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New Concepts

The study of point defects is relevant to practically all materials science applications. The defect 
formation energy ΔHdef is an important property which relates to off-stoichiometry, electronic 
dopability and ionic conductivity of the material. The value ΔHdef, which expresses the stability 
of the defect in the compound, depends on the chemical conditions under which the material is 
synthesized. Currently, describing this chemical control of defects first requires plotting the 
phase stability of the compound separately in chemical potential space where, in comparison to 
the composition space, the visualization is relatively abstract. Stability visualization of 
compounds in composition space, represented by formation Enthalpy (ΔHform) versus 
composition convex-hull plots, are already widely understood and used by the materials science 
community in first-principles based high-throughput databases and phase diagram assessments. 
In this work we show that ΔHdef of point defects can also be visualized within a 2-dimensional 
convex-hull construction regardless of the number of components in the system and choice of 
chemical condition. This conceptual insight integrates stability visualization of point defects with 
that of the compound and will help to build an intuition for defect engineering among a wider 
materials science audience which internalizes the simple concept of convex-hulls in introductory 
courses.
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Abstract

Defect energetics impact most thermal, electrical and ionic transport phenomena

in crystalline compounds. The key to chemically controlling these properties through

defect engineering is understanding the stability of (a) the defect and (b) the com-

pound itself relative to competing phases at other compositions in the system. The

stability of a compound is already widely understood in the community using intuitive

diagrams of formation enthalpy (∆Hf ) vs. composition, in which the stable phases

form the ‘convex-hull’. In this work, we re-write the expression of defect formation

enthalpy (∆Hdef ) in terms of the ∆Hf of the compound and its defective structure.

We show that ∆Hdef for a point defect can be simply visualized as intercepts in a two-

dimensional convex-hull plot regardless of the number of components in the system

and choice of chemical conditions. By plotting ∆Hf of the compound and its defects

all together, this visualization scheme directly links defect energetics to the compo-

sitional phase stability of the compound. Hence, we simplify application level defect

thermodynamics within a widely used visual tool understandable from basic materials

science knowledge. Our work will be beneficial to a wide community of experimental

chemists seeking to build an intuition for appropriate choice of chemical conditions for

defect engineering.
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Introduction

Introductory textbooks in materials science often tabulate values of defect formation enthalpy 

(∆Hdef ) of intrinsic defects in crystalline solids. These tables typically compare ∆Hdef for 

intrinsic defects in elemental metals, such as Ti, Co, Ni, W, etc. Other common examples 

involve comparisons of intrinsic Schottky and Frenkel defects in ionic compounds such as 

NaCl, KCl, AgCl, CaF2, etc. In each of these cases, the defect does not alter the overall 

composition of the structure, and stability of the defect is determined with respect to the 

pristine host structure. Hence, ∆Hdef for all such defect types takes a single value at given 

temperature and pressure allowing for a simple comparison and understanding of defects.

In contrast, the defect energetics of most other important point defects in crystalline 

compounds such as interstitials, vacancies and anti-sites is significantly more complicated. 

For compounds, with two or more elements, even these simple defects, will alter the overall 

composition. Hence, the stability of the defect must be assessed with respect to stable phases 

lying at other compositions in the system, instead of just the pristine host structure of the 

compound. For example, when NaCl is saturated with a Cl atmosphere, the stability of a Na-

vacancy defect is determined with respect to NaCl and Cl2 gas. When NaCl is saturated with 

elemental Na on the other hand, stability of the same defect is determined NaCl and metallic 

Na. As a result, unlike a Schottky defect in NaCl, the stability of the Na-vacancy defect can 

vary depending on the chemical equilibrium conditions and ∆HNa-vacancy will take one value 

corresponding to Na-saturated conditions and another corresponding to Cl-saturated 

conditions. Hence, ∆Hdef of simple point defects in crystalline compounds can take at least 

two values of defect energies which are ‘chemically controllable’.

The dependence of defect energetics on phase equilibrium allows for chemical control of 

any properties that are affected by point defects. In semiconductor compounds, for exam-

ple, intrinsic charged defects set a thermodynamic limit on the number of charge carriers, 

or dopability,1,2 in the system. Changing chemical equilibrium conditions to tune ∆Hdef of 

intrinsic defects can offset this limit to allow more carriers in the semiconductor, thereby
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opening a wider range of electronic properties. For instance, in state-of-the-art n-type ther-

moelectrics PbTe and Mg3Sb2, electron dopability is barely possible unless the compounds

are synthesized under cation-rich chemical conditions.3,4 Point defects also impact electri-

cal,5,6 thermal7,8 and ionic9–13 transport significantly, making them important in studies for a

variety of applications such as batteries,14–16 photovoltaics,17,18 thermoelectrics,19–22 thermo-

chemical water splitting,23,24 solid oxide fuel cells,25,26 and transparent conducting oxides.27

In view of the fact that practically all materials research focuses on properties impacted

by simple defects in some way, understanding defect energetics within a thermodynamic

framework which is widely used by the community will be very beneficial.

