirement for nitric acid for the final oxidation of 

cyclohexanol to ADP, and the subsequent generation of NOx.

The major drawback of the final step is the stoichiometric generation of the byproduct 

nitrous oxide (NOx).(19) NOx is well known for its negative environmental impacts: ozone layer 

damage, acid rain causation, and a 300-fold higher global warming potential than carbon dioxide 

CO2.(23)  It is estimated that a complete replacement of the NO process could reduce 7.9 million 

tonnes of CO2 equivalents per year. (24) The average personal vehicle is estimated to emit ~ 5.23 

metric tonnes of CO2 annually; the equivalent to taking 1.5 million cars off of the road.(25) 

Significant effort has been made to recycle and/or thermally decompose NO2 into N2 and O2. 

Currently, the NOx emissions are abated or recycled using different technologies such as catalytic 

destruction, thermal decomposition, and as well as using NO2 for nitric acid production, which can 

achieve recycling levels of ~ 90%. Current abatement technologies can achieve as high as a 99% 

reduction in NOx emissions. (3,26–28)  However, these steps necessitate in situ downstream 

treatments and, thus, require additional capital expenditures. Despite a large reduction of NOx 

emissions thanks to newer abatement technologies, there are still a large number of ADP plants 

worldwide without these recycling processes in place due to differing governmental policies.(3) 

Additionally, the NO process has been described as one of the least efficient amongst major 

industrial petrochemical processes currently in use.(3,19) Given the continuously growing global 

demands for ADP, the development of routes to ADP that eliminate all NOx emissions have 

remained desirable. 

Page 4 of 42Green Chemistry

https://paperpile.com/c/OQS5zb/wMWgH+a7aeX
https://paperpile.com/c/OQS5zb/CdyT9
https://paperpile.com/c/OQS5zb/wNlu
https://paperpile.com/c/OQS5zb/LkMpO
https://paperpile.com/c/OQS5zb/hX1hH
https://paperpile.com/c/OQS5zb/Alizc+HLput+V0dh1+ELKzb
https://paperpile.com/c/OQS5zb/ELKzb
https://paperpile.com/c/OQS5zb/ELKzb+CdyT9


5

Developing process technologies to compete with the NO process  is not a small feat. As 

mentioned above, benzene is effectively the feedstock for ADP, and at maximal theoretical yields 

1 mole of ADP can be produced from 1 mole of benzene, resulting in a yield of 1.87  g ADP/ g 

benzene (with incorporation of oxygen enabling yields greater than 1g/g).  The ten year historical 

pricing for benzene is estimated at  ($1.02/kg +/-0.2/kg). (29,30)  Thus translates to >$0.55/kg for 

the cost of feedstock alone in the production of ADP using this traditional route. We estimate at 

current overall conversion yields of >90% and with benzene feedstock costs accounting for 70-

80% of the cost of production, that operating costs for ADP production via the NO process range 

from $0.72-$0.87/kg, when produced in fully depreciated assets (Supplemental Table S1). (31,32)  

The NO process is expected to remain the major route for ADP manufacturing as long as benzene 

prices are low, unless greener cost competitive technologies can be developed and scaled.  (33) 

Greener petrochemical routes

The fact that adipic acid, one of the most important platform industrial chemicals, is still 

being manufactured with an unsustainable, inefficient multistep process involving an aggressive 

oxidant (HNO3) and generating large amounts of nitrous oxide gas, have raised many concerns. 

(3) Despite the development of NOx abatement technologies, the use of NOx free routes to ADP 

has garnered significant effort. Not only would it greatly alleviate the burden of controlling 

greenhouse gas emissions, but it also could have the potential to reduce the capital cost investments 

associated with the installation of abatement systems in situ. To address this, various petrochemical 

feedstocks, and oxidants have been evaluated in the development of new or improved NOx free 

and more sustainable chemical routes to ADP. (3,13,14,34,35) These routes are discussed below. 
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Alternative oxidants: H2O2 and O2

Replacing HNO3 with hydrogen peroxide (H2O2) or molecular oxygen (O2) has been a key 

strategy to enable a NOx free process. (3,19,36,37) H2O2 has a high molecular oxygen (47%) 

content, high reactivity (enabling the activation of C-H bonds), and produces benign by-products. 

Over the last two decades, many studies have successfully reported a high yield ADP process from 

a one step oxidation of cyclohexene (Fig. 1f) with H2O2 and a homogenous peroxy tungstate 

catalyst in acidic conditions  (3,36,38–41) It has also been demonstrated at an industrial scale (four 

5000 L continuous batch reactors) reaching 99% purity levels. (42) 

Studies have also demonstrated a high conversion process of cyclohexanone (92.3%) in 

water using iron incorporated hexagonal mesoporous silicates and oxidant H2O2. ADP selectivity 

was shown to be 29.4% though additional byproducts, including succinic and glutaric acid, were 

produced as well. (43)

Unfortunately, life cycle analyses of early processes using H2O2 raised concerns over a 

greater potential for negative environmental impacts than the traditional NO process.(44) Despite 

H2O2 being considered a “green” oxidant, its industrial production via the Anthraquinone process 

is both energy-intensive and polluting. (39,45) 

Furthermore, its use, handling and storage present challenges due to its high reactivity as 

well as its spontaneous dismutation into H2O and O2. One of the major drawbacks in using H2O2 

is the constant competition between its unwanted decomposition and the formation of ADP; further 

posing a challenge of designing a catalyst favoring H2O2  activation, rather than decomposition. 