Formation enthalpies (∆Hf ) are the most commonly used thermochemical quantity for

composition dependent stability analysis. Given the ∆Hf for all possible phases in a system,

plotting them in composition space is sufficient to distinguish the stable phases from the

unstable ones. These plots, also known as convex-hulls, are commonly used to introduce the

subject of thermodynamic stability through the common tangent construction. As a result,

convex-hulls are widely used by the scientific community for reading stability prediction of

compounds presented in high-throughput databases such as OQMD,28,29 Materials Project,30

AFLOW library,31 and performing stability analysis using CALPHAD assesments.32,33

In this work, we demonstrate that one can graphically solve for ∆Hdef of simple point

defects within the convex-hull construction itself (see Figure 1). The ∆Hdef of a defect

involving the atom A (A-vacancy and A-interstitial), for example, can be simply visualized

as intercepts on the elemental A axis of the convex-hull diagram (see Figure 1). Since these

elemental axes in the convex-hull diagrams represent the atomic chemical potential scale,

one can visualize ∆Hdef regardless of the chemical conditions considered. Hence, our visu-

alization scheme takes into account the stability of both the defect as well as the compound

in ∆Hdef calculation. Furthermore, we also show that the graphical solution of ∆Hdef for

any complex multicomponent (ternaries, quaternaries etc.) compound can be visualized in

simple two-dimensional plots without any loss of information. Since our approach simplifies
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Figure 1: Sketch showing the graphical solution for defect formation enthalpy for defects
(black circle) in the compound AB (grey circle) for B-rich equilibrium conditions (ends of
the orange dashed line represents the atomic chemical potentials). The compound AB is the
only stable phase in the A−B convex-hull (thick grey lines). The defective structure (black
circle) could represent any one of three defects: (i) A-vacancy, (ii) B-interstitial or (iii) BA

anti-sites. The defective structure lies above the convex hull, indicating positive ∆Hdef . The
graphical solution for ∆Hdef (i) (∆Hvac

def ) and (ii) (∆H int
def ) can be visualized as intercepts on

the A and B axis respectively.

application level defect thermodynamics using basic materials thermodynamics knowledge,

we expect it to be a useful pedagogical tool for a wide community.

We begin by introducing the concept of convex-hulls for finite-temperature and T = 0

K phase stability analysis. We follow this with a discussion of defect formation energies.

Finally, we will describe our visualization scheme for ∆Hdef of model binary and ternary

compounds within the two-dimensional T = 0K convex-hull framework.
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Results and Discussion

Finite Temperature

At non-zero temperatures, thermal energy (kT ) creates defects in the lattice of a compound

and changes its composition. The off-stoichiometry observed with increasing temperature

can be visualized in a temperature-composition phase diagram. Figure 2a sketches the

composition-temperature phase diagram of a model binary (A − B) system for which the

phases A, B, and AB, (depicted by shaded regions) all exhibit single phase width and are

stable in the entire temperature range. In general, the maximum amount of off-stoichiometry

in the stable single phase regions increases with temperature due to larger amounts of thermal

energies available to form defects in the lattice. The white regions bordered by single phases

represent two-phase equilibrium.
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Figure 2: (a) Temperature-Composition phase diagram for a model binary system A − B
with three solid phases A, B and AB, and their adjoining two-phase regions. (b) Example
free energy (∆Gf ) models of the phases A (blue curve), B (red curve), AB (orange curve)
at the temperature T = T0 in panel (a). Thick black lines drawn at the common tangents
between the stable phases represent the lowest energy surface and determine compositional
limits of the phase boundaries. (c) At 0 K, the Gibbs curves in (b) collapse and ∆Gf for
each compound becomes a point (∆Hf ). Common tangents drawn between stable phases
form the 0 K low energy surface, or convex-hull.

Solubility of different elements (at T = To, for example, see Figure 2a) within each phase

can be simply understood using the Gibbs free energies of formation (∆Gf ) of all stable

phases (see Figure 2b). ∆Gf can be drawn as composition-dependent curves for each phase,

where ∆Gf at a particular composition is determined with respect to the free energy of
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elemental phases A (G0
A) and B (G0

B). For example, the free energy of formation for the

compound AB2, for example, at the composition x = 2/3 is given by

∆GAB2
f = GAB2 − 1/3×G0

A − 2/3×G0
B (1)

where GAB2 is the free energy of the AB2 compound in eV/ atom. It is important to note

that when calculated on a per-atom basis (as in Figure 2 b) G0
A and G0

B are actually the

elemental chemical potentials (µ0
A and µ0

B) at constant pressure. Hence, the formation energy

are all relative to the elemental chemical potentials and ∆Gf at the percentage composition

x = 0 and x = 1 is zero (see Figure 2b).

The stability of a phase or combination of phases as seen in the phase diagram (see T =

T0 in Figure 2a) is determined by the common tangent construction; a topic familiar from

introductory texts on phase diagrams. In this technique, common tangents connecting the

∆Gf curves of all the phases involved are drawn and the lowest free energy surface (see thick

lines in Figure 2b) is chosen in order to describe phase stability. This lowest energy surface,

consisting of linear and non-linear (see thick black lines in Figure 2b) portions is known as

the convex-hull of the A − B system. The linear portions drawn from connecting common

tangents between curves indicate compositions which undergo phase separation in order to

lower the system’s energy to that of the common tangent line. The non-linear portion of the

convex-hull is created by a single low energy ∆Gf curve and indicates a single phase region.

∆Gf curves for metastable phases which cannot be seen in the phase diagram can also be

represented by curves lying above the convex-hull.

In addition to demonstrating compositional stability, convex-hull constructions also con-

tain complete information on how the chemical potentials of A and B atoms vary across

the entire composition range. To obtain the chemical potentials of the elements A and

B at a particular composition, one can simply draw a tangent to the convex-hull at that

composition and extend it in either direction to find the intercepts on the A (x = 0) and

B-component (x = 1) y-axis. The intercept length along the y-axis (given in eV/atom)
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indicates change in chemical potentials with respect to that of the elemental species µ0
A (for

A) and µ0
B (for B), respectively. So the chemical potentials for the A-AB equilibrium in

Figure 2b, for example, is µ0
A + ∆µA and µ0

B + ∆µB (see dashed grey line). The constant

values of the chemical potential across the two phase composition range signifies the energy

gain/loss associated with exchanging a single atom between phases in equilibrium (A and

AB for example). We discuss plotting chemical potential diagrams using the convex-hull

construction in Supplementary information.

T = 0 K

The curvature in the finite temperature ∆Gf arises from the entropic contribution (−T∆S)

to the free energy, which typically varies non-linearly with composition. So at T = 0K, where

∆Gf = ∆Hf , the curvature associated with the entropic contribution vanishes for all phases,

and the stable phases are represented by single points (see large circles in Figure 2c) lying

on the convex-hull. These points indicate ∆Hf of the defect-free stoichiometric structure of

the compound. The composition dependence of ∆Hf at T = 0K for the stable phases is

be depicted by including the energies of its defective structures in the convex-hull diagram.

The composition of these defective structures deviate from the nominal stoichiometry of the

compound in case of point defects such as vacancies, interstitials and anti-site defect. So

structures with larger concentrations of point defects in the compound AB, for example, will

lie further away from it in composition. The ∆Hf of these defective structures (see small

orange points for AB phase in Figure 2c) lie above the convex-hull signifying that they are

metastable at T = 0K.

Defect Energy

Consider, for example, the following defect reaction involving formation of an A-vacancy

from the bulk of a model binary compound AB

8
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AB −→ A1−δB + δ A (2)

the composition of the AB phase changes slightly (δ) and the atom removed from AB

gets placed in the elemental phase A. The molar enthalpy for such a defect reaction (∆HD)

is given by

∆HD = H(A1−δB) + δ H(A)−H(AB) (3)

where H(A), H(AB) and H(A1−δB) are the molar enthalpies of A, AB and the defective

structure. It is important to note that in addition to the enthalpy associated with the host

structure [H(AB)] and defect structure [H(A1−δB)], the defect formation enthalpy ∆HD

also depends on the enthalpy of the phase where the atom ends up [H(A)]. So ∆HD in

AB could in principle be evaluated for any combination of phases (AB-A, AB-AB3, etc.).