Page 6 of 42Green Chemistry

https://paperpile.com/c/OQS5zb/CdyT9+ELKzb+8iCPA+5ZKoO
https://paperpile.com/c/OQS5zb/ELKzb+1W3Fi+dy7tI+8iCPA+v70Ff+wyrQX
https://paperpile.com/c/OQS5zb/TToV
https://paperpile.com/c/OQS5zb/eSlz
https://paperpile.com/c/OQS5zb/Gz1G6
https://paperpile.com/c/OQS5zb/gv7kj+dy7tI


7

Feedstock costs, low yields and challenges in stream recycling, (44) have to date, resulted in 

limited large scale development of any H2O2  based process. (3,46)

Pure O2 and air have also been investigated and widely reported as potential oxidants, due 

to their availability and cost. One air based route involves a 2-step oxidation, where cyclohexane 

is first oxidized (~8-10%) to cyclohexanol/cyclohexanone (Fig. 1g).(3) The unreacted cyclohexane 

is then recycled, while the cyclohexanol/cyclohexanone mixture undergoes a second oxidation step 

with a metal-catalyst, in an acetic acid solvent producing ADP. Yields of ADP through this route 

have reached 50-70%.(3),(47,48) This process, which has been commercialized, produces 

significantly higher levels of the byproducts succinic and glucaric acid (Fig 1c.) with reductions 

in the quality of the final ADP, (14) preventing its use in nylon production. The synthesis of nylon-

66 requires high purity ADP (99.8%), (49) and any trace amounts of impurities such as carboxylic 

acids or metals can act as chain terminators in the polymerization process, and therefore need to 

be removed.(3)  As a result, an issue with several air/O2 based processes as initially developed is 

the requirement for acetic acid as a solvent.  Acetic acid, a corrosive monoacid that can 

contaminate ADP product streams if not completely removed, requires additional recovery and 

recycling, which increases costs. Other variations of this 2-step air oxidation have been 

investigated mostly by exploring other heterogenous or homogenous metallic catalyst 

combinations such as Co(III)/Co(II), Mn(III)/Mn(II), V(V), Cu(II) or Mn(OAc)2/Co(OAc)2. (50) 

However, the development of an all air/O2-based process leading to polymer grade ADP, has been 

delayed by the lack of an adequate catalyst enabling conversion yields and product quality 

competitive with the NO process. Currently, the NO process with NOx mitigation is preferred to 

using other oxidants. 

Page 7 of 42 Green Chemistry

https://paperpile.com/c/OQS5zb/Gz1G6
https://paperpile.com/c/OQS5zb/ELKzb+jPCSL
https://paperpile.com/c/OQS5zb/ELKzb
https://paperpile.com/c/OQS5zb/ELKzb
https://paperpile.com/c/OQS5zb/WDqD6+zqLDm
https://paperpile.com/c/OQS5zb/rAL6m
https://paperpile.com/c/OQS5zb/k0fi8
https://paperpile.com/c/OQS5zb/ELKzb
https://paperpile.com/c/OQS5zb/Uv22y


8

Alternative feedstocks

In parallel with the exploration of alternative oxidants, alternative carbon feed stocks have 

also been studied. The investigation of various feedstocks including cyclohexene, phenol, 

butadiene or adiponitrile have been reported, (3,14,19) most of which are also produced from 

benzene, leading to a silmar cost structure. Phenol was seen as an interesting alternative feedstock 

(Fig. 1d), notably due to its very high conversion rate to cyclohexanol (99%) favoring ADP 

formation with limited amount of side product generation. (14) However, its higher selling price 

compared to benzene has favored the 2-steps oxidation of cyclohexane, consequently removing it 

from the list of cost competitive options.(3,14) Additionally, phenol based processes still generate 

NOx. 

Butadiene (1,3-butadiene) has gained interest as a viable alternative feedstock for ADP 

production. Butadiene is converted to ADP via a 2 step homogenous carbonylation (Fig. 1e) first 

described in the 1970’s, with significant recent advancements. (51–54) This route requiring 

methanol and carbon monoxide shows relatively high conversion yields of 72% and produces 

dimethyl-adipate which is then converted to adipic acid.(52,55) This route also produces no NOx. 

Butadiene is an attractive feedstock.(56) Converting butadiene ($0.79/kg) and syngas (CO, 

~$0.10/g) to ADP would have estimated costs for feedstocks of only $0.34/kg of ADP at 100% 

conversion yields. Current estimated yields of only 65-70% would lead to estimated operating 

costs in the range of ~$0.60-0.74/kg of ADP, again assuming feedstock costs are from 70-80% of 

the total operating costs for a mature petrochemical process. (31,32) (Supplemental Table S1) This 

cost structure makes the route through butadiene competitive with the NO process as described 

above, but not significantly cost advantaged at current yields. Additionally, these estimations do 

not account for costs that may occur due to the purification and reprocessing of the methanol/water 
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mixture formed from the conversion of dimethyl-adipate to ADP.  To date the market volatility of 

butadiene pricing (57,58) has impeded the adoption of this technology, but as the technology 

matures (with catalyst optimization and improved yields)  this process may well displace future 

NO investments.  

Biotechnological Routes

In 2012, the International Energy Agency designated ADP as a prime candidate for the 

development of biobased routes.(24) The theoretical yield of ADP from glucose is 0.923 

moles/mole or 0.748 g/g. With glucose at a current estimated price of $0.18/pound this translates 

to a feedstock cost of $0.531/kg of adipic acid ( albeit at 100% conversion yield) which is 

competitive with the NO Process. Glucose reaching $0.15/pound translates to a feedstock cost of 

$0.441/kg of adipic acid which would be 20% lower compared to the NO process and competitive 

with the butadiene based process at current yields (~70%). The relatively high yield of ADP from 

sugars, enabling cost structures in line with petrochemical processes, makes ADP a good candidate 

for bioproduction. Several routes to ADP through both direct biosynthesis or direct chemical 

conversion as well as biosynthesis followed by traditional catalysis will be discussed.  It is worth 

noting that there are fundamental differences in the operating cost structures of chemical and 

biotechnological processes. While at maturity, feedstock costs may account for up to 80% of 

operating cost for direct chemical conversions, non feedstock costs are larger in fermentation based 

processes, accounting for 40-60% of overall operating costs. (10,31,32)
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Direct biological bioproduction of ADP

ADP occurs in nature as a metabolic intermediate in the n-alkylcyclohexane degradation 

pathways of several bacteria including Pseudomonas, Acinetobacter and Nocardia. (59–61) 

However, the initial heterologous expression of these pathways in E. coli resulted in only trace 

production levels, much too low for industrial production. (62) As a consequence, numerous 

additional biotechnological routes to ADP have been investigated. These routes either directly 

produce ADP from various carbon sources or produce ADP via the biosynthesis of a precursor 

subsequently converted to ADP through traditional chemical catalysis. (13,17,59,63,64) 

Reverse adipate pathway 

The reverse adipate pathway (Fig. 2a) enables ADP production from central metabolites 

with theoretical conversion yield as high as 0.92 mole of ADP per mole of glucose under aerobic 

conditions. (1) This pathway, which produces ADP from the metabolites acetyl-CoA and succinyl-