However, ∆HD is well-defined only if the phases are in thermodynamic equilibrium; i.e. the

phases involved constantly exchange atoms with each other without spontaneously forming

reaction product phases. The phase AB can be in equilibrium with a relatively A-poor

phase (i.e. AB3, B) and a relatively A-rich phase (i.e. A3B, A) in the A−B binary system.

So depending on which equilibrium AB is participating in, H(A) in equation 3 can be

substituted by the enthalpy of another phase in the binary system. Consequently, ∆HD can

take different values based on the choice of chemical equilibrium conditions. The multiple

values of ∆HD is in stark contrast to intrinsic defects in elemental solids or even Schottkey

and Frenkel defects in ionic solids (see Methods section). Even the simple binary compounds

can participate in more than two equilibria if a multicomponent composition space (ternary

(for example Na doping in PbTe), quaternary, pentenary etc.) is considered, making the

problem significantly more complicated.

Since the defect formation enthalpy is defined on a per-defect basis in the dilute limit

where lim δ −→ 0, we re-write the equation 3 for a single vacancy defect (∆Hdef ) by replacing
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H(A) with the chemical potential of the atom A (µA) and write it as

∆Hdef = Edefect − Epristine + µA (4)

where the first term Edefect - Epristine is the difference in energy between the defective

and pristine (defect-free) structures. More generally, ∆Hdef for all types of point defects

(interstitials, vacancies and antisites) can be written as:

∆Hdef = Edefect − Epristine − Σ ∆Niµi (5)

where ∆Ni is the number of atoms of species i added to or removed from the defective 

structure (+1 for interstitials, -1 for vacancies and for antisites +1 and -1 for the atomic 

species added and the atom species missing respectively) and µi is the chemical potential of 

the species i.

∆Hdef of charged defects, can also have an additional dependence on the position of the 

equilibrium Fermi-level (EF ) itself34 which can be expressed as

∆Hdef = Edefect − Epristine − Σ ∆Niµi + qEF (6)

where q is the charge state of the defect. For a fixed value of EF , the dependency of the 

charged defect ∆Hdef on chemical conditions — described by the Σ ∆Niµi term — is the same 

as that of a charge neutral defects (see Equation 5). In the following sections we describe the 

visualization scheme for ∆Hdef of charge neutral and charged point defects (at a fixed EF ).

Graphical representation of point defect energies in convex-hulls

To visualize the defect formation energy, ∆Hdef , within the convex hull construction (see 

Figure 3), we re-write equation 5 in terms of the formation energies ∆Hf of the defective and 

pristine structures and simplify the expression (see Methods section). In this new form
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Figure 3: (a-c) Graphical solutions for defect energy ∆Hdef of (a) A interstitial, (b) A
vacancy, and (c) BA antisite defects in the binary compound AB. Formation energy (∆Hf )
of the defect-free AB structure is given by the orange circle. ∆Hf of defective AB structures
are shown as filled hexagons for interstitials (a), empty hexagons for vacancy defects (b),
or a combination for anti-sites (c). Defective structures with the same value of ∆Hdef

are shown by translucent symbols and fall on the ‘defect line’ (solid black line). The left
and right columns correspond to A-rich and B-rich equilibrium, respectively. The chemical
potentials of A and B corresponding to these equilibrium conditions (large, empty circles)
are determined from intercepts of the common tangent lines (blue and red lines in the left and
right columns respectively). ∆Hdef is determined using intercept (for example Ei) between
the defect line and the common tangent line on the A and B-component axis. The sign of
these quantities are are given by the direction of the arrows next to them (see grey box). The
expression to calculate ∆Hdef is given in each panel. The general expression for calculating
∆Hdef for all defect types in is given in the grey box at the bottom where ∆Ni = 0 or 1 and
∆Nv = 0 or -1 depending on whether the number of atoms of a particular species is added
(1), removed (-1) or unchanged (0) in the defect.
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of the expression, all ∆Hf terms necessary to determine ∆Hdef can be read directly from the

convex-hull diagram (Figure 3). Full derivations for each defect type in the general cases of

a model binary compound ApBq and a ternary compound ApBqCr are given in the Methods

section.

Figure 3 shows example sketches of various simple point defect types (interstitials, va-

cancies and antisites) in the compound AB. The ∆Hf of the defective structures are drawn

such that they lie above the convex-hull, signifying metastability at T = 0K. Note that,

depending on how each defect type changes the stoichiometry of the compound, ∆Hf of

the defective structures are either shown (Figure 3) at the percentage compositions x <

0.5 (A-interstitials) or x > 0.5 (A-vacancies, BA anti-sites). Structures with larger defect

concentrations lie further away from the x = 0.5 composition. We draw two columns for

each panel in Figure 3 indicating the chemical potentials (see unfilled circles) in A-rich and

B-rich equilibrium conditions.

To obtain ∆Hdef graphically for the example of A-interstitials in Figure 3a, we simply

join the ∆Hf of the pristine compound and the defective structure with a line. We will call

this line as the “defect line” (see thick black line in Figure 3 a). We extend the defect

line to find the energy where it meets the A-component axis (filled black circle at x = 0).

We determine ∆Hdef by simply subtracting the chosen chemical potential of A from this

energy. Based on the geometry of the convex-Hull, we see that ∆Hdef for A-rich equilibrium

is smaller than the in the case of A-poor equilibrium, as one might expect. In the case of

A-vacancies, we extend the defect line in the same way to find the energy where it meets the

A-component axis. To determine the ∆Hdef we again subtract the chosen chemical potential

of A, but this time we change the sign by multiplying by a factor of -1.

Based on the examples of the vacancy and interstitial defects, we learn a couple of rules:

(i) for defects involving the atomic species i, we extend the defect line towards the i-

component axis to find the energy of intersection

(ii) after subtracting the chosen chemical potential of the species i, we either multiply

12
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by a factor of +1 or -1 depending on whether the atom was added to or removed from the

structure to form the defect.

For the example of BA anti-site defects, which is associated with both A and B atoms,

we extend the defect line on either sides to intersect with the A and B-component axis.

We determine the energy of intersection and subtract the corresponding choice of chemical

potential. For the term on the A side, we treat it as a vacancy and multiply by a factor of

-1. For the term on the B side, we treat it as an interstitial and multiply by a factor of 1.

To obtain the ∆Hdef we then add the two terms.

For the sake of our demonstration, we have drawn more defects at larger concentrations

using translucent symbols in Figure 3. Since all these points fall on the same defect line

they have the same value of ∆Hdef , i.e same defect energy per-defect. On the scale of most

convex-hull diagrams, the ∆Hf of the defective structures and the compound calculated

from first-principles calculations can often seem to fall on a line (see Figure S2) suggesting

a constant ∆Hdef .
35,36 However, at compositions closer to the compound deviations from

linearity are quite evident and evaluation of an accurate dilute limit ∆Hdef requires checking

for convergence with respect to defect concentrations.37–39 The non-linearity in ∆Hf values

of defective structures can arise from band-filling effects accompanying changes in EF with

increasing concentrations of donor or acceptor defects, changes in electrostatic potential in

the vicinity of a charged defect and defect-defect interactions (electrostatic and strain field

interactions between the two defects).37–39 Typically, the dilute limit ∆Hdef is obtained

using the defective structures closest in composition to the compound (as represented by the

opaque defect symbols in Figure 3).

The visualization scheme in Figure 3 can also be used relate ∆Hdef to key thermodynamic

parameters used in CALPHAD based thermodynamic models40 for calculating the phase

diagram. Using the compound energy formalism, CALPHAD based models40 describe off-

stoichiometry by assesing the stability of metastable structures known as end-members.41 An

example of an end-member for the compound AB, is the structure at the pure B composition
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obtained by removing all A-atoms of the structure. The Gibbs free energy of this A-vacancy

end-member is given by the notation oGV a:B. Since the visualization scheme shown in Figure

3 uses the formation enthalpy of the defective structures, ∆Hdef can be related to the

enthalpic contribution oHV a:B to oGV a:B. For this, we first note that the ∆Hf,V a:B of the

metastable end-member is obtained by intersection point of the defect line (determined by

dilute limit A-vacancy calculations) with the y-axis at pure B composition. From this, we see

that oHV a:B = ∆Hf,V a:B+Ho
B, whereHo

B is the enthalpy of the the elemental phaseB. For the

compound AB discussed in Figure 3, we see that ∆Hf,V a:B = ∆HB−rich
VA

where ∆HB−rich
VA

is

the defect energy of the A-vacancy under B-rich conditions and so oHV a:B = ∆HB−rich
VA

+Ho
B.

We would like to note here however that while ∆HB−rich
VA

is calculated from intercepts at pure

A composition, whereas ∆Hf,V a:B is calculated from the intercept on the pure B composition.