CoA,  has been previously described in Thermobifida fusca (63) and a few other alkane-degrading 

microbes such as Rhodococcus sp., Acinetobacter sp., or Arthrobacter sp.. (3,17) The pathway is 

initiated by the conversion of acetyl-CoA and succinyl-CoA into 3-oxoadipyl-CoA, followed by 

the reduction to 3-hydroxyadipyl-CoA, dehydration to 5-carboxy-2-pentenoyl-CoA, reduction to 

adipoyl-CoA, and ADP release via hydrolysis or transfer of the CoA ester. The final reduction is 

carried out via a 5-carboxy-2-pentenoyl-CoA reductase (62), which has been shown as a major 

limiting step of the pathway. Enzymes from various sources (R. eutropha, C. acetobutylicum, A. 

baylyi, T. gammatolerans) have been evaluated to construct an improved version of this pathway 

in E. coli. (65) Using this pathway a final titer of 2.23g/L was obtained from  glucose when using 
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an engineered version of T. fusca.(63) Recently, Zhao and coworkers (2018) reconstructed the 5-

enzymatic steps of the reverse adipate pathway from T. fusca in E. coli, consisting of the following 

enzymes: Tfu_0875 (β-ketothiolase), Tfu_2399 (3-hydroxyacyl-CoA dehydrogenase), Tfu_0067 

(3-hydroxyadipyl-CoA dehydrogenase), Tfu_1647 (5-carboxy-2-pentenoyl-CoA reductase) and 

Tfu_2576-7 (adipyl-CoA synthetase).(66) They reported a final titer of 68g/L of ADP from 

glycerol over a 88h of fed-batch fermentation (with 0.81g/L.h-1 productivity and 0.378g/g yield, 

and 72.7% of theoretical yield ). 

A recent techno-economic analysis comparing the cost-effectiveness of different 

renewable direct and indirect routes to ADP highlighted that the major costs of the reverse adipate 

route include feedstock supply (~38%) and separation costs (~40%).(10) The energy associated 

with the recovery and isolation of ADP from the diacid salt, and the recycling of the ammonia to 

the fermentation accounts for the majority of the separation expenditures. Thus, further 

optimization of the separation/recycling processes are key elements in improving the cost-

effectiveness for commercial application of this route. (67)

Biosynthetic oxidative routes to ADP 

Another approach to the biosynthesis of ADP involves the combination of β-oxidation 

and/or reverse β-oxidation with ⍵-oxidation as illustrated in Fig. 2b-d.  β - and ⍵-oxidation are 

both pathways involved in the degradation of fatty acids via the oxidation of either the β (2nd 

carbon after the carboxylic acid) or the ⍵-carbon (the most distant carbon from the carboxylic 

group of FA), respectively. (68) When sugars are used as feedstocks,  acetyl-CoA can be used to 

generate longer chain acyl-CoAs, which can be then be oxidized (by either β - and/or ⍵-oxidation) 
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to yield adipic acid. When fatty acids are used as feedstocks they may first be subjected to ⍵-

oxidation, yielding dicarboxylic acid before undergoing β-oxidation and shortened to adipic acid. 

The order of β-, reverse β- and ⍵-oxidation does not matter. (1) By combining these pathways, 

ADP can be produced from a wide variety of renewable substrates including  glycerol (C3 

compound), glucose (C6 compound) (69) and fatty acids from vegetable oils (C12 to C20 

mixture).(1,13,70) Combining β reverse, β and ⍵-oxidation led to titers of 170 mg/L of ADP in E. 

coli with glycerol as sole carbon source. (69) Significantly higher production levels were obtained 

from yeasts, such as an engineered Candida tropicalis reported to produce final titers of ~ 50g/L 

(with a 0.38g/L.h-1 rate) with coconut oil as a carbon source. (9,71) A key to the success with 

Candida tropicalis, was the design of the specificity of the strain to convert a mixture of fatty acids 

of various chain-lengths to adipic acid by the disruption of enzymes involved in the degradation 

of C6 acyl-chains. (71),(72) These deletions led to degradation of fatty acids to adipic acid only, 

which was not further degraded.  This process was successfully scaled to 300L (73,74) but further 

development has stalled. (75)  While using glycerol, vegetable oil or fatty acid waste streams have 

a perceived economic advantage, unfortunately, they do not enable routes to ADP which would be 

advantaged based on feedstock costs alone.  ADP can be produced from glycerol at a yield of 1 

mole ADP per 2 moles of glycerol or 0.79g/g. Glycerol has an estimated price of $0.6/kg, (76) 

resulting in a best case feedstock cost of $0.75/kg of ADP which is not competitive with other 

routes discussed above. While crude glycerol, a waste stream from the biodiesel industry may be 

available at lower costs, concerns over purity and the availability of volumes needed for a 

commercial scale ADP process make this route less attractive.  Cost for vegetable oils, soapstocks, 

and fatty acid distillate waste streams are in the range of ~$0.4-0.7/kg. (77,78)  However assuming 

the average chain length of these lipids to be 16 carbons, with only 1 mole of ADP produced from 
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a mole of fatty acid, this is equivalent to a yield of only ~ 0.56g ADP / g oil, which translates to a 

feedstock cost for ADP of $0.7-$1.25/kg, which is not competitive with the NO process or other 

routes discussed above. As in the case of glycerol, while specific waste streams may be a lower 

cost, the volumes may not be compatible with that needed for ADP production. 

Several other routes enabling the biosynthesis of ADP have been investigated, such as the 

2-oxopimelic acid pathway (with a reported titer of 0.3g/L ),(1,79,80) and a polyketide synthase 

based pathway producing ADP from succinyl-CoA and malonyl-CoA intermediates (~0.3mg/L of 

titer reported from in vitro adipic acid production). (1)  Even the conversion of lysine into ADP 

has also been suggested but not demonstrated. (1,64)

Indirect synthesis of adipic acid

 Direct routes to ADP have been complemented by the study of several indirect routes, 

wherein a chemical intermediate is produced via fermentation or chemical conversion of a 

renewable feedstock and then converted with additional chemistry to ADP. The main intermediates 

studied to date are glucaric acid, succinic acid and cis,cis muconic acid (Figure 3, 4, and 5). 