Therefore, ∆Hf,V a:B and ∆HB−rich
VA

are not necessarily equal for all compounds and are

related to each other by the stoichiometry of the compound itself. Relations between ∆Hdef

of other defects and the corresponding end-member enthalpies can be determined similarly.

Our graphical solution scheme to determine ∆Hdef can be easily extended to multi-

component systems (ternary, quaternary, etc.) for interstitials (see Figure 4 a,b) and vacan-

cies using a pseudobinary construction. Plotting ∆Hf along the 1-dimensional composition

line for these defects will naturally include the pure defect element enabling easy visualiza-

tion of ∆Hdef in the same way as described above. Although, visualization of ∆Hdef for

anti-site defects is not as straight-forward, it can still be done using a similar ∆Hf plot along

a 1-D composition line joining the defect-free and the defective structures (see Figure 4 c,d).

We note that even for the more complicated case of ternary compounds, the visualization

scheme for all defect types are represented in simple two-dimensional plots (see Figure 4

b,d). This feature is extendable to more complex multicomponent phase spaces as well.

We compare ∆Hdef calculated using our visualization scheme to those determined using

equation 5 (see Supplementary Figure S3) in our previous work42 for interstitials in ternary

half-Heusler systems (Nb0.8CoSb, Ta0.8CoSb etc.). The equality in ∆Hdef calculated using
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Figure 4: Graphical solution for defect energy (∆Hdef ) of (a-b) C interstitial and (c-d)
CB anti-site defects in the ternary compound ApBqCr. The compound and the defective
structures are represented by large orange and small red circles respectively. Panels a and
c show the ternary convex-hulls in which the compound ApBqCr is in equilibrium with
elements A, B and C. Panels b and d show the ∆Hf -composition convex-hull along the 1-D
composition slice containing both the defect and the compound. The ∆Hdef are shown for (a-
b) C-rich (ApBqCr-C two-phase region) and (c-d) B-poor (ApBqCr-A-C three-phase region)
conditions. Similar to the case of binary compounds (see Figure 3) ∆Hdef is determined
using intercept between the common tangent line and the defect line. The expression to
calculate ∆Hdef is given in each panel. The general expression for calculating ∆Hdef for all
defect types in is given in the grey box at the bottom where ∆Ni = 0 or 1 and ∆Nv = 0 or
-1 depending on whether the number of atoms of a particular species is added (1), removed
(-1) or unchanged (0) in the defect.
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the two methods serves as numerical proof to our derivations in the present work.

The visualization scheme presented in the current work is applicable for calculation of

∆Hdef regardless of choice of chemical potential. The issue of multiple chemical potential

values for calculating defect energetics of crystalline compounds is currently addressed using

phase stability plots in chemical potential space.3,43 The construction of these plots using a

model binary convex-hull is described in the supplementary information (see Figure (S1)).

While these plots can in principle be used to derive ∆Hdef corresponding to various equilibria,

chemical potential space in general tends to be quite abstract for visualization considering

that stoichiometry of each phase involved is depicted by the slope of the lines. As a result,

plotting in the chemical potential space is often used in relatively advanced thermodynamic

analysis and are often left out of introductory materials science textbooks. Owing to its

simplicity, the convex-hull based approach discussed here could be a suitable pedagogical

tool for teaching defect thermodynamics to a broader audience.

Conclusion

In conclusion, we show that one can graphically solve for the defect formation energies

(∆Hdef ) of any multi-component compound within a two-dimensional convex-hull plot, in-

cluding the effect of all possible chemical potentials. Using this visualization scheme, we

integrate the thermodynamic analysis of phases and point defects within the same intuitive

picture built in composition space. Considering that convex-hull diagrams are an introduc-

tory concept to a materials science audience and used widely today in predicting stability

from high-throughput databases, our work can serve as a powerful tool to bring the under-

standing of defect thermodynamics to a larger audience.
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Methods

Consider the model binary compound ApBq with p + q atoms in its primitive cell. For the

sake of simplicity, we assume that ApBq is the only compound in the binary system A−B.

To re-write the expression for ∆Hdef given in 5, we assume that the defect is being created

in a supercell which is l times larger in volume than the primitive cell. Then the formation

energies (∆Hpristine
f ) of the pristine (defect-free) structure is given by

∆Hpristine
f =

Epristine − lp µA − lq µB
l(p+ q)

(7)

where Epristine is the total energy of the pristine structure. Similarly, the formation

energy on the defective structure ∆Hdefect
f is given by

∆Hdefect
f =

Edefect − lp µA − lq µB − Σ ∆Niµi
l(p+ q) + Σ ∆Ni

(8)

where Edefect is the total energy of the defective structure. For the sake of generality we

will write the chemical potential of the atomic species i as

µi = µoi + ∆µi (9)

where µoi is the chemical potential of the elemental phase and ∆µi is the composition

dependent change in chemical potential. We rearrange the equations 7 and 8 to write

down their total energies Epristine and Edefect in terms of the formation energies (∆Hf ) of

the structures. We then substitute these expressions in equation 5 and simplify to get a

general expression for ∆Hdef

∆Hdef = (l(p+ q) + Σ ∆Ni)

(
[∆Hdefect

f −∆Hpristine
f ] +

(Σ ∆Ni)∆H
pristine
f

l(p+ q) + Σ ∆Ni

)
− Σ ∆Ni∆µi

(10)
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We will further simplify this expression for interstitials anti-sites and vacancies on a

case-by-case basis

Frenkel and Schottky Defects

Consider the case of complex defects Schottky, Frenkel and anti-site swapping defects in

which case the term Σ∆Ni∆µi in equation 10 is a constant l(p + q) ∆Hpristine
f . Hence, fol-

lowing from equation 10 the expression for ∆Hdef becomes independent of chemical potential

and the defect energy for these complex defects takes a constant value.

Interstitial

Consider the case of A-interstitial defect in ApBq for which ∆NA = 1 and ∆NB = 0. For

the sake of simplicity let us assume that that ApBq is in equilibrium with the the element A

such that for A−rich conditions ∆µA = 0. So Equation 10 then becomes

∆Hdef = (l(p+ q) + 1)

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

l(p+ q) + 1

)
(11)

The factor l(p+q)+1 depends on the composition of the pristine and defective structures

and can be written as this factor as

f interstitialA = (l(p+ q) + 1) =
1− xpristineA

xdefectA − xpristineA

(12)

where xi is the percentage (for component i) composition of a particular structure. We

call this factor fki as the “projection factor”, where k describes the type of defect in question.

So ∆Hdef becomes

∆Hdef = f interstitialA

(
[∆Hdefect −∆Hpristine] +

∆Hpristine

f interstitialA

)
(13)

The second term in the expression, to which the projection factor is multiplied is the
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convex-hull distance (ECH) of the defective structure. The convex-hull distance (see example

in Figure 2 c) is the vertical energy distance of a point from the convex-hull. So the

expression for ∆Hdef can be written succinctly as

∆Hdef = f interstitialA Einterstitial
CH (14)

From the equation 12 and 14 it becomes clear that the factor f interstitialA ‘projects’ the

convex-hull distance on to the A-component axis. The example (p = q = 1) of such a

graphical solution for ∆Hdef is shown in 3 a. However, the generality of our derivation

dictates that equation 14 holds true even any case with p 6= q.

The graphical solution for ∆Hdef in A-poor conditions can be understood by going back

to equation 5. The difference in ∆Hdef between A-rich and A-poor equilibrium conditions is

simply given by the change in chemical potential ∆µA between the two chemical conditions.

Graphically this is taken care of by choosing chemical potentials pertaining to the A-poor

equilibrium (see figure 3 a). Note that equation 14 does not hold true only for A-poor

chemical conditions. To define ∆Hdef more generally regardless of chemical potentials, we

replace Einterstitial
CH with ‘extended convex-hull distance’ (Einterstitial

eCH ). We define Einterstitial
eCH

as the vertical energy distance of the interstitial defective structure from the line drawn

to determine the chemical potential on the convex-hull plot. So for the A-poor equilibrium

Einterstitial
eCH will be the energy distance of the interstitial defective structure from the common

tangent to the AB-B phase equilibria. The subtle difference between EeCH and ECH is that

EeCH is chemical potential dependent, whereas ECH is not. We now re-write equation 14

more generally as

∆Hdef = f interstitialA Einterstitial
eCH (15)
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Vacancy

For the case of A−vacancy defect ∆NA = −1 and ∆NB = 0. For A-rich conditions (assuming

∆µA = 0) equation 10 then becomes

∆Hdef = (l(p+ q)− 1)

(
[∆Hdefect

f −∆Hpristine
f ]−

∆Hpristine
f

l(p+ q)− 1

)
(16)

In this expression the projection factor can be written as

f vacancyA = (l(p+ q)− 1) = − 1− xpristineA

xdefectA − xpristineA

(17)