(1,13,17,59,70) All three of these acids are naturally occurring. (17,81–83) Succinic acid is a well 

known fermentation product,(84–89) D-glucaric acid has been reported as an end product of the 

D-glucuronic acid pathway in E. coli, (17,81) and muconic acid is an intermediate of the shikimate 

pathway.(90,91) Additionally, these three acids, which are discussed below, also have potential as 

industrially interesting chemical platforms beyond intermediates to ADP. (92,93) 
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Glucaric acid 

Glucaric acid is a building block for several polymers and has potential biomedical uses. 

(81,93,94) Its potential as an intermediate to ADP was described in 2009. (81) Though glucaric 

acid is a natural metabolite, native pathways from D-galactose or D-glucose to glucaric acid, 

contain more than 10 different steps,  leading to the engineering of shorter and more efficient 

biosynthetic routes. (81,95) A 3-step biosynthetic pathway converting glucose to glucaric acid was 

constructed (Fig.3), involving the combination of three heterologous enzymes: myo-inositol-1-

phosphate synthase (Ino1), myo-inositol oxygenase (MIOX) and uronate dehydrogenase (Udh). 

(95,96) Using this pathway, Moon and coworkers reported a final titer of 1.13g/L of glucaric acid 

from glucose (rate of 0.016g/L.h-1, yield of 0.13 mol/mol) using E. coli as a host. (81) In this study, 

the MIOX enzyme was shown as a major bottleneck (17,81) and several strategies taken to further 

optimize this step, (95,97),(96),(98),(95,97) have led to titers ranging from 1.7g/L to 2.5g/L from glucose 

and up to 10.8g/L when myo-inositol was used as a feedstock.  Difficulties in optimizing the 

glucaric acid titers in E. coli were attributed to pH-mediated toxicity of the acid (pKa =2.99). 

Toxicity of glucaric acid was reported in E. coli at  concentrations as low as 5g/L depending on 

pH, while Saccharomyces cerevisiae has shown higher tolerance to organic acids under acidic 

conditions. (96,99) In the light of this, Chen et al.  engineered S. cerevisiae to express a stable 

MIOX enzyme (gene: miox4 from A. thaliana), resulting in final titers of glucaric acid of only 

6g/L after 200 hours of production. (98) Despite these results, titers and rates remain well below 

those needed for commercial deployment. 

Work by Kang and co-workers demonstrated glucaric production in the eukaryotic microbe 

Pichia pastoris with co-expression of MIOX and Udh. As MIOX was also determined to be the 

rate limiting step in the biosynthetic pathway, they demonstrated use of a fusion expression 
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strategy with Udh for the enhancement of MIOX specific activity and glucaric acid synthesis. The 

engineered strain demonstrated higher glucaric acid production with titers up to 6.61 g/L after 80 

hours.  Though myo-inositol co-feeding, along with glucose, was necessary for optimal 

production.

In addition to the biological production of glucaric acid, a chemo-catalytic route to ADP 

through glucaric acid from glucose has been developed. (59)  In this process, which has been 

successfully piloted, sugars are converted to ADP via glutaric acid in a 2-step oxidation-

hydrodeoxygenation reaction with a final conversion yield of 58%. (34,59,100,101) The efficiency 

of the glucose oxidation is pH-dependent, resulting in requirements for large amounts of base.  

While this route shows good overall conversion yield, the combined cost of base with the required 

separation are challenges to commercial deployment. Improvements are required in the robustness 

of the catalysts and long-term stability (102,103) as well as in purification of the ADP from 

glucaric acid. As mentioned above, acid contaminants reduce the quality of ADP. Similar 

processes converting glucose derived furan-dicarboxylic acid to ADP have also been reported. 

(103) 

Succinic acid 

Succinic acid (SA) has been of interest due to its wide application as a precursor of 

numerous industrial compounds used in the food, pharmaceutical, agricultural and chemical 

industries, with 1,4-butanediol (1,4-BDO) as one of its derivatives. (86) To date, succinic acid is 

primarily manufactured via an energy intensive catalytic hydrogenation of maleic acid or maleic 

anhydride. (85) The US Department of Energy has reported SA as a candidate for bioprocesses 
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development. (24,104) Subsequently, several bio-based routes to SA have been developed and 

initially commercialized.(84,105,106),(107),(108) Additionally, there has been recent progress in the 

use of more diverse renewable feedstocks as a carbon source for the production of succinic acid, 

including carob pods, (109) sweet potato waste, (110)  and xylose.(111)

ADP can be produced from succinic acid via 1,4-BDO. The conversion of SA to 1,4-BDO 

is well known with a Pd-Re/TiO2 catalyst while under 69 barr H2 at 200°C. (112) Subsequently, 

1,4-BDO can be converted to ADP, as illustrated in Figure 4. (113)  The catalytic carboxylation 

of 1,4-BDO has been carried out using a Rh(PPh)3COCl catalyst to relatively high yields (> 74%) 

while at 175°C under 48 bar CO .(34) This approach has been initially scaled to a pilot plant. (59) 

(34) (114) Unfortunately, to date, none of the SA-based routes to ADP have been commercialized. 

The chemical transformation of succinate to ADP are energy intensive processes that can require 

additional complex industrial equipment, thus contributing additional expenditures for the final 

ADP costs. It should also be noted that biotechnological processes enabling the direct production 

of 1,4-BDO from sugars have been developed, which could also potentially be used for ADP 

manufacture.(115) 

cis, cis -Muconic acid  

Muconic acid is an intermediate of the shikimate (amino-aromatic biosynthesis), as well as 

the β-keto-adipate pathways in several microbes including K. pneumoniae, P. putida and various 

Sphingobacterium sp.. (1,90,91)  Muconic acid can be chemically converted into adipic acid via 

hydrogenation using various catalysts including platinum on activated carbon. (18,49) Conversion 

yields as high as 97% have been reported. Alternatively, muconic acid can be isomerized to cis, 
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trans or trans, trans muconic acid which are potential intermediates in the production of ε-

caprolactam, terephthalic acid or trimellitic acid. (1,13,49,59,92,116)

Engineered shikimate biosynthetic pathways leading to muconic acid production have been 

developed (Fig. 5) and tested in different host strains, with E.coli showing the best production to 

date (when compared  to S, cerevisiae or P. putida ). (1,17,117,118)  In E. coli, there is tight control 

of the shikimate pathway via the feedback inhibition of DAHP synthase (a key pathway enzyme 

encoded by isozymes aroF, aroG, and aroH). Aromatic amino acids (tyrosine, tryptophan and 

phenylalanine) inhibit DAHP synthase. To bypass this natural regulation, Niu et al. (2002) 

constructed an E. coli strain with a feedback resistant shikimate pathway resulting in a final titer 

of 36.8 g/L of muconic acid after a 48h fed-batch fermentation (22% overall yield, mol/mol from 

glucose). (18)  Further optimizations performed on both the same strain and the fermentation 

process resulted in what is so far the highest final titer reported or muconic acid of 59.2g/L (30% 

yield, mol/mol) from glucose. (92,119) Only recently has an enzyme capable of converting 

muconic acid to adipic acid been described. A bacterial enoate reductase capable of reducing 

muconic to adipic acid paves the way to a complete conversion of renewable feedstocks to adipic 

acid via muconic acid. (120,121) 

Additional work on biosynthesis in E. coli has been done by Yan and co workers using 

glucose and glycerol feedstocks.(122) The authors extended the native shikimate pathway to 

produce salicylic acid, which was followed by conversion to muconic acid by introducing a 

salicylate 1-monoxygenase (SMO) and catechol 1,2-dioxygenase (CDO). Through modular 

optimization, the muconic acid titer was improved 275 fold compared resulting in 1.45 g/ L after 

48 hours. However, managing the cellular toxicity of SA remains a challenge that may limit 

muconic production. 
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In Pseudomonas putida, Beckham and coworkers achieved high atom efficiency in the 

production of muconic acid from lignin-derived aromatic compounds through aromatic catabolic 

pathways.(123) Coupling strain engineering and bioprocess development, bottlenecks such as 

intermediate accumulation, precursor transport limitations, and product toxicity were discovered, 

resulting in muconic acid titers of 50g/L titers (.49g/L*hr). Despite these exciting results, enhanced 

tolerance of P. putida to higher MA is still needed.

From a processing review, producing muconic acid in a low-pH tolerant organism such as 

S. cerevisiae is of interest. Curran et al. demonstrated first heterologous production of muconic 

acid in the host by introducing a three step synthetic pathway composed of dehydroshikimate 

dehydratase, protocatechuic acid decarboxylase, and catechol 1,2-dioxygenase.(118) They 

obtained yields up to 141 mg/ liter by flux increasing strain modifications such as: knockout of 

aro3 to overexpress feedback resistant mutant aro4, zwf1 deletion, rewiring pentose phosphate 

pathway to avoid the oxidative shunt, and overexpression of tkl1. However, given the lack of 

eukaryotic enzymes, PCA was shown to be a hurdle as it was determined to be the bottleneck of 

the pathway.

Muconic acid can also be obtained via chemical conversion from lignin-derived catechol. 

Recently, Bruijnincx and coworkers designed a biomimetic synthetic non-heme iron (iii) complex 

catalyst that is generated in situ for the intradiol cleavage of catechol. (124) They demonstrated 

the use of benign oxidants and low process loadings (0.1 mol%) for activity. However, unfavorable 

enthalpic binding of oxygen to the active catalyst (23.8 kJ mol−1) plays a limiting factor for the 

observed reaction rate, needing a temperature of 80 C for a TOF of 120/hr. An alternative 

sustainable design that was developed by Darcel and coworkers.(125) Using a simple inorganic 
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iron salt catalyst, they demonstrated high yields (up to 84%) using H2O2 as the terminal oxidant. 

However, the development of an efficient and cost-effective lignin valorization process remains a 

hurdle. 

Furthermore, one of the most important catalytic reactions in large scale petrochemical 

processes is the hydrogenation of C-C bonds.(126) Unfortunately, these processes use precious, 

costly metals (such as Pt, Pd and Rh), metal catalysts (such as Ni and Fe), external H2, and can 

require high temperature and pressures.(127,128) Despite significant progress, metal catalyst  free 

hydrogenation is still a challenging research area. It could be more beneficial to focus efforts on 

the conversion of unsaturated precursors via a biocatalytic approach (such as via enoate reductase 

or 5-carboxy-2-pentenoyl-CoA reductase as previously discussed) or developing green 

methodological alternatives (such as electrocatalytic hydrogenation with hydrogen generated in 

situ(129) and earth abundant catalysts(130)) for ADP production.  

In the case of these indirect routes to ADP (through succinic, cis, cis-muconic or glucaric 

acid) estimated production costs are all in large part driven by feedstock costs. Production through 

succinic acid is interesting, in that yields of 1.7 moles of succinic acid can be produced from 1 

mole of glucose. We estimate that under the best conditions this process can lead to best case 

operating costs of $0.92-$1.86/kg of ADP. Again, these estimates assume $0.18/lb glucose, and in 

the case of a fermentation based process, feedstocks to account for 40-60% of the overall operating 

costs as outlined in Supplemental Table S1.(31,32) The route to ADP through cis, cis-muconic 

acid from glucose goes through a 7 carbon intermediate and can at best yield 0.86 moles of ADP 

from 1 mole of sugar, but while the subsequent chemical conversion is similar to the succinic acid 

process in that it requires hydrogen, it requires half of the amount, and it also differs from the 

succinic acid process in that it does not require CO.  As a result, best case estimates for operating 
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costs for the cis, cis-muconic acid route from glucose approach $0.79/kg, with current converison 

yields as low at 30% leading to estimates of up to $3.77/kg.  Lignin and its derivative offer another 

potential feedstock for cis, cis-muconic acid, and although best case technoeconomic models have 

been published, these assume a low end cost for this feedstock.(12)  Lignin, depending on 

assumptions and purity has been estimated in the best case to have a  $0.04/kg cost, to costing 

upwards of $0.50/kg ($500/ton) for purified streams. (12,131) This is further complicated by the 

fact that lower cost, unpurified input streams will likely require increased downstream purification 

costs as discussed below. In the event that lignin feedstock prices as low as $0.04/kg can be 

realized at scale, the route to ADP through cis, cis-muconic acid has potential as an attractive 

alterantive to the incumbent process with operating costs estimated between $0.15/kg and 

$0.28/kg. Of course this is a best case scenario, and likely some level of lignin purification or 

upgrading will be needed if only to provide a consistent input to a large scale process from an 

agricultural feedstock. Lastly, routes to ADP through glucaric acid (either biotechnological or 

chemical) have a maximal conversion yield of 1 mole of ADP from 1 mole of glucose, additionally 

requiring hydrogen as a reductant (Supplemental Table S1). These conversion yields lead to best 

case operating cost estimates of $0.88/kg ADP for the chemical routes through glucaric acid and 

$0.97/kg in the case of the biotechnological routes. This difference is again due to the difference 

in cost structure of these types of processes as described above. Current best case conversion yields 

demonstrated using these two routes would be estimated to lead to operating cost estimates of 

$1.65/kg ADP, for the chemical route, and over $13.00/kg ADP for the biotechnological route.  