Notice the factor of -1 in front of the expression for f vacancyA making it slightly different

from f interstitialA . Graphically, this means that unlike f interstitialA , f vacancyA will flip the sign of

the quantity projected onto the A-component axis. The simplified expression for ∆Hdef then

becomes

∆Hdef = f vacancyA

(
[∆Hdefect

f −∆Hpristine
f ]−

∆Hpristine
f

f vacancyA

)
(18)

Similar to the case of interstitial, the second term is the ECH of the vacancy defect

structure (Einterstitial
CH ) and ∆Hdef becomes

∆Hdef = f vacancyA Evacancy
CH (19)

For our ∆Hdef derivation to hold regardless of choice of chemical potential we re-write

the expression in terms of Evacancy
eCH

∆Hdef = f vacancyA Evacancy
eCH (20)
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Anti-site

For the case of AB anti-site defect ∆NA = 1 and ∆NB = −1. Assuming A-rich conditions

we get ∆µA = 0 and ∆µB = p+q
q
Hpristine. After substituting in equation 10 and simplifying

the expression

∆Hdef = lp

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

lq

)
+

lq

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

lq

)
(21)

we proceed to identify the relevant projection factors as follows

f interstitialA = lq =
1− xpristineA

xdefectA − xpristineA

(22)

f vacancyB = lp = − 1− xpristineB

xdefectB − xpristineB

(23)

Using these expressions for f interstitialA and f vacancyB we can re-write ∆Hdef as

∆Hdef = f vacancyB

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

f interstitialA

)
+

f interstitialA

(
[∆Hdefect

f −∆Hpristine
f ] +

∆Hpristine
f

f interstitialA

)
(24)

rewriting ∆Hdef again in terms of convex-hull distance of defective structure (Eanti−site
CH )

in question we get

∆Hdef = f vacancyB Eanti−site
CH + f interstitialA Eanti−site

CH (25)
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The two terms in this expression can be obtained by projecting the convex-hull distance

of the defective structure (Eanti−site
CH ) on the B and A-component axis respectively. For our

∆Hdef derivation to hold regardless of choice of chemical potential we re-write the expression

in terms of Eanti−site
eCH

∆Hdef = f vacancyB Eanti−site
eCH + f interstitialA Eanti−site

eCH (26)

∆Hdef in its most general form regardless of defect type and thermodynamic conditions

can be written as

∆Hdef = ∆Nadded
i f interstitiali Edefect

eCH −∆N removed
j f vacancyj Edefect

eCH (27)

where ∆N is the number of atoms added or removed in the defect for the component i

and j respectively. Edefect
eCH is the extended convex-hull distance of the defective structure.

Equation 27 can be used to derive all the equations on the panels of the Figure 3 (see bottom

of the Figure 3).

Interstitial defects in a ternary compound

For the case of interstitial Ci defects in the ternary compound ApBqCr (see figure 4) consider

the C-rich chemical conditions (two-phase region ApBqCr-C). In this case ∆NC = 1 and ∆µC

= 0. Using the general expression in equation 10, ∆Hdef can be written as

∆Hdef = (l(p+ q + r) + 1)

(
[∆Hf

defect −∆Hf
pristine] +

∆Hf
pristine

l(p+ q + r) + 1

)
(28)

this expression can further be written as

∆Hdef = f interstitialC EeCH (29)

where f interstitialC is the projection factor given by f interstitialC = (l(p+ q + r) + 1)
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Vacancy defects in a ternary compound

For the case of C−vacancy defects in the ternary compound ApBqCr (see figure 4) consider

the C-rich chemical conditions (two-phase region ApBqCr-C). In this case ∆NC = −1 and

∆µC = 0. Using the general expression in equation 10, ∆Hdef can be written as

∆Hdef = (l(p+ q + r)− 1)

(
[∆Hf

defect −∆Hf
pristine] +

∆Hf
pristine

l(p+ q + r)− 1

)
(30)

this expression can further be simplified as

∆Hdef = f interstitialC EeCH (31)

Anti-site defects in a ternary compound

For the case of anti-site CB defects in the ternary compound ApBqCr (see figure 4) con-

sider the B-poor chemical conditions (three-phase region ApBqCr-A-C). Using the general

expression in equation 10, ∆Hdef can be written as

∆Hdef = l(p+ q + r)

(
[∆Hf

defect −∆Hf
pristine] +

∆Hf
pristine

lq

)
(32)

this expression can further be written as

∆Hdef = l(p+ q + r) EeCH (33)

This quantity can be visualized as a projection of the convex-hull distance of the defective

structure as shown in the figure 4.
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