Downstream Purification
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Beyond catalytic bottlenecks, separation and purification are a critical hurdle in the 

development of biobased ADP and biobased products more broadly. These unit operations have a 

significant impact on the total production cost and product quality.(10,67,132,133) Thus, to be 

competitive with current petrochemical routes, a high yield purification resulting in a quality 

product is essential. (134)  Even small amounts of organic acids can reduce the quality of the 

resulting ADP, even from a petroleum feedstock. As mentioned above, even a currently 

commercial petrochemical alternative to the NO process has had limited market penetration simply 

due to impurities which result in ADP that is not suitable for nylon manufacture. The impurity 

profile of ADP or its precursors derived from bio-based feedstocks is more diverse, and includes 

sugars amino acids, organic acids and salts, which can affect the production of adipic acid or 

downstream processing.(135,136) For example, even at the ppm level, amino acids are known 

catalyst poisons that can enact both reversible and irreversible hydrogenation catalyst 

deactivation.(137)  Current methods for carboxylic acid purification may include many stepwise 

processes including reactive extraction, precipitation, electrodialysis, and membrane 

filtration.(134,138) 

Many of these approaches have been applied to the purification of ADP or its precursors. 

Recently, work by Vardon and colleagues utilized mucconic acid’s solubility in ethanol to improve 

the purity of bio-produced cis,cis- mucconic acid (from a purity of 97.71% to 99.8%). (49) Though 

a significant advance with a large reduction in elemental impurities (Figure 6A), the net recovery 

was only 81.4% and the presence of elemental N (90 ppm) is still above the requirements for 

polymer-grade adipic acid (20 ppm). Additionally, Han and co-workers recently demonstrated the 

improved recovery of glutaric acid from culture broth using extraction.(139) They were able to 

extract glutaric acid (to a purity of 97.2%) with an overall recovery of 69.7% by using a pH shift 
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and n-butanol extraction. Additionally, as solvent recovery plays an important factor for these 

extraction processes, (138) they demonstrated a high n-butanol  recovery yield (78.6%).  In several 

cases, reactive extraction has been shown to be applicable for the recovery of several dicarboxylic 

acids (134) and has been reviewed as a potential competitive alternative to current extraction 

technologies.(138,140) Gorden and coworkers demonstrated two different methods to extract cis-

cis muconic acid from aqueous buffered solution.(141) This was either by a pH shift or a double 

reactive extraction strategy which uses a water soluble amine to regenerate the acid that was first 

extracted into an organic phase. Whereas the pH shift approach obtained a 99.08% yield, the 

double extraction method allowed for a full  recovery of the cis-cis muconic acid from the organic 

phase with select amines. This double extraction method may be advantageous as pH shifting 

increases salt impurities, and may lead to cis-cis muconic acid salts instead of the acid.(141) 

Though these results show further development in downstream recovery for dicarboxylic acids, 

the purification of cis-cis muconic from real worls fermentation broth has yet to be demonstrated. 

As typical organic solvents are generally toxic, flammable and volatile, with the potential 

to cause harmful environmental effects, it is desirable to find new sustainable extraction 

methods.(142) Toward this aim, the use of less toxic, biodegradable, lower cost extraction 

solvents, such as with deep eutectic solvents, are being investigated. Deep eutectic solvents (DES) 

are a mixture of two or more components that liquify upon contact, develop melting point 

depression, and separate from the remaining solution due to high density differences. The use of 

DES was  initially focused on the extraction of hydrophobic molecules, such as fatty acids and 

other biomolecules, from aquatic environments.(143) Recently, Riverio and co workers 

demonstrated the extraction of adipic and succinic acids from aqueous solutions with derivatives 

of trioctylphosphine oxide (TOPO), a previously reported hydrophobic DES (see Figure 6c).(142) 
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For adipic acid, the extraction efficiencies with TOPO as well as  TOPO-decanoic acid (TOPO-

decAc) and TOPO-dodecanoic acid (TOPO-dodecAc) at extraction efficiencies up to 82.32%. The 

differing results for TOPO, TOPO derivatives, as well as ADP and succinic acids support the idea 

for creating a “designer DES”, which may be beneficial in extracting ADP from unwanted acid 

impurities, and providing a more sustainable extraction alternative to current solvents. However, 

important hurdles still need to be addressed including acid regeneration from the DES and solvent 

recovery for reuse.

Though progress has been made for downstream diacid acid recovery, differing issues such 

as method selectivity from broth, solvent recycling, and purity all while meeting cost-efficiency 

goals need to be solved for respective processes. Importantly, the purity demands for 

polymerization grade ADP are high and no currently reported DSP has met these specifications, 

particularly with real word material.  Thus, the development of a method that can compete with 

current petrochemical processes is still a critical need. 

Future Outlook 

To date, despite the numerous advances described above and the desire for NOx free 

processes and more sustainable feedstocks, no newer cleaner routes to ADP have been successfully 

commercialized. Several promising approaches towards the NOx free production of adipic acid 

have been developed relying on either traditional chemistry, biotechnology or the combination of 

both. The status and challenges associated with each of these routes are compared in Table 1, and 

Figure 7. Specifically in Figure 7,  we compare crude estimates of the potential operating costs for 

several key potential processes. The most promising routes include: the chemical route from 
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butadiene, the direct biotechnological route to ADP via the reverse adipate pathway, and the 

chemical oxidation of glucose via D-glucaric acid. These routes are all well past proof-of-concept 

and have the largest potential for near term commercial deployment.

The major challenges shared by one or more new routes to ADP, whether chemical or 

biotechnological, are primarily around feedstock costs (as well as feedstock purity) and supply and 

challenges associated with the purification needed to manufacture polymerization grade ADP. To 

date, butadiene and renewable sugars are both anticipated to be competitive feedstocks for ADP 

manufacture when compared to benzene, with sugars offering the potential of a petroleum-free 

pathway. (17) As lower cost routes to the production of sugars from  lignocellulosic biomass are 

developed bioprocesses may be favored. (144,145). With respect to purification, the most 

advanced chemical and biological approaches all have to deal with contaminating organic acids 

that need to be completely eliminated from the final product. More crude lignocellulosic 

feedstocks likely will be accompanied by a more diverse impurity profile and a need for a more 

intense purification process. A major challenge for these greener routes lies in these additional 

separation/purification steps needed which can result in lower overall yield and higher process 

costs. (10,67,132,133) To date, while the yield of many purification approaches has been 

investigated, a major limitation in many studies is the quantification of acidic contaminants which 

may impact ADP quality at even low levels. Significant efforts are expected to be needed to reduce 

the costs of producing highly pure ADP. 

It is worth mentioning that competitive operating costs alone likely overestimate ( 

sometimes greatly overestimate) the commercial competitiveness of a given process, and the total 

return on capital cost investments needs to be considered. (31,32) Many petrochemical plants have 

reduced capital cost for the same capacity when compared to biobased plants,  particularly new to 
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the world biobased plants. (31,32) This provides an additional competitive barrier to these 

alternative technologies. 

Fortunately, as discussed above, several promising strategies towards the production of 

greener adipic acid have been developed and some have already been tested at pilot scale. (1,17,59) 

Lower cost feedstock stream will be critical to the competitive commercial deployment of any of 

these new technologies. (59) 
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Figures & Captions 

Figure 1: Current and advanced chemical routes for the manufacture of ADP. (a) A variant of the NO Process (2-step 
hydration/oxidation of cyclohexene). Benzene is reduced to cyclohexene and converted to cyclohexanol through 
hydration. Cyclohexanol will then be oxidized to ADP by excess HNO3. (b) The Nitric Oxidation (NO) Process. 
Benzene is first reduced to cyclohexane, which is then converted to ketone-alcohol (KA) oil through an oxidation 
tightly controlled to reduce byproducts. The KA oil will then be oxidized to ADP by excess HNO3. (c) Byproducts 
produced by non specific oxidation of KA oil include glucaric acid, succinic acid and cyclohexyl hydroxy peroxide 
(CHHP).  (d) An alternative route to ADP using phenol as feedstock, which is first reduced to cyclohexanol using a 
nickel based catalyst (e) A route to ADP via 1,3-butadiene. 1,3-butadiene reacts with carbon monoxide and methanol 
and forms ADP. (f) An alternative route using H2O2 as the oxidant. Cyclohexene, which is generated from benzene, 
is oxidized to ADP by H2O2. (g) An example of a 2-step air-based oxidation route of cyclohexane. KA oil is generated 
from benzene and oxidized to ADP by air in acetic acid with Co or Mn as catalysts. (h) Global breakdown of industrial 
supply of ADP. The NO process accounts for ~93% of the global ADP production, while the combined 2-steps nitrous 
oxidation of cyclohexene and the carbomethoxylation of butadiene account for the rest.
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Figure 2: Direct biological conversion of renewable substrates to adipic acid. (a) The reverse adipate pathway for 
ADP biosynthesis. Acetyl-CoA and succinyl-CoA, generated from glucose through central metabolism are condensed 
into the 3-oxoadipyl-CoA via a beta-ketothiolase and then reduced to 3-hydroxyadipyl-CoA by a 3-hydroxyacyl-CoA 
dehydrogenase. 3-hydroxyadipyl-CoA is then converted to 5-carboxy-2-pentenoyl-CoA by a 3-hydroxyadipyl-CoA 
dehydrogenase. 5-Carboxy-2-pentenoyl-CoA reductase and adipyl-CoA synthetase catalyse the next 2 steps to adipyl-
CoA and then to adipic acid. (b-d) Combinations of β-oxidation, reverse β-oxidation and ω-oxidation can lead to the 
biosynthesis of ADP from diverse feedstocks  including sugars as well as fats and oils. (b) β-oxidation (blue circle) 
enables the stepwise shortening of acyl-CoAs at the β carbon (highlighted in blue), leading to a 2 carbon shorter acyl-
CoA and acetyl-CoA. Steps include (i) oxidation of an acyl-CoA to a trans-enoyl-CoA, (ii) hydration of the enoyl-
CoA to a β-hydroxyacyl-CoA, (iii) oxidation to a β-ketoacyl-CoA and cleavage to a shorter acyl-CoA and acetyl-CoA. 
(c) Reverse β-oxidation (purple circle) as the name implies is the reversal of β-oxidation leading to longer acetyl-CoA 
produced from a shorter acyl-CoA and acetyl-CoA.  β-oxidation and reverse β-oxidation can operate on acyl-CoAs as 
well as ω-substituted acyl-CoAs as indicated by the red highlighted R-group, including acyl-CoAs with an ω-terminal 
carboxylic acid. (d)  the ω-oxidation pathway begins with a cytochrome P450 reductase (CPR/P450) producing an ω-
hydroxy fatty acyl chain. The fatty  ω-alcohol then undergoes successive rounds of oxidation to produce various length 
dicarboxylic acids. These dicarboxylic acids can  subsequently be shortened via β-oxidation to produce adipic acid. 
Similarly longer chains acyl-CoAs produced via reverse β-oxidation from acetyl-CoA can undergo ω-oxidation then 
β-oxidation to produce adipic acid. 
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Figure 3: Production of adipic acid via D-glucaric acid. (Left)  The 2-step oxidation of glucose to D-glucaric acid, 
using a Pt/SiO2 catalyst under 5 bar O2 at 90 °C. (Right) A metabolic pathway for biosynthesis of glucaric acid from 
glucose. Glucose is first phosphorylated to D-Glucose-6-phosphate (G6P) by glucokinase. G6P is isomerized to myo-
inositol-1-phosphate by a myo-inositol-1-phosphate synthase. Inositol monophosphate produces myoinositol, which 
undergoes oxidation catalyzed by a myo-inositol oxygenase (MIOX) to yield D-glucuronic acid.  D-glucuronic acid 
then undergoes a second oxidation (catalyzed by a uronate dehydrogenase (Udh)) and ring opening to yield D-glucaric 
acid. Glucaric acid produced from both routes undergoes hydrodeoxygenation with HBR and Pd–Rh/ Davisil 635 
catalyst under 49 bar H2 at 140°C to give adipic acid.
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Figure 4: Production of adipic acid via succinic acid (SA). SA is produced from glucose via microbial fermentation. 
(a) Glucose is first converted to the 4-carbon and 2-carbon central metabolites oxaloacetate and acetyl-CoA.  These 
metabolites are then converted to SA product either via the (b) reductive or (c) oxidative routes through the 
tricarboxylic acid cycle.  SA can then undergo a 2-step process to give adipic acid via 1,4-butanediol (1,4-BDO). (d) 
SA is first hydrogenated to 1,4-BDO, which then (e). undergoes catalytic carboxylation by a Rh(PPh)3COCl catalyst 
to yield adipic acid.
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Figure 5: Production adipic acid via muconic acid. (a) Biosynthesis of cis, cis-mucinic acid from glucose. 3-
Dehydroshikimate is produced from glucose through the metabolic steps in aromatic amino acid synthesis 3-
dehydroshikimate dehydratase then converts 3-dehydroshikimate to protocatechuic acid (PA). (b) PA is also the 
product of degradation pathways for various lignin derived aromatic compounds such as caffeate, p-coumarate, 
vanillin, coniferyl alcohol. (c) PA then undergoes decarboxylation by protocatechuate decarboxylase to give catechol. 
Catechol is further oxidized by catechol-1,2-dioxygenase to give cis-cis mucconic acid. (d) Mucconic acid is 
chemically reduced to adipic acid using a Pt/C catalyst and H2.
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Figure. 6 (a) Elemental impurities that need to be separated from biosynthesized muconic acid , in the culture broth, 
after crystallization, and after ethanol extraction. Despite decrease of impurities of using ethanol as an extraction 
method, the N concentration (90 ppm) is still above the limit of 20 ppm max. Data extracted from (49) (b) n-Butanol 
led to a selective extraction of glutaric acid (GA) from culture broth despite containing 5-aminovaleric acid (AVA). 
Data extracted from (139) (c) Comparison of the extraction efficiency of DES TOPO and its derivatives, TOPO-
dodecAC and TOPO-decAc, in the purification of adipic acid and succinic acid from aqueous fermentation broth. Data 
extracted from (142) 
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Figure 7. Comparison of estimated operating cost ranges for alternative processes synthesizing adipic acid. The ten 
year average ADP selling price (1.60/kg) is given as the black dashed line, and the best case operating costs of the NO 
process marked by the green dashed line. The gray bars indicate the estimated operating costs, with the low end 
achieved near maximal conversion yields and the high end supported by current performance. 

Table 1: Comparison of maturity and challenges for Chemical and Biotechnological Routes to ADP

Maturity Route(s) Feedstock(s) Best demonstrated performances       Challenges

1
Carbomethoxylation

(Petrochemical route)

Butadiene Adipic acid (In vitro)

Cat:Co salt, MeOH/CO

72% conversion yield

- Catalyst optimization

- Recycling

2
Reverse adipate

(Bio-route)

Glucose/ Glycerol Adipic acid (E. coli)

68g/L & 0.81g/L-h-1

72.7% bioprocess yield

   

- Strain & Pathway Optimization 

- ADP Purification 

Glucose

(a)

D-glucaric acid (In vitro)

Cat.1: 4%Pt/SiO2, 5 bar H2, 90°C, 8h

66% conversion yield

D-glucaric acid

(b)

Adipic acid (In vitro)

Cat.2: Pd–Rh/Davisil635, HBr, 49 bar, 

140°C, 3h

89% conversion yield

3

2-step glucose oxidation 

(Chemo-catalysis)

Glucose→Adipic acid Overall yield (a+b): 58%

- Separation/purification

- Catalyst optimization

4 β- and/or reverse β-

oxidation/ω-oxidation 

(Bio-route)

Fatty acids mixture

(coconut oil)

Adipic acid (C. tropicalis)

50g/L & 0.38g/L-h-1

>80% bioprocess yield

- Feedstock Costs

- Fermentation titers & rate

- ADP Purification 

Glucose

(a)

cis,cis-muconic acid (E. coli)

59.2g/L & 0.67g/L-h-1

30% bioprocess yield

- Strain & Pathway Optimization 

- ADP Purification 

5

Shikimate pathway

(Bio-chemocatalytic 

route)
cis,cis-muconic acid

(b)

Adipic acid (In vitro)

Cat.: 10%Pt/C, 34 bar H--2; RT, 2.5h

- Catalyst optimization

- ADP Purification 
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97% conversion yield

Glucose → Adipic acid Overall yield (a+b): 29%

Glucose

(a)

Succinate (Candida krusei)

Prod: 30ktpa

35% overall yield

 

Succinate

(b)

1,4-BDO (In vitro)

Cat: 1%Pd-4%Re/TiO2, 69 bar H2, 200 °C

89% conversion yield

1,4-BDO

(c)

Adipic acid (In vitro)

Cat: Rh(PPh)3COCl, 48 bar CO, 175 °C

74% conversion yield

6

Succinate route

(Bio-chemocatalytic 

route)

Glucose → Adipic acid Overall yield (a+b+c): 23%

- ADP Purification 

- Catalyst optimization

 

7 Myo-inositol D-glucaric acid (S. cerevisiae)

6g/L & 0.03g/L-h-1

Yield not reported

- Fermentation rate & yield

- Enzymes expression & activities

- Feedstock Costs  

- ADP Purification 

8 Myo-inositol D-glucaric acid (E. coli)

4.85g/L & 0.07g/L-h-1

Yield not reported

-   Fermentation rate & yield

-   Enzymes expression & activities

-   Toxicity tolerance

-  ADP Purification 

Glucose D-glucaric acid (E. coli)

2.5g/L & 0.05g/L-h-1

Yield not reported

-   Fermentation rate & yield

-   Enzymes activities

-   ADP Purification 

9

Myo-inositol pathway

(Bio-chemocatalytic 

route)

D-glucaric acid Adipic acid (In vitro)

89% conversion yield

-   ADP Purification 

-   Catalyst optimization
